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 ABSTRACT 

 In this paper, a new three dimensional brick finite element based on the strain 

approach is presented with the purpose of identifying the most effective to analyze 

linear thick and thin plate bending problems. The developed element which has the 

three essential external degrees of freedom (U, V and W) at each of the eight corner 

nodes, is used with a modified elasticity matrix in order to satisfy the basic 

hypotheses of the theory of plates. The displacements field of the developed 

element is based on assumed functions for the various strains satisfying the 

compatibility and the equilibrium equations. New and efficient formulations of this 

element is discussed in detail, and the results of several examples related to thick 

and thin plate bending in linear analysis are used to demonstrate the effectiveness 

of the proposed element. The linear analyses using this developed element exhibit 

an excellent performance over a set of problems. 

                                                           ©2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE plate elements are of such common occurrence in engineering practice, these have attracted a considerable 

amount of attention over a very long period, providing much valuable information. The formulation of a simple 

and efficient plate element, which has a good accuracy in numerical analysis, is highly desirable. There have been 

developed many finite elements for plate bending analysis based on the classical Kirchhoff -Love theory, transverse 

shear deformation is neglected, the accuracy decreases and its truthfulness is lost with growing thickness. To 

improve this situation, a considerable interest to develop the plate elements based on the Reissner/Mindlin theory 

[32, 30], which takes into account the shear effect, and very effective locking-free procedures have been provided.  

Most engineering problems in solids and structures are naturally in three dimensions. Many research works have 

been oriented to the three-dimensional elements, [20, 47] for the thick plates in bending. However, when solving 

these problems with standard Galerkin finite element methods, some bad behaviours may occur such as the locking 

phenomenon due to over constraining when dealing with thin plates. By using higher order elements, these locking 

phenomena are reduced, but the computational effort becomes larger. To overcome this difficulty, the reduced 

integration technique was introduced as one of the simplest and the most effective ways [46]. Other formulations 

have been established to develop robust three-dimensional elements, [14, 44, 4, 26, 28, 39, 15, 31, 19, 42 and 43] 

which allow preventing shear locking when dealing with thin structures.  Despite their high number of degrees of 

freedom, they have many advantages: faster formulation for the stiffness matrixes can easily be taken into account 
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variations in thickness of thin structures. In addition, they can be connected without any changes to three-

dimensional structures. The main quality of these elements, in addition to its volumetric aspect, is that it relies solely 

on the degrees of freedom of translation. No degree of freedom of rotation is introduced. Therefore, what is needed 

is a formulation that allows the development of 3D high order  elements with the minimum required degrees of 

freedom that are simple to implement but efficient to use. The finite element method has been extensively developed 

applied to many problems; several different approaches for finite element analysis have been applied with success. 

In this aspect, the strain based approach was found to lead to high order elements with the minimum nodes and 

degrees of freedom. Many have investigated strain based finite element approach for structural analysis [2, 33, 34, 

35, 36, 13, 7, 16, 18, 9, 10, 21, 22, 23 and 24]. With the continued development of the strain approach, many 

elements were developed by other Researchers, three dimensional elasticity elements [8 and 12], Reissner/Mindlin 

plate elements [11]. 

In this paper we present a new brick finite element based on the strain approach and with a modified elasticity 

matrix [8, 14, 1, and 42] for the linear analysis of either thin or thick plate bending. This new element named 

SBBEE (Strain Based Brick Equilibrium Element) possesses eight corner nodes with the three essential external 

degrees of freedom (u, v and w) at each node. In developing, the present element satisfies equilibrium equations as 

additional condition as many elements [35, 10]. This element is examined and compared with other elements 

through a deep numerical evaluation which confirms its good performance. 

2    FORMULATION OF THE DEVELOPED ELEMENT 

For three dimensional linear analysis problems, the strain in terms of the displacements are given by: 
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where U, V and W are the displacement in the (x, y, z )axes , (εx, εy , εz) are the normal strains and (xy, yz ,zx) are the 

shear strains. 

