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 ABSTRACT 

 In this paper vibration of ferromagnetic rectangular plates which are subjected to an 

inclined magnetic field is investigated based on classical plate theory and Maxwell 

equations. Levy type solution and Finite element method using Comsol software are 

used to obtain the frequency of the plate subjected to different boundary conditions, 

good agreements is obtained when computed results are compared with those obtained 

by Comsol software, the results have shown that the frequency of the plates increases 

with the magnetic field and the effect of magnetic field is similar to the Winkler’s 

foundation.                                                © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Free Vibration; Magnetic field; Ferromagnetic plate; Exact solution; Levy 

type.  

1    INTRODUCTION 

 N recent years, the increasing use of electromagnetic waves and magnetic fields which are result of electrical 

activities in a wide range of industries and sciences such as power plants, air industries branch of aerospace, 

medicine, power transmission  lines, medical diagnostic devices, measuring instruments ,non-destructive tests etc., 

have made this research study the importance of the effects of magnetic fields on the sheets which are one of the 

important components of devices working in presence of magnetic field Electromagnetic theories such as Maxwell’s 

law and Continuum Mechanics have been used for this type of evaluation. The result has led to derive the 

suggestionof Magnetic traction and Lorentz force on plates, Moon [1], Eringen [2], Liang et al. [3]. Liang wei et al. 

[3] omitted have studied Natural frequencies caused by vibrations, suggesting a model for beams in Magnetic fields 

and examining Cantilever thin beams. Moon and Pao [4] examined the buckling of thin plates under Magnetic fields. 

Young et al. [5] evaluated the buckling and bending of the thin Magnetoelastic plates and compared the results with 

the experimentalresults present. Takahisa et al. [6] omitted studied the application of Lorentzforce in evaluating the 

floating systems in Magnetic fields for non-ferromagnetic thin plates. Hoffmann and Coworkers [7] have found the 

tensor of Maxwell’s tension for Magnetoelastic substance and assessed the classic criteria for failure. Eringen [8] 

introduced the theory to evaluate the electromagnetic effects  of elastic plates, He has attained the strain relations 

associated with these plates. Liang Wei et al. [11] omitted  presented both a mathematical model and frequencies 

related to a  cantilever beam in presence of magnetic filed in practice. Chen et al. [13], Ven [15], Wang et al. [17], 

Goudjo and Maugin [18] omitted have studied free vibration  of  Non-homogeneous transverse  isotropic elastic 

magneto electric Sheets and also the static & dynamic stability of plates have been studied by other researchers. 

Golubeva et al. [20] omitted, have studied the thin isotropic conducting ferromagnetic plate with finite electrical 
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conductivity in presence of longitudinal magnetic field. In this article free vibration of ferromagnetic plates in 

constant magnetic fields with boundary conditions of Levy type for rectangular plates were evaluated. Natural 

frequencies, where extracted by precise calculation of the equations and the results were compared with the results 

of Finite element Method. 

2    THEORETICAL FORMULATIONS 

2.1 Structure 

In this article which is based on the classic theory of plates, the governing equation of plate vibration based on 

Maxwell’s equations is as follows [2 , 9]: 

 

0B   (1) 

 

0H   (2) 

 

Also the Lorentz force is omitted explained as: 

 

,
E

i i j jF B M  (3) 

 

In which ,i jB  is the Intensity of the Magnetic field; H is the density of the Magnetic field; M is the 

magnetization vector. The equation of Plate's motion is extracted by implementing the dynamic equilibrium and 

Maxwell's relations [11]:  

 

( ) 0Ef u F       (4) 

 

, , ,( ) 2E ij ij k k i j j i ij kk iju G u u G          (5) 

 

In which   and G  are Lame parameters; E ij  is elasticity stress tensor; Stresses of the magnetic field regarding 

the intensity of the magnetic field are equal to B as follows: 
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In which  mx  is magnetic susceptibility ; m  is magnetic permeability and 0 vaccum permeability; Regarding 

omitted the vector of magnetic field on the plate which creates angle   with as shown in Fig. 1, we will have: 

