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 ABSTRACT 

 In this study, thermo-nonlocal vibration of double bonded graphene sheet (DBGS) subjected 
to 2D-magnetic field under biaxial in-plane pre-load are presented. The elastic forces 
between layers of graphene sheet (GS) are taken into account by Pasternak foundation and 
the classical plate theory (CLPT) and continuum orthotropic elastic plate are used. The 
nonlocal theory of Eringen and Maxwell’s relations are employed to incorporate the small-
scale effect and magnetic field effects, respectively, into the governing equations of the 
GSs. The differential quadrature method (DQM) is used to solve the governing differential 
equations for simply supported edges. The detailed parametric study is conducted, focusing 
on the remarkable effects of the angle and magnitude of magnetic field, different type of 
loading condition for couple system, tensile and compressive in-plane pre-load, aspect ratio 
and nonlocal parameter on the vibration behavior of the GSs. The result of this study can be 
useful to design of micro electro mechanical systems and nano electro mechanical systems.  
                                                                        © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ARBON nanostructures such as GSs and carbon nanotubes (CNTs) have many special and superior physical, 
chemical and mechanical properties, for example high electrical and thermal conduction, exceptional stiffness 

and strength, and low density. Besides, they have a huge potential in electrical and mechanical applications such as 
sensors, semiconductor devices, aeronautic and astronautic technology, automobile, and many other modern 
industries. Nanotubes are deformed GS and it is another reason that makes more interest to analyze these structures. 
Vibration analysis of orthotropic GS embedded in Pasternak elastic medium using nonlocal elasticity theory and 
DQM has been studied by Pradhan and Kumar [1] who investigated the effects of nonlocal parameter, size of the 
graphene sheets, stiffness of surrounding medium and boundary conditions on non-dimensional vibration 
frequencies. Murmu and Adhikari [2] investigated axial instability of double-nanobeam-systems. Analysis of the 
scale effects in buckling loads of double-nanobeam-system with synchronous and asynchronous modes has been 
discussed in their study. Also they studied [3] the nonlocal vibration of bonded double-nanoplate-systems that two 
nanoplates are assumed to be bonded by an enclosing elastic medium. Their work provided a starting point for 
further investigation of more complex nanoplates systems with graphene based. The effect of in-plane pre-load on 
vibration of plate, nanotubes and beams was investigated by some researchers [4-6]. Free vibration of functionally 
graded beams with piezoelectric layers subjected to axial load studied by Karami Khorramabadi [7] who presented 
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the effects of the constituent volume fractions, influences of applied voltage and axial compressive loads on the 
vibration frequency. Murmu and Pradhan [8] investigated vibration analysis of nanoplates under uniaxial prestressed 
conditions. Influences of small scale and uniaxial pre-load on the nonlocal frequency solutions studied. Also, Kiani 
[9] studied vibration of double-walled carbon nanotubes on elastic foundation subjected to axial load. 

Recently, influence of magnetic field on GS and CNTs behavior is attracted many researchers [10-15] so that 
some experiments performed on CNTs under an electro-magnetic field [16-19]. Kiani [20] studied transverse wave 
propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using 
nonlocal elasticity models. Their results showed the influence of longitudinal magnetic field on the characteristics of 
both flexural and shear waves in SWCNTs embedded in an elastic matrix. Murmu et al. [21] expressed the influence 
of an in-plane magnetic field on the transverse vibration of a magnetically sensitive single-layer graphene sheet 
(SLGS) embedded in a Winkler medium using equivalent continuum nonlocal elastic plate theory and considering 
the Lorentz magnetic force obtained from Maxwell’s relation. They reported effects of the in-plane magnetic field 
on higher natural frequencies and different aspect ratios of SLGS. 

Motivated by these considerations, in the present study, in order to improve optimum design of nanostructures, 
the effect of 2D-magnetic field and different loading condition by biaxial in-plane pre-load on vibration of 
orthotropic DBGS resting on Pasternak foundation is examined. Using nonlocal elasticity orthotropic classical plate 
theory and Maxwell’s Relations, the motion equations are derived based on energy method and Hamilton's principle 
using DQ approach. The effects of loading condition, finally, the magnetic angle, the magnetic parameter and 
nonlocal parameter are investigated. 