To obtain the rigid body components of the displacement field, all the strains, as given by Eq. (1), are set to zero 

and the resulting partial differential equations are integrated. The resulting equations for U, V, and W are given by: 
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The rigid body components of the displacement fields are expressed in terms of the six independent constants α1, 

α2 ... α6. Since the SBBEE element is a parallelepiped with eight nodes and three degrees of freedom  

(U, V and W) at each of the eight corner nodes as shown in Fig. 1. The final displacement fields should be in terms 

of twenty four constants. Having used six for the representation of the rigid body modes, the remaining 18 constants 

are available for expressing the straining deformation of the element. These are apportioned among the strains as 

follow: 
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(3) 

 

The strain functions given above of the present element satisfies both the compatibility Eq. (4) and the terms in 
brackets are added to satisfy the equilibrium Eq. (5), where ν is the Poisson’s ratio.  
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Eq. (3) are equated to the corresponding expression in terms of U, V and W from Eq. (1) and the resulting 

equations are integrated to obtain  
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The complete displacement functions are the sums of corresponding expressions from Eqs. (6) and (2). These 

can be written as: 
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Fig.1 

Brick element with U, V, and W degrees of freedom at each of 

the eight nodes. 

 

The displacement functions of the developed element SBBEE given by Eq. (7) can be written in matrix form as: 

 

     , ,x y z      (8) 

 

The coordinates of each node are then substituted to give: 
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where  e and   are respectively the nodal displacement vector and the constant parameters vector. The 

transformation matrix [C] is given in appendix. The constants    can be obtained as: 
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The present brick element SBBEE has eight nodes and 24 degrees of freedom, and since the matrix [C] of the 
developed element, which relates the 24 nodal displacements to the 24 constants α1 to α24 is not singular, its inverse 

exists. Following the well-known procedure for displacement type finite elements [47], the stiffness matrix [Ke] for 

the 3D element can be given by:  

 

     [ ]
V

TB D B dVeK     

(12) 

 

The strain matrix [B] is given as follow:  
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Hence the stiffness matrix [Ke] for the present element is given by: 
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where [Q], [J] and [D] are the strain, the Jacobian and the elasticity matrices respectively, the matrix [Ke] given by 

Eq. (15) is numerically evaluated and the matrices [C] and [Q] are given in the appendix. 

The 3D elasticity matrix [D] is modified. The modification of the constants of the elasticity matrix aims to soften 

the element stiffness matrix in order to represent the reel behavior of plates in bending, either thick or thin (plane 

stress formulation with constant transverse shear). 
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where x, y and z are the normal stresses and xy, yz and zx are the shear stresses. The constants are defined as: 
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1- 1-
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33 44 2(1-2 )
d d k

 


   . Where k is the shear factor. 

3    LINEAR NUMERICAL VALIDATION  

3.1 Square plate bending with various conditions   

Rectangular plates of length L and thickness ratios (L/h=10 and 100) under various loading and support conditions 

(simply supported or clamped plate under uniform or concentrated loading) have been analysed. Only one quarter of 

the plate is modelled with symmetric boundary conditions imposed on the symmetry lines Fig. 2.  

Tables 1. to 4 show the numerical results predicted by the SBBEE element, obtained with different meshes and 

thickness ratios. As well as by DBB8 element based on the displacement approach, and compared with the reference 
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solution, given in ref [40] for thin plates, in ref [25] for the thick plates under the uniform load and in ref [45] for the 

thick plates under the concentrated load. 

 
          

 

 

 

 

Fig.2 

Rectangular plate bending with Various Conditions (E=10.92, 
ν=0.3 and the shear factor k=5/6). 

The study shows a good convergence rate for the presented element to the reference solutions for thick and thin 

plates and is in good agreement with other numerical results. The developed element does not suffer from any shear 

locking phenomena since it converges to the Kirchhoff solutions for thin plates, contrarily for the displacement brick 

element DBB8, which suffer from some shear locking for the thin plate case, but they still converge to the correct 

result competitively fast for tick plate case. 