 

0 0
ˆcos sinB B i B k    (10) 

 

Due to the smaller magnetic strains in comparison with mechanical strains, the magnetic strains can be neglected 
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Also due to fixed magnetic fields all over the plate: 

 

0E
iF   (11) 

 

After writing the equilibrium relations of the plate we will have: 

 

( ) ( ) 0i ij plate i ij airn t n t   (12) 

 

So the magnetic tractions of the plate surface are as follows: 
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(13) 

 

In the above equation ij is kronecherdelta, B   stands for the magnitude of the magnetic field out of the plate or 

air and B for the magnitude in the plate; with attention to the plate's motion, the amount of magnetic field on the 

surface of the plate is: 

 

0 sin( )nB B      (14) 
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with respect to the difference of magnetic field in the plate and air, by using the below equation the changes in the 

magnetic field will be obtained : 

 

( ) ( ) 0i i plate i i airn B n B   (16) 
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Finally the surface tractions will be declared as follows: 
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Because this traction is affecting the upper and lower surface of the plate, the couple of the magnetic field is 

calculated as: 
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(20) 

 

Axial forces and bending moments and shear forces are defined as: 
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with replacing the upper quantities in the equilibrium equation there will be: 
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(24) 

 

which finally leads to this equation: 
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In which 4  is biharmonic operator , D flexural rigidity of plate ,   is density , h  is plate thickness and K 

defined as: 

 

0 cosxK m hB   (26) 

 

Eq. (25) is a partial differential equation of the fourth order degree and linear whose second term shows the 

effect of the magnetic field, it also shows that the magnetic field has created an effect similar to Winkler foundation 

as we can see If the magnetic fields zero, Eq. (25) will change to the vibration equation of  an ordinary classic plate, 

we will solve this equation using the method of separation of variables and the following assumption we will have: 

 

( , , ) ( , ). ( )w x y t W x y T t  (27) 

 

This assumption will lead to two equations: 
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which parameters are defined as: 
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Solving the Eq.(28) will lead to this answer: 

 

( ) cos sinT t A t B t    (35) 

 

By using the separation of variables we will have from Eq.(35): 
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After replacement: 
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( ) sin 1,2,...m mX x A x m   (42) 

 

Finally the applied boundary conditions  for simply supported plate lead to: 
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By simplifying for natural frequencies and mode shapes,than there will be: 
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3    RESULTS AND DISCUSSION   

For obtaining the natural frequencies of plates, the ratio of length to width was different and in all the thickness of   

1 Cm was fixed . Magnetic field was applied to the plates with different angles of 30-45-60 degree. The silicon steel 

plate had characteristics of 37800 , 200 , 0.3
kg

E Gpa v
m

     and  7
01000, 4 10 .x H m      The natural 

frequencies of the plate were extracted from the Eq.(46).The ratio of frequency changes of rectangular plate with 

different length to width ratio and Levy type boundary conditions, under magnetic field compared to the situation 

where the magnetic field is zero, which is shown in Fig. 2 through 8, results have shown that with increasing the 

radiation angle of magnetic field, the effect of magnetic field on the natural frequency is decreased. Fig. 9 through 

14 are the curves showing  that first natural frequency varies with the angle of magnetic field. Fig. 15, shows the 

effect of magnetic field exposure angle on the first natural fequency using  finite element method and exact solution. 

Comparison of two methods with increase of magnetic intensity, shown in Fig. 16, indicates that omitted the results 

have no significant  difference. Fig. 17through 22 illustrates, how with increasing the magnetic intensity, frequency 

ratio, which defined as natural frequency with magnetic field per natural frequency in the absence of magnetic field, 

is increased. 