2    FUNDAMENTAL EQUATIONS 
2.1 The classical plate theory 

In this study, a DBGS with 2D-magnetic field under in-plane pre-load and resting on a Pasternak foundation is 
shown in Fig. 1(a), which geometrical parameters are also indicated in Fig. 1(b). The Pasternak foundation has been 
simulated by containing spring constants of Winkler-type ( wk ), shear constants of Pasternak-type ( gk ). 

According to the classical plate theory (CLPT), displacement field may be written as [22]: 
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where xu , yu  and zu  are displacements in yx, and z  directions, respectively. Using Eq. (1), the strain–

displacement relations according to von Kármán strains, can be expressed as: 
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Fig. 1 
(a) Schematic of DBGS in Pasternak foundation under biaxial in-plane pre-load and 2D magnetic field (b) Geometric parameters 
of SLGS subjected to 2D magnetic field. 
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2.2 Nonlocal elasticity plate theory 

In the Eringen’s nonlocal elasticity model, the stress state at a reference point in the body is regarded to be 
dependent not only on the strain state at this point, but also on the strain states at all of the points throughout the 
body. The basic equations for homogeneous, isotropic and nonlocal elastic solid with zero body forces are given by 
[23] 
 

, , , , ,

1
0 ( ) ( , ) ( ) ( ), ( )
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where ijklC  is the elastic module tensor of classical (local) isotropic elasticity; ij  and ij  are stress and strain 

tensors, respectively, and iu  is displacement vector. ),(  xx   is the nonlocal modulus. xx   is the Euclidean 

distance, and lae0  is defined that l  is the external characteristic length, 0e  denotes a constant appropriate to 
each material, and a  is an internal characteristic length of the material (e. g. , length of C-C bond, lattice spacing, 
granular distance). Consequently, ae0  is a constant parameter which is obtained with molecular dynamics, 
experimental results, experimental studies and molecular structure mechanics. The constitutive equation of the 
nonlocal elasticity can be written as [23]. 
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where i  ( yxi , ) denotes linear thermal expansion of coefficient in x nd y directions, respectively, and nl  is 
nonlocal stresses. It should be noted that the nonlocal stress tensor becomes a local one when the nonlocal parameter 
is zero ( 00 ae ). Using the Eringen's nonlocal theory, the nonlocal stress resultant can be rewritten as [23]: 
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m T

ii ii iiN N N  ( yxi , ) is resultant force where m
iiN and T

iiN are mechanical and thermal resultant forces in 
which defines as [8]: 
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2.3 Maxwell’s relations 

The governing electro-dynamic Maxwell equations for a perfectly conducting elastic body can be written as [15, 
24]: 
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where J


,U


and  indicate the current density, the vector of displacement ( ( , , )x y zU u u u


) and magnetic field 

permeability, respectively. Also e


 is strength vectors of electric field and h


 is disturbing vectors of magnetic field, 
that defined as [15, 24]: 
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Due to applying 2D magnetic field in any direction in this study, we consider ( , ,0)x yH H H


 that act on DBGS, 

which: 
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where H  is the magnitude of total applied magnetic field and   is angle of between direction of 2D magnetic filed                            

and positive x-axis Fig.1(b). Considering Eq.(9) and using Hamilton arithmetic operator ( ˆˆ ˆi j k
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By setting  ,  and   into Eq. (11) so that kjiJ ˆˆˆ  


, the Lorentz force ( f


) caused by the 2D-
magnetic field is given as: 
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For transverse vibration considered Lorentz force in z direction and using Eq. (1), the lateral force produced by 

magnetic field can be written as [21]: 
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2.4 Hamilton’s principle 

The motion equations of DBGS under 2D-magnetic field and biaxial in-plane pre-load can be derived by Hamilton’s 
principles as follows [25]: 
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where U is the virtual strain energy, V is the virtual work done by external applied forces and K is the virtual 
kinetic energy.  