 
Table 1 

Non-dimensional central deflection of a simply supported plate with a uniform load ((WD/ql4)   100). 

Mesh 
l/h=10 l/h=100 

DBB8 SBBEE DBB8 SBBEE 

2 2  0.2316 0.3526 0.0045 0.0664 

4 4  0.3650 0.4289 0.0171 0.3090 

6 6  0.4112 0.4452 0.0358 0.3790 

8 8  0.4312 0.4518 0.0574 0.3955 

10 10  0.4414 0.4551 0.0780 0.4011 

12 12  0.4473 0.4571 0.0867 0.4037 

16 16  0.4504 0.4589 0.0950 0.4058 

Reference solution 0.46169 0.4062 

 

Table 2 

Non-dimensional central deflection of a simply supported plate with a concentrated load ((WD/pl2)   100). 

 

Table 3  

Non-dimensional central deflection of a clamped plate with a uniform load ((WD/ql4)   100). 

Mesh 
l/h=10 l/h=100 

DBB8 SBBEE DBB8 SBBEE 

2 2  0.7358 1.0410 0.0134 0.0388 

4 4  1.130 1.2900 0.0479 1.0870 

6 6  1.277 1.3620 0.0972 1.1240 

8 8  1.346 1.3960 0.1594 1.1400 

10 10  1.385 1.4180 0.2175 1.1480 

12 12  1.405 1.4290 0.2318 1.1420 

16 16  1.435 1.4480 0.2850 1.1520 

Reference solution 1.44267 1.16 

Mesh 
l/h=10 l/h=100 

DBB8 SBBEE DBB8 SBBEE 

2 2  0.0698 0.0831 0.0010 0.0021 

4 4  0.1150 0.1367 0.0037 0.0507 

6 6  0.1320 0.1445 0.0078 0.1009 

8 8  0.1394 0.1470 0.0132 0.1168 

10 10  0.1431 0.1482 0.0191 0.1220 

12 12  0.1452 0.1489 0.0246 0.1241 

16 16  0.1465 0.1486 0.0346 0.1247 

Reference solution 0.15046 0.126 
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Table 4  
Non-dimensional central deflection of a clamped plate with a concentrated load ((WD/pl2)  100). 

3.2 The effect of L/h ratio on the central deflection of square plates  

Plates with various conditions (loading and boundary conditions) are studied for several values of (L/h) ratio. The 

results presented in Tables 5. and 6 are given for 10x10 meshes in terms of the central deflection to the reference 

Kirchhoff solution [40]. The SBBEE element should not lock in thin plate, it is free from any shear locking 

contrarily for the displacement element DBB8. 

 
Table 5  

Influence of (L/h) on the central deflection (W/Wref) of simply supported plates. 

 

Table 6  

Influence of (L/h) on the central deflection (WC/Wref) of Clamped plates. 

3.3 Single element aspect ratio sensitivity test   

The geometrical of this test, the mesh discretization and material parameters are also shown in Fig. 3. This proposed 

test is used to assess the sensitivity of an element for locking when the aspect ratio (length to depth) is high as 16, 

the bending moment is applied in the free end of the element. The results in terms of the vertical displacements 

presented in Table 7. show that the developed element does not lock even for high aspect ratios and these results are 

exactly equal to theoretical value for all the aspect ratios. 

 

 

 

 

 

