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 ABSTRACT 

 This paper presents a numerical solution for vibration analysis of a cantilever 

trapezoidal thick plate. The material of the plate is considered to be graded through 

the thickness from a metal surface to a ceramic one according to a power law 

function. Kinetic and strain energies are derived based on the Reissner-Mindlin 

theory for thick plates and using Hamilton's principle, the governing equations and 

boundary conditions are derived in the Cartesian coordinates. A transformation of 

coordinates is used to convert the equations and boundary conditions from the 

original coordinate into a new computational coordinates. Generalized differential 

quadrature method (GDQM) is selected as a strong method and natural frequencies 

and corresponding modes are derived. The accuracy and convergence of the 

proposed solution are confirmed using results presented by other authors. Finally, 

the effect of the power law index, angles and thickness of the plate on the natural 

frequencies are investigated. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Generalized differential quadrature method (GDQM) ; Vibration 
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1    INTRODUCTION 

 RAPEZOIDAL plates are widely used in aeronautical and civil engineering applications such as aircraft 

wings, ship hulls and highway bridges. The free vibration analysis of such models is a necessity to design them 

to operate under different loading conditions. Unlike other shapes of plate, trapezoidal thick plates have been poorly 

studied. 

Based on the classical theory of plates, there exist a considerable amount of work related to the vibration of 

trapezoidal thin plates. Chopra and Durvasula [1,2] applied Galerkin's method and investigated the free vibration of 

simply supported symmetric and un-symmetric trapezoidal plates. Finite element method was used by Orris and 

Petyt [3] to study the vibration of simply supported and clamped triangular and trapezoidal plates. Using the integral 

equation method, the vibration analysis of cantilevered quadrilateral and trapezoidal plates was studied by 

Srinivasan and Babu [4]. Maruyama et al. [5] presented an experimental study of the free vibration of clamped 

trapezoidal plates. Bert and Malik [6] applied the differential quadrature method and presented a numerical solution 

for the free vibration of plates with irregular shapes. Xing and Liu [7] used differential quadrature finite element 

method and investigated free vibrations analysis of plates with curvilinear domain. Shufrin et al. [8] presented a 

semi-analytical solution for the geometrically nonlinear analysis of skew and trapezoidal plates subjected to out-of-

plane loads. Using moving least square Ritz method (MLS-Ritz), Zhou and Zheng [9] presented a numerical 
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solution for vibration analysis of skew plates. Based on the first order shear deformation theory (FSDT), Zamani et 

al. [10], investigated free vibration analysis of moderately thick symmetrically laminated general trapezoidal plates 

with various combinations of boundary conditions.  

Unlike skew and trapezoidal plates, there are considerable number of papers related to the bending, mechanical 

and thermal buckling and vibration analyses of homogeneous and non-homogeneous rectangular and circular thick 

plates, Hosseini-Hashemi et al. [11], presented an exact closed-form solution for free vibration analysis of 

moderately thick rectangular plates having two opposite edges simply supported. Shaban and Alipour [12], used 

differential transform method (DTM) and proposed a semi-analytical solution for free vibration analysis of 

functionally graded thick circular plates resting on the Pasternak elastic foundation with edges elastically restrained 

against translation and rotation. Based on the third order shear deformation plate theory and considering the in-plane 

displacement components of an arbitrary material point on the mid-plane of the plate, vibration analysis of a 

functionally graded rectangular plate resting on two parameter elastic foundation solved analytically for levy type of 

boundary conditions by Baferani et al. [13]. Zhu and Liew [14] employed local Kriging meshless method and 

studied free vibration of metal and ceramic functionally graded thick rectangular plate. Based on the 3-D elasticity 

theory, Hosseini-Hashemi et al. [15], presented an exact closed-form solutions for study both in-plane and out-of-

plane free vibrations for thick functionally graded simply supported rectangular plates. Based on Rayleigh–Ritz 

procedure, Jin et al. [16] presented a new three-dimensional solution for the free vibrations of arbitrarily thick 

functionally graded rectangular plates with general boundary conditions. 

In comparison with the thin skew and trapezoidal plates, analysis of thick ones is not considerably investigated. 