Using Eq. (14) by parts and setting the coefficient of mechanical displacement to zero lead to the following 
motion equations: 
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where q is lateral force caused by Pasternak medium and magnetic field and 0 2,m m  are mass moments of inertia 
that defines as: 
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Substituting Eqs. (1) and (4) into Eq. (17) the governing equation of motion in terms of  transverse  

displacements yields: 
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where superscript i  ( 2,1i ) indicates the number of layers, iiD  are various bending rigidities and iK

 
represents 

the effect of elastic medium between two layers which are: 
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(22) 

3    SOLUTION PROCEDURE 

The DQM is a numerical discretization technique for approximation of derivatives that calculates the variables in 
discrete points as a weighted linear sum of the function values at all discrete points chosen in the solution domain of 
the spatial variable [26]. Consider a function Q (representing u, v and w) of the variables in the domain with 

x yN N  grid points along x and y axes, respectively. Then, the first-order partial derivative of the function Q(x, y) 

may be approximated by [27] 
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(23) 

 
where ,x yA A

 
represents the weighting coefficient of the first order partial derivative. The weighting coefficients for 

higher order derivatives can be obtained by: 
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(24) 
 

 
where B , C and D  are the weighting coefficient of second, third and fourth order of partial derivatives, respectively, 
and weighting coefficients in y direction are similar. Substituting Eqs. (23) and (24) into the governing equation 
turns it into a set of algebraic equations expressed as: 
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(25) 
 

 
In order to solve the time derivatives of Eq. (25), the dynamic displacement vector w is expanded as: 

 
teyxwtyxw ),(),,(   

(26) 

 
where     represents the frequency of DBGS under magnetic field. In order to carry out the matrix multiplication, 
mathematical product (Kronecker) is applied. Using Kronecker product of matrices [28-29] which is defined as: 

 
 

 
ijijCaCA 

 
(27) 

 
Therefore, coupled formulations can be expressed as: 
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Introducing the following dimensionless quantities figures expressed in general form: 
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Substituting Eqs. (29) into Eq. (26), can be expressed in matrix form which is called eigen value problem as: 
 
      02  VMK   

(30) 

4    RESULTS AND DISCUSSIONS 

In this study, the effect of 2D-magnetic field and biaxial in-plane pre-load on thermo-nonlocal vibration of a 
orthotropic DBGS resting on Pasternak foundation is investigated. The orthotropic mechanical properties of GS are 
listed in Table 1 [30]. 
 
 
Table 1 
Mechanical Thermal and Geometrical properties of orthotropic GS for Armchair structure [30]. 

 
 
The effects of magnetic field direction, magnitude of magnetic field, different case of in-plane pre-loads on 

couple system and aspect ratio investigated in this study. Fig. 2 expresses dimensionless Frequency versus magnetic 
angle for different dimensionless nonlocal parameter. Since 1  in this figure ( 1/  xy LL ), the geometric 

symmetric is at 45  and it is the reason of the symmetric dimensionless frequency at this angle. Also, it can be 
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seen from this figure that with increasing magnetic angle to 45o dimensionless frequency decreases and due to 
symmetry from 45o to 90o, dimensionless frequency increases. This figure shows the effect of nonlocal parameter on 
dimensionless frequency versus angle of magnetic field where increasing nonlocal parameter caused to decreases 
dimensionless frequency. When the magnetic field applied in x or y directions, the difference between dimensionless 

frequency is low and at 45 this difference is maximum. Varying dimensionless frequency versus change of 
dimensionless magnetic parameter (Â) for different angles is shown in Figs. 3 and 4, where the magnetic parameter 
is considered as linear and logarithmic in Figs. 3 and 4, respectively. It is observed that with increasing magnetic 
parameter, dimensionless frequency increases and the effect of magnetic angle is remarkable at higher magnetic 
values. 
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Fig. 2 
Effect of magnetic field direction with change of nonlocal 
parameter. 
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Fig. 3 
Dimensionless frequency versus logarithmic dimensionless 
magnetic field for different angle of magnetic field. 
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Fig. 4 
Dimensionless frequency versus linear dimensionless magnetic 
field for different angle of magnetic field. 

 
In this study, four typical loadings are considered for DBGS as (see Fig. 5): 
1. In-phase x- Pre-loads and In-Phase y- Pre-loads (IX-IY): when the in-plane pre-load on x-direction for both 

layers are synchrony and in-plane pre-load on y-direction for both layers are synchrony (case 1). 
2. In-phase x- Pre-loads and Out-of-Phase y- Pre-loads (IX-OY): when the in-plane pre-load on x-direction for 

both layers are synchrony and in-plane pre-load on y-direction for both layers are asynchrony (case 2). 