Mesh 
l/h=10 l/h=100 

DBB8 SBBEE DBB8 SBBEE 

2 2  0.3295 0.3639 0.0046 0.0083 

4 4  0.5710 0.6448 0.0169 0.2196 

6 6  0.6680 0.7097 0.0359 0.4369 

8 8  0.7150 0.7401 0.0602 0.5072 

10 10  0.7423 0.7586 0.0875 0.5326 

12 12  0.7604 0.7718 0.1132 0.5441 

16 16  0.7818 0.7880 0.1624 0.5518 

Reference solution 0.77775 0.56 

l/h 
Concentrated load Distributed load 

DBB8 SBBEE DBB8 SBBEE 

5 1.8159 1.8158 1.3406 1,3471 

10 1.1940 1.2224 1.0866 1,1204 

20 0.9273 1.0533 0.9093 1,0358 

40 0.6258 1.0023 0.6324 1,0040 

50 0.5058 0.9944 0.5142 0,9987 

100 01875 0.9784 0.1918 0,9874 

Wref 1.16 10-2 pl2/D 0.4062 10-2 ql4/D 

l/h 
Concentrated load Distributed load 

DBB8 SBBEE DBB8 SBBEE 

5 2.4886 1.6883 1.6857 1.6883 

10 1.3255 1.1762 1.1357 1.1762 

20 0.9120 1.03472 0.86607 1.03472 

40 0.5533 0.99566 0.5390 0.99566 

50 0.4327 0.98921 0.4217 0.98921 

100 0.1562 0.96825 0.1517 0.96825 

Wref 0.56 10-2 pl2/D 0.126 10-2 ql4/D 
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Fig.3 

Single element aspect ratio sensitivity test (E =207 109 N/m2, 
ν = 0.25, h = e = 0, 12m, P= 6900 N and L/h= 1-16). 

 
Table 7 

 Normalized tip deflection for Single element aspect ratio sensitivity test. 

a Source: Bassayya, bhattacharya and Shriniva [5]. 
 b Source: Bassayya and Shriniva [4]. 

3.4 MacNeal’s elongated beam  

The problem of the straight cantilever beam is modelled by three different meshes shown in Fig. 4, treated by 

MacNeal and Harder [29] and by many researches [4, 5]. 

 

  

   

Fig.4 

MacNeal’s elongated beam (P=1, M=10, L=6, b=0.2, E =107, ν=0.3 and h=0.1). 

 

The results of the normalized deflection at the free end presented in Table 8. show that all elements perform well 

for the rectangular mesh. However, for meshes which contain the distortion, the strain based element SBBEE and 

PN5 1 element have excellent performance which indicates there is insensitivity of these elements to the mesh 

distortion, contrary for other elements (Ansys, PN 340 and PN34) given in reference [5].                                                                                                                                                  
 

 

 

 

 

 

 

Aspect ratio SBBEE PN5 1b FCCSA/NASTRANa PN340a Theory   (10-6)a 

1 1.0 1.0 0.938 1.0 3.333 

2 1.0 1.0 0.937 1.0 13.33 

4 1.0 1.0 0.937 1.0 53.33 

8 1.0 1.0 0.937 1.0 213.3 

16 1.0 1.0 0.937 - 853.3 
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Table 8 

Normalized deflection for MacNeal's elongated beam. 

Element shape Load type 
Normalized deflection at the free end (W) 

SBBEE HEX8a HEX20a ANSYSa PN340a PN34a PN5 1b 

Regular 

Load type (a) 0.980 0.981 0.970 0.982 0.982 0.981 0.998 

Load type (b) 0.991 - - - - - 0.999 

Load type (C) 0.980 0.981 0.961 0.980 0.980 0.981 1.000 

Load type (d) 0.995 - 0.994 - - - 0.985 

trapezoidal 

Load type (a) 0.980 0.069 0.886 0.065 0.065 0.982 0.999 

Load type (b) 0.991 - - - - - 1.000 

Load type (C) 0.980 0.051 0.920 0.370 0.370 0.051 0.996 

Load type (d) 0.998 - 0.994 - - - 0.988 

parallelepiped 

Load type (a) 0.980 0.080 0.967 0.620 0.620 0.980 0.997 

Load type (b) 0.991 - - - - - 1.000 

Load type (C) 0.980 0.055 0.941 0.547 0.547 0.055 0.998 

Load type (d) 1.013 - 0.994 - - - 0.989 
a Source: Bassayya, bhattacharya and Shriniva [5]. 
b Source: Bassayya and Shriniva [4]. 