Xia et al. [17] hired the meshless local radial point interpolation method to study the static and free vibration 

analysis of a non-homogeneous moderately thick plate. Using least-square-based on finite difference method, Huang 

et al. [18] studied free vibration analysis of plates. An edge-based smoothed finite element method was applied for 

analysis of Reissner–Mindlin plates by Xuan et al. [19]. Using analytical trapezoidal p-Elements, the effect of 

foundation on transverse vibration of Mindlin plates was investigated by Leung and Zhu [20]. With considering 

corner stress singularities, Huang et al. [21] applied Ritz method and presented a solution for vibration analysis of 

skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates. On the basis of the CPT, FSDT and 

TSDT, Abrate [22] analyzed bending, buckling, and vibration of FG square, circular and skew plates with different 

combinations of boundary conditions. Zhao et al. [23] presented a free vibration analysis for FG square and skew 

plates with different boundary conditions using the element free kp-Ritz method on the basis of the FSDT. Using a 

simple mixed Ritz-differential quadrature (DQ) methodology, Eftekhari and Jafari [24] proposed a solution for free 

vibration of thick rectangular and skew plates with general boundary conditions. Petrolito [25] employed hybrid-

Trefftz method and presented a numerical solution for vibration and stability analyses of thin and thick orthotropic 

plates.  

Meanwhile, having a wide industrial applications, the cantilever plate problem is one of the most difficult 

boundary conditions to solve. In fact, it is because of the complexities which appear at free edges. In this paper, a 

numerical solution for vibration analysis of a trapezoidal Reissner-Mindlin cantilever FG plate is presented. The 

material of the plate is considered to vary from a metal surface to a ceramic one according to a power law function. 

Using Hamilton's principle, the set of governing equations and boundary conditions are derived. A transformation of 

coordinates is used and equations are mapped to a computational coordinates. Natural frequencies and 

corresponding modes are derived using differential quadrature method. The accuracy of the proposed solution is 

confirmed by results presented by other authors and the effect of power law index, angles and thickness of the plate 

on the natural frequencies are then investigated. 

2    GEOMETRY OF PROBLEM 

2.1 FG plate 

As depicted in Fig. 1, a cantilever trapezoidal plate, clamped at x=0 is considered. The plate's material is graded 

through the thickness from a metal surface to a ceramic one, according to a power law function as the following 

relations: 
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where q is the power law index, h is thickness of the plate and E and  are modulus of elasticity and density of the 

materials, respectively. Meanwhile, subscripts ''c'' and ''m'' are used to indicate corresponding properties in ceramic 
and metal, respectively. It should be noted that Poisson's ratio (v) is considered to be constant through the thickness. 

Eq. (1) can be rewritten in a dimensionless form as: 
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where 
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Fig.1 

Geometry of the trapezoidal thick plate. 

 

 

2.2 Reissner-Mindlin theory of plates 

According to the Reissner-Mindlin theory, in which the in-plane displacements are considered as linear functions of 

the plate thickness and the transverse deflection is considered to be constant through the plate thickness, the 

displacement field is used as follows [26]: 
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(4) 

 

where ,z zu v  and 
zw show the components of displacement along x, y and z directions, respectively; u, v and w 

indicate components of displacement on the middle surface (z=0) along x, y and z directions, respectively. Also x  

and y are rotations about y and x axes, respectively. The  notation  that  x represents  the  rotation  about  the  y-

axis  and  vice versa  may  be  confusing  and  in  addition  they  do  not  follow  the  right-hand  rule. However,  

these  notations  will  be  used  herein  because  of  their  extensive  use  in  the  open literature [27]. 

By neglecting in-plane deformations of plate at the middle surface, Eq. (4) can be summarized as: 

 

( , , ) ( , )

( , , ) ( , )

( , , ) ( , )

z
x

z
y

z

u x y z z x y

v x y z z x y

w x y z w x y











 

 

(5) 

 

Now, according to strain-displacement equations, components of strain of the plate can be stated as: 
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It should be pointed out that the normal transverse stress is assumed to be zero. 

By neglecting z  in comparison with x  and ,y  using Hook's laws, components of stress of the plate can be 

obtained as: 
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(7) 

 

In which G is shear modulus and k is ''shear correction factor" introduced to make up the geometry-dependent 

distribution of shear stress. This factor depends on the shape of the section and Poisson's ratio of material, in this 

paper following relation is used [28]: 

 

(5 5 ) / (6 5 )k v v    (8) 