202                   A. H.Ghorbanpour Arani et al. 

© 2013 IAU, Arak Branch 

3. Out-of-phase x- Pre-loads and In-Phase y- Pre-loads (OX-IY): when the in-plane pre-load on x-direction for 
both layers are asynchrony and in-plane pre-load on y-direction for both layers are synchrony (case 3). 

4. Out-of-phase x- Pre-load and Out-of-Phase y- Pre-load (OX-OY): when the in-plane pre-load on x-direction 
for both layers are asynchrony and in-plane pre-load on y-direction for both layers are asynchrony (case 4). 

where at these cases 111 xxyy NkN   and 222 xxyy NkN  . 
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Fig. 5 
Four typical loadings on each of graphene layer. 
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Fig.6 
Frequency ratio versus dimensionless in-plane pre-loads for case 
(IX-IY). 
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plane pre-load is constant and equal to 1. It is found that three states are intersect  in 0P ,  also it can be seen that 
in 1k , frequency is constant or frequency with pre-loads is equal to frequency without pre-loads because of: 

 

loadpreplaneinwithoutFrequency

loadpreplaneinwithFrequency
RatioFrequency
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Fig. 7 demonstrates frequency ratio versus dimensionless in-plane pre-load for case 2 (IX-OY). It is found that 

similar to case (IX-IY) whole states are converge to (0, 1) point. In this case, positive and negative magnitudes of 
load factors (k1, k2) are same and with increasing its value instability region increases. Effect of load condition on 
frequency ratio for case 3 (OX-IY) is indicated in Fig. 8 where same as previous figures, curves are converge in (0, 
1) point. Fig. 9 expresses the effect of load condition on frequency ratio for case 4 (OX-OY). It is found that the 
stability and frequency ratio increase with decrease of load factor from positive to negative values. Whole curves 
converge in 0P  and symmetric occurs in this position. At state 121  kk  the frequency ratio is maximum and 
equal 1. Finally, when in-plane pre-load on x- and y-direction for both layers are asynchrony or synchrony, it can be 
concluded that in 1k  the effect of in-plane pre-loading can be ignored, otherwise it can not be ignored. 
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Fig. 7 
Effect of load condition on frequency ratio for case (IX-OY). 
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Fig. 8 
Effect of load condition on frequency ratio for case (OX-IY). 
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Fig. 9 
Effect of load condition on frequency ratio for case (OX-OY). 
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Fig. 10 
Effect of aspect ratio on frequency ratio with change of in-
plane pre-loads. 
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Fig. 11 
Comparison between present results with those presented by 
Murmu and pradhan [8]. 

 
Fig. 10 shows the frequency ratio versus dimensionless in-plane pre-load for different aspect ratio ( ). With 

decreasing aspect ratio, the length of nanoplate in y-direction decreases and nanoplate convert to nanobeam. With 
decreasing the aspect ratio,  frequency ratio decreases for tensile in-plane pre-load and frequency ratio increases for 
compresive in-plane pre-load. In order to validate present study, a simplified case of the analysis is considered a 
single layer GS under uniaxial pre-stressed conditions by T. Murmu and S. C. Pradhan [8], in which nondimensional 
frequency versus nondimensional uniaxial pre-load is plotted for local vibration. The results presented by [8] are 
compared with the results of this investigation in Fig. 11. This figure demonstrates there is good agreement between 
them. 

5    CONCLUSION 

Transverse vibration analysis of DBGS based on the nonlocal continuum theory subjected to 2D-magnetic field and 
combined biaxial in-plane pre-loadings was developed. The Pasternak interaction forces between adjacent layers 
were also taken into account in this study. The effects of load conditioning, magnetic field angle, nonlocal parameter 
and aspect ratio on couple system frequency were investigated. In general, results showed that vibration behavior in 
any load condition is unique and depends on in-phase or out-of-phase loading on x- and y-direction on two layers. It 
was found from figures when in-plane pre-load on x- and y-direction for both layers are synchrony (IX-IY) and 
asynchrony (OX-OY) in 1k , can ignored in-plane pre-loading effects, and also curves of total figures are 
converge in (0,1) point. By increasing the magnetic angle to 45 , the dimensionless frequency decreases. The 
results of this study could be used in optimum design of NEMS/MEMS under magnetic field as a frequency 
controller. 
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