3.5 Circular plate analysis  

A circular plate with simply supported and clamped edges subjected to unit point and uniformly distributed loads is 

analysed. From symmetry considerations, only a quarter of the plate is modeled indicated in Fig. 5 and meshed with 

3, 12, 48 and 192 distorted elements. The thickness of the plate will be discretized by one element, the geometrical 

and material parameters are also given in Fig. 5.  The normalized center deflections are compared to the analytical 

results, coming from [40]. 

Numerical results obtained by the SBBEE presented in Figs. 6, 7, 8 and 9 present an overall good convergence 

behavior to the exact solutions for central displacement compared to analytical results.  

 
   

Fig.5 

Circular plate problem - Finite elements’ meshes employed (Radius R=5 E =1 0.92; ν= 0.3; Uniform loading: q=1; concentrated 

load p=1). 

  

 
 

 

 

 

 

 

 

 

 

 

 

Fig.6 

The normalized defection at center for simply supported thin 

circular plate under a uniform load. 
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Fig.7 

The normalized defection at center for clamped thin circular 

plate under a uniform load. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

The normalized defection at center for simply supported thin 

circular plate under a concentrated load. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

The normalized defection at center for clamped thin circular 

plate under a concentrated load. 

3.6 Thick-walled cylinder  

A Thick-walled cylinder subjected to internal pressure is analysed, the dimensions, mesh discretization (The 

thickness of the cylinder will be discretized by one element) and material parameters are also shown in Fig. 10. In 

contrary to other tests, the 3D elasticity matrix used in this problem is not modified.  
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Fig.10 

Thick cylinder .thickness = 1; E = 1  103; mesh: 8   5; v= 

0:03; P = 1. 

 

The cylinder is of internal radius a= 3, outer radius b= 9, loading: unit pressure at inner radius units. The 

analytical solutions [41], can be written as: 
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(17) 

The computed results of displacement and stress in Fig. 11 show that the accuracy of this element is quite high. 

Stress were plotted at the center of the element. 

 

 
 

 

  

 

 

Fig.11 

Stress and displacement distribution along the boundary line (y = 0). 
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3.7 Long cantilever mesh discretization  

The cantilever shown in Fig. 12 is subjected to a tip load P=100. The regular and two highly distorted elements in 

thin and very thin plate are used to represent the cantilever (The thickness is discretized by one element). The 
analytical displacement is solved by: δ = (pl3/3EI) + (pL/AG), this problem is analysed in reference [6] 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig.12 

Long cantilever under type load. 

The results for both thickness ratios listed in Table 9. show the convergence of the SBBEE element and the non-

sensitivity in the effect of element distortions. 

 
Table 9  

Normalized Displacement for long cantilever under type load. 

Normalsed Displacement  

a/b 
t/L = 1/100 t/L = 1/10 

SBBEE DBB8 Ref(6)  SBBEE DBB8 Ref(6)  

1.0 0.99317 0.00857 0.9931  0.99726 0.46399 0.9931  

5.0 0.97655 0.26988 0.9825  1.0881 0.3235 0.9842  

58.0 0.97513 0.00342 0.9704  1.0998 0.00439 0.9743  

4    CONCLUSIONS 

This study presents an eight brick finite element (SBBEE) based on the strain approach. The developed element 

containing three translations per node is used for thin and thick plates bending analysis with a change in the law of 

behavior. The displacements field which contains higher order of polynomial terms satisfies the requirement of the 

free rigid-body modes and the equilibrium equations as additional conditions. In all the tested problems the new 

(SBBEE) element is shown to be of high degree of accuracy and can converge rapidly with relatively coarse meshes. 

It has been found that the element is free from shear locking for plate bending analysis contrarily for the classical 

element DBB8 based on displacement approach. 

APPENDIX  

The nodal displacements are given in terms of the constants 1 24,........  as: 
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The matrix [C] (24 24) for the SBBE element is: 
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And xi, yi and zi are the coordinates of the eight corner nodes i (i = 1, 8). 

The strain matrix  ( , , )Q x y z  for the SBBE element is: 
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