2.3 Hamilton's principle 

Hamilton's principle states that of all the paths of admissible configurations that the body can take as it moves from 

configuration "1" at time t1 to configuration "2" at time t2, the path that satisfies Newton's second law at each instant 

during the interval is the path that extremizes the time integral of the Lagrangian (L=U-T) during the interval; this 

principle can be stated in the mathematical form as: 
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where U and T are strain and kinetic forms of energy, respectively; The kinetic energy of the plate can be considered 

as: 
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and strain energy can be stated as: 
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Substituting Eqs. (6), (7), (10) and (11) into the Eq. (9), leads to 
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where   is boundary path and stress resultants are defined as follows: 
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In which 
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and translational and rotational inertias of the plate are defined as: 
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Substituting Eq. (13) into the Eqs. (12a)-(12c), the set of governing equations can be stated as: 
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1 2(1 ) / 2 (1 ) / 2v v v v     (17) 

 

Also, using Eqs. (1) and (2), Eqs. (14) and (15) can be rewritten in the following dimensionless form: 
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Considering a portion of the path  , the rectangular coordinates x-y are related to the normal and tangential 

coordinates n-s by 
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The bending rotations can be expressed in terms of their normal-tangential components by 
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where the subscripts ''n'' and ''s'' show the normal and tangential directions, respectively. Substituting Eqs. (20) and 

(21) into the Eq. (12d), boundary conditions can be stated as: 
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where , ,nn nn nsM M M  and nQ are the bending moment normal to the edge, the twisting moment at the edge and the 

shear force, respectively. These parameters are defined as: 
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2.4 Geometry mapping 

The analysis of the nonrectangular plates uses a local parameter coordinate system rather than a Cartesian one. As 

Fig. 2 shows, the original trapezoidal shape of the plate in the x–y coordinate system is mapped to a square in the 

   coordinates, using the following transformation: 
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Inverse form of Eq. (25) can be rewritten as: 
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which leads to the following relations for derivatives: 
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Note that in deriving Eq. (27), following relation is used: 
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Using Eq. (27), the set of governing Eqs. (16a)-(16c) can be stated as: 
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(30b) 
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(30c) 
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where 

 

w w b  (31) 

 

Using the method of separation of variables as: 
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(32) 

 

The set of Eqs. (30a)-(30c) can be rewritten as: 
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(33a) 
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(33b) 

 
2 2 2

2 2 2
12 2

2 2
2 2 22

2 2
2 201 2

2
2 2

( ) ( ) 2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

12 cos
cos cos cos ( ) ( ) 0

12

y y y y

yx x

y y

F v E F E GF E

v F E v E v GE

fv k gW W
F E

f f

     
   

   
  

 
     

 

      
    
     

 
  

  

  
       

  

 

 

 

 

(33c) 

 

In which 
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(34) 

 

Also dimensionless form of the boundary conditions can be derived using Eqs. (13), (22)-(24) and (27) as: 
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(35c) 
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(35d) 

 

It should be noted that in deriving Eqs. (35a)-(35d), following relations are used: 
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Original and computational coordinates. 
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3    DIFFERNTIAL QUADRATURE METHOD (DQM) 

Consider ( , )f    as a two dimensional function. Values of this function at N*M pre-selected grid of points can be 

considered as: 

 

( , ) 1,2,..., 1,2,...,ij i jf f i N j M     (37) 

 

The differential quadrature method is based on the idea that all derivatives of a function can be easily 

approximated by means of weighted linear sum of the function values at the pre-selected grid of points as: 
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(38) 

 

where ( ) ( ) ( ), ,A B A    and ( )B   
are the weighting coefficients associated with the first and second order derivatives 

in   and   directions, respectively. These matrices for the first-order derivatives are given by [29] 
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(39) 

 

and of second-order derivatives are extracted from the following relations: 

 
( ) ( ) ( ) ( ) ( ) ( )B A A B A A        (40) 

 

A convenient option for the grid points are the equally spaced points. Another choice which gives more accurate 

results is unequally spaced grid points [29]. A well-accepted set of the grid points is the Gauss–Lobatto–Chebyshev 

points given for interval [0,1] by 
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4    DQ ANALOGUE 

Using DQ rules, the set of governing differential Eqs. (33a)-(33c) is transformed to the following form: 
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(42c) 

 

where 

 

( , ) , ( , ) , ( , )ij i j ij x i j ij y i jW W            (43) 

 

Using following defined vectors: 
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Eqs. (42a)-(42c) can be rewritten as: 
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where definition of matrices    WP R  are presented in Appendix A. Eqs. (45a)-(45c) can be written in the 

following compact form: 

 

     2K U M U  (46) 

 

In which 
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(47) 

 

It should be stated that in Eq. (47),  0
MN

shows the zero matrix. 

In a similar manner Eqs. (35a)-(35d) can be written using DQ rules as: 

 

    0T U   (48) 

 

where definition of matrix  T  is presented in Appendix B. 