According to the results of precise calculation and simulation by using the Finite Element Method by Comsol 

software, it is observed that there is not a significant error between the two results, the maximum error is 1.98%. The 

results of both methods reveal that magnetic fields increase the natural frequencies of plates, and there is a rise in 

natural frequencies as the magnitude of the magnetic field increases. Results show that by changing the angle of the 

magnetic field, the natural frequencies will also change so that the effect of the Magnetic field on natural frequencies 

will decrease as the angle is increased, which will reach zero at the angle of 90 degree. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The radiation method of the magnetic field to the plate. 
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Fig.2 

The first natural frequency changes in proportion to the 

applied magnetic field to the plate with ssss  boundary 

conditions  and ratio 1a b  at different angles. 
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Fig.3 
The first natural frequency changes in proportion to the 

applied magnetic field to the plate with ssss  boundary 

conditions  and ratio 1.5a b  at different angles. 
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Fig.4 
The first natural frequency changes in proportion to the 

applied magnetic field to the plate with sssf  boundary 

conditions  and ratio 1.5a b  at different angles. 
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Fig.5 
The first natural frequency changes in proportion to the 

applied magnetic field to the plate with ssff  boundary 

conditions  and ratio 1.5a b  at different angles. 
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Fig.6 
The first natural frequency changes in proportion to the 

applied magnetic field to the plate with sscc  boundary 

conditions  and ratio 1.5a b   at different angles. 
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Fig.7 

The first natural frequency changes in proportion to the 

applied magnetic field to the plate with ssfc  boundary 

conditions  and ratio 1.5a b  at different angles. 
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Fig.8 

The first natural frequency changes in proportion to the 

applied magnetic field to the plate with sscs  boundary 

conditions and ratio 1.5a b  at different angles. 
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Fig.9 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with ssss boundary conditions 

and ratio 1.5a b  . 
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Fig.10 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with sssf boundary conditions 

and ratio 1.5a b  . 
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Fig.11 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with ssff boundary conditions 

and ratio 1.5a b  . 
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Fig.12 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with ssfc boundary conditions 

and ratio 1.5a b  . 
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Fig.13 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with sscs boundary conditions 

and ratio 1.5a b  . 
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Fig.14 
The effect of magnetic field exposure angle on the first 

natural frequency of the plate with sscc boundary conditions 

and ratio 1.5a b  . 
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Fig.15 

The Effect of exposure angle on the natural frequencies of 

plate and comparison with finite element method. 
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Fig.16 

The Effect of magnetic field intensity on the natural 

frequency of  plate and comparison with the finite element 

method. 
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Fig.17 
Changes in the frequency ratio of magnetic intensity for 

different angles relative to the plate with ssss boundary 

conditions and ratio 1.5a b   by finite element method. 
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Fig.18 
Changes in the frequency ratio of magnetic intensity for 

different angles relative to the plate with ssss boundary 

conditions and ratio 1.5a b   by exact method. 
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Fig.19 
Changes in the frequency ratio of magnetic intensity for 

different angles relative to the plate with ssss boundary 

conditions and ratio 1a b  by exact method. 
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Fig.20 
Changes in the frequency ratio of magnetic intensity for 

different angles relative to the plate with sscc boundary 

conditions and ratio 1.5a b   by finite element method. 
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Fig.21 
Changes in the frequency field of magnetic intensity for 

different angles relative to the plate with ssss boundary 

conditions and ratio 1.5a b  by finite element method. 
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Fig.22 
Changes in the frequency ratio of magnetic intensity for 

different angles relative to the plate with sscs boundary 

conditions and ratio 1.5a b   by finite element method. 

4    CONCLUSIONS 

Vibration of rectangular plate subjected to an inclined magnetic field were studied by a closed form solution and 

finite element method using Comsol  software, the results of the two methods are compatible with each other, The 
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results show that the frequency of the plate increases with increasing applied magnetic field  and as the inclined 

angle increased, the influence of Magnetic field reduces. And the effect of the magnetic field is similar to Winkler 

elastic foundation on the vibration of the plate. 
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