In order to find eigen frequencies and corresponding eigen vectors, Eqs. (46) and (48) should be satisfied 

simultaneously. Let us divide the grid points as two sets: boundary points which are located at the four edges of the 

plate and domain ones which are other internal points. By neglecting of satisfying the Eq. (46) at the boundary 

points, this equation can be written as: 

 

   2K U M U        (49) 

 

where bar sign implies the corresponding non-square matrix. Eqs. (48) and (49) may be rearranged and partitioned 

in order to separate the boundary and domain points as the following: 

 

        2

b d b db d b d
K U K U M U M U                  

(50a) 

 

        0
b db d

T U T U   (50b) 

 

where subscripts ''b'' and ''d'' indicate to the boundary and domain points, respectively. Substituting Eq. (50b) into 

Eq. (50a) leads to the following eigen value equation: 

 

     2
K Md d

F U F U  (51) 

 

In which 

 

       
1 1

K Mb d b dd b d b
F K K T T F M M T T

 
                   

(52) 
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5    NUMERICAL RESULTS AND DISCUSSION 

Here the numerical results are given for the developed numerical solution in the previous section. First, in order to 

check the convergence of the proposed solution, consider a homogeneous skew plate( 1, 15, 1, 0.1E             

and 0.3v  ); Fig. 3 shows effect of the number of grid points ( N M ) on the value of the first six frequencies. As 

shown in this figure all frequencies converge for 11N M  . 

To be sure of convergence in all of the following numerical examples, in what follows number of grid points are 

considered as 15N M  . Also Poisson's ratio is considered as 0.3v  . 

Consider a homogeneous skew plate ( 1,E       ); Table 1. shows the value of the six lowest 

dimensionless frequencies (  ) for various values of dimensionless width ( ), dimensionless thickness (  ) and 

skew angle ( ). Comparing these results with those presented based on Ritz method [27], adaptation, accuracy and 

convergence of the proposed solution are confirmed. Also for 2, 0.2, 15     , the corresponding modes are 

depicted in Fig. 4. 
 

Table 1 

Values of the six lowest dimensionless frequencies (  ) of a homogeneous skew plate for various values of dimensionless width 

( ), dimensionless thickness (  ) and skew angle ( ). 

   Mode sequence number 

       1 2 3 4 5 6 

1 

0.1 

15 
GDQM 3.523 8.472 20.98 24.97 30.70 47.40 

[27] 3.536 8.228 20.84 24.64 30.77 46.12 

30 
GDQM 3.720 9.746 23.26 25.51 37.40 46.92 

[27] 3.858 8.870 23.23 24.27 37.03 45.24 

0.2 

15 
GDQM 3.420 7.746 18.17 22.05 25.97 38.73 

[27] 3.434 7.489 18.05 21.59 25.96 37.47 

30 
GDQM 3.581 8.865 19.50 22.58 30.80 38.55 

[27] 3.719 8.055 19.51 21.34 30.57 37.00 

2 

0.1 

15 
GDQM 3.601 5.545 10.089 19.04 21.37 23.70 

[27] 3.594 5.366 9.949 18.28 21.42 23.24 

30 
GDQM 3.994 6.027 10.21 18.49 24.92 29.14 

[27] 3.986 6.050 10.72 19.04 23.48 28.11 

0.2 

15 
GDQM 3.522 5.177 9.370 16.50 18.31 20.96 

[27] 3.493 5.071 9.178 16.43 18.47 20.80 

30 
GDQM 3.818 5.901 9.987 17.03 20.26 24.53 

[27] 3.842 5.692 9.850 17.08 19.66 23.92 

 

After validation of the proposed solution, the effect of the power law index, angles and thickness of the plate on 

the natural frequencies can be investigated. In what follows, results are given for a FG trapezoidal plate composed of 

2 3/Al Al O  which its material properties are given in Table 2. [11]. 

 

Table 2 

Material properties of the used FG plate [11]. 

Material 
Properties 

E (GPa)   (Kg/m3) 

Aluminum ( Al ) 70 2702 

Alumina ( 2 3Al O ) 380 3800 

 

In order to clarify the behavior of Eqs. (1) and (2), Fig. 5(a) and 5(b) show the variation of the modulus of 

elasticity and density of the plate through the dimensionless thickness for various values of power law index (q); As 

shown in these figures, both modulus of elasticity and density decrease as value of the power law index grows. 

Consider a FG plate with the following geometrical properties: 

 

0.5 0.1 30 15         
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Table 3. shows the value of the six lowest dimensionless frequencies for various values of the power law index. 

As this table shows, all frequencies decrease as the value of the power law index increases. It reveals that the 

percentage of the decrease in modulus of elasticity is more than that in density. It should be noted that it is not a 

general conclusion and may change for the FG plates composed of other materials. 
 

Table 3 

Variation of the six lowest dimensionless frequencies of a trapezoidal plate for various value of power law index. 

Mode sequence number 
q (power law index) 

0 0.2 0.5 1 1.5 3 5 

1 8.068769 7.550972 7.088510 6.712589 6.528144 6.238277 5.967837 

2 39.66892 37.16532 34.89616 33.00146 32.03556 30.48005 29.08282 

3 63.92823 59.97921 56.32996 53.18332 51.51593 48.78840 46.43750 

4 104.3074 97.90204 91.95563 86.77565 83.98494 79.34906 75.39665 

5 156.9640 147.3776 138.4316 130.5818 126.3256 119.2611 113.2908 

6 192.4295 180.9273 169.9932 160.0864 154.5024 145.0369 137.3002 

 

A trapezoidal FG plate with the following properties is considered: 

 

0.5 0.05 2q      

 

The variation of the first six dimensionless frequencies versus that of angles of the plate ( &  ) are depicted in 

Fig. 6. As depicted in this figure, the value of the frequencies increases as the value of   and   increase. Also for 

15  and 5  first six modes are depicted in Fig. 7. 

According to Eqs. (19) and (34), the thickness of the plate is used in the definition of the dimensionless 

frequency (  ), before studying the effect of the thickness, let us define the following new dimensionless frequency: 

 
2 2 2

2 2 2 12(1 ) m

m

v b

E

 
 


    

 

 

which is independent of thickness. Now consider a trapezoidal plate with the following parameters: 

 

0.5 15 5 1q        

 

Fig. 8 shows the effect of the dimensionless thickness on the six lowest dimensionless frequencies (  ). It 

should be noted that in order to be able to show variation of all frequencies simultaneously, each frequency is 

divided to the corresponding value of a plate of( 0.010.01( i i i
     ). As shown, increasing in thickness 

increases all the frequencies. It happens because as the thickness of the plate grows, the plate rigidity will increase 

more than its translational and rotational inertias. It also can be concluded that value of the increase in frequencies 

diminishes at higher modes. 

 

5 10 15
0

20

40

60

80

100

120

N=M



 

 

mode 1
mode 2

mode 3

mode 4

mode 5
mode 6

 

 

 

 

 

 

 

 

 

 

Fig.3 

Convergence of the first six frequencies of a skew plate. 
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Fig.4 

Corresponding modes for six lowest frequencies of a skew plate of 2, 0.2, 15     . 
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Fig.5 

Variation of Young’s modulus and density through the dimensionless thickness of 2 3Al Al O  plate. 
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Fig.6 

Variation of the six lowest dimensionless frequencies versus variation of the angles of the plate ( &  ). 
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Fig.7 

Corresponding modes for six lowest frequencies of a trapezoidal plate of 15  and 5  . 
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Fig.8 

Variation of the six lowest dimensionless frequencies (  ) 

versus dimensionless thickness of the plate. 

6   CONCLUSIONS 

Using Hamilton's principle and based on Reissner-Mindlin theory of plates, governing equations and boundary 

conditions for vibration analysis of a functionally graded thick plate was derived. In order to simplify the geometry 

of the problem, a transformation of coordinates was hired and governing equations and boundary conditions were 

rewritten in a new coordinate. Differential quadrature method was applied and natural frequencies and 

corresponding modes were derived numerically. Numerical results confirmed the accuracy and convergence of the 

method. Meanwhile, it was concluded that for a FG trapezoidal plate composed of 2 3Al Al O , as the value of the 

power law index (q) grows, all frequencies decrease. Numerical examples also showed that as the value of the plate 

angles increase, all the frequencies grow. It is also concluded that all the frequencies grow with increasing the 

thickness of the plate. 
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APPENDIX A 

Definition of matrices    WP R  appeared in Eqs. (45a)-(45c) are defined as follows: 
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(A.1) 

 

It should be noted that in Eq. ( 1),A    indicates the Kronecker product, ,N MI I and MNI  are identity matrices 

and also  e and  f  are diagonal matrices defined as: 

 

( ) ( )ii i jj jf F e E    (A.2) 

APPENDIX B 

Definition of matrix  T  appeared in Eq. (48) is considered as follows: 
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In which 
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It should be stated that in Eq. (B.2), δ is Kronecker delta defined as: 
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