
 

© 2011 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 3, No. 2 (2011) pp. 183-197 

A Power Series Solution for Free Vibration of Variable Thickness 
Mindlin Circular Plates with Two-Directional Material 
Heterogeneity and Elastic Foundations 

M.M. Alipour, M. Shariyat* 

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran 19991-43344, Iran 

Received 31 May 2011; accepted 15 July 2011 

 ABSTRACT 

 In the present paper, a semi-analytical solution is presented for free vibration analysis of circular 
plates with complex combinations of the geometric parameters, edge-conditions, material 
heterogeneity, and elastic foundation coefficients. The presented solution covers many 
engineering applications. The plate is assumed to have a variable thickness and made of a 
heterogeneous material whose properties vary in both radial and transverse directions. While the 
edge is simply-supported, clamped, or free; the bottom surface of the plate is resting on a two-
parameter (Winkler-Pasternak) elastic foundation. A comprehensive sensitivity analysis including 
evaluating effects of various parameters is carries out. Mindlin theory is employed for derivation 
of the governing equations whereas the differential transform method is used to solve the resulted 
equations. In this regard, both the in-plane and rotary inertia are considered. Results show that 
degradations caused by a group of the factors (e.g., the geometric parameters) in the global 
behavior of the structure may be compensated by another group of factors of different nature (e.g, 
the material heterogeneity parameters). Moreover, employing the elastic foundation leads to 
higher natural frequencies and postponing the resonances.     
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANY engineering components may be modeled as circular plates with uniform or variable thickness. Some 
of the circular components may be supported by spring elements, elastic foundations or shearing pads (e.g., 

the driven plate of a friction). There are some research works on free vibration of isotropic circular and annular 
plates resting on elastic foundations [1, 2]. Some researchers such as Ramaiah and Vijayakumar [3], Narita [4], and 
Lin and Tseng [5] studied the annular orthotropic plates.  

Due to the abrupt changes in the material properties of the composite materials and subsequently, possibility of 
local failure occurrence, functionally graded materials have been used as alternative materials in some applications. 
Functionally graded materials provide the capability to accurately monitor local variations of the material properties 
to meet the strength or other design criteria at the continuum scale, especially when multidirectional functionally 
graded materials are employed. Using the first-order shear-deformation theory (FSDT), Prakash and Ganapathi [6] 
investigated asymmetric free vibration characteristics of the functionally graded circular plates. Efraim and 
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Eisenberger [7] presented vibration analysis of the variable thickness thick annular isotropic and functionally graded 
plates using the FSDT. Nie and Zhong [8] proposed a semi-analytical method for free and forced vibration analyses 
of functionally graded circular plates with various boundary conditions. Dong [9] investigated the three-dimensional 
free vibration of the functionally graded annular plates. A free vibration analysis of thick functionally graded plates 
supported by elastic foundations was presented by Malekzadeh [10], using the differential quadrature method and a 
series solution. Wang et al. [11] investigated the free axisymmetric vibration of functionally graded plates whose 
material properties obey an exponential law along the thickness direction, based on the three-dimensional theory. 
Nie and Zhong [12] presented dynamic analysis of the multi-directional functionally graded annular plates using a 
state space-based differential quadrature method based on the three-dimensional elastic theory and assuming the 
material properties to vary according to an exponent law along the thickness and radial directions. 

The differential transform method (DTM) is a semi-analytical technique that has been proposed based on 
Taylor’s series. Employing DTM, it is possible to obtain highly convergent and accurate solutions for the 
differential or integro-differential equations [13]. By using this method, the governing differential equations can be 
reduced to recurrence relations and the boundary conditions may be transformed into a set of algebraic equations. 
Some researchers have successfully used the DTM in solving the eigenvalue problems [14, 15]. Yeh et al. [16] 
analyzed free vibration of the rectangular thin plates, using a hybrid method which combines the finite difference 
and the differential transformation methods. Yeh et al. [17] studied large deflections of an orthotropic rectangular 
thin plate employing a similar hybrid method. Yalcin [18] analyzed free vibration of thin circular plates with various 
boundary conditions, using the differential transform method. Shariyat and Alipour [19] and Alipour et al. [20] 
investigated free vibration of the two-directional functionally graded circular plates based on the differential 
transformation method and the classical plate theory. 

The above review reveals that vibration analysis of circular plates with two-directionally graded materials almost 
has not been performed by other researchers. In the present paper, employing Mindlin’s first-order shear-
deformation plate theory, the differential transformation method is employed to develop a series solution for free 
vibration of two-directional functionally graded circular plates with variable thickness on elastic two-parameter 
(Winkler-Pasternak) foundations. Both in-plane and rotary moments of inertia are taken into account. Various edge 
conditions are considered in the present analysis and some practical conclusions are inferred. 

2    MATHEMATICAL FORMULATIONS 
2.1 The governing equations of motion 

Based on Mindlin’s plate theory, displacement field of the plate may be described as follows [21]: 

0 0 0, ,ru u z v v z w w = + = + =  (1)
 

 
where the symbol “,” stands for the partial derivative and 0 ,u  0 ,v  and 0w  are the radial, circumferential, and 

transverse displacement components of the reference layer (e.g. the mid-surface) of the circular plate, respectively 
and the coordinate z is measured from the reference layer and is positive upward. r  is rotation of the normal to the 

middle surface in the radial plane. For small deflections, the strain-displacement relations may be written as [21]: 
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On the other hand, as a consequence of the assumptions of Mindlin’s plate theory, Hooke’s generalized stress-

strain law may be expressed as [22]: 
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where 2k  denotes the transverse shear correction factor which is usually introduced in the first-order shear-
deformation plate/shell theories in order to improve the transverse shear rigidity of the plate. In the present analysis, 

this coefficient is adopted as 12/22    [21]. 
The governing equations of motion may be derived by using Hamilton’s principle. Employing this principle 

leads to the following three equations of motion for the plate under consideration in the cylindrical coordinate 
system (r, θ, z) [22]:  
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The stress resultants Mi, Ni, Qi (ir, θ) and the moments of inertia Ii (i0, 1, 2) are defined as [21]: 
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Now consider a circular plate with a two-directional heterogeneity, outer radius b, and a variable thickness h, 

resting on a two parameter (Winkler-Pasternak) elastic foundation. Young’s modulus E and the density ρ of the 
materials are considered to vary in both radial and transverse directions. The geometric as well as the foundation 
parameters of the circular plate are shown in Fig.1 Variations of Young’s modulus, material density ρ, and thickness 
of the plate are adopted as follows: 
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where the subscripts m and c represent the metallic and ceramic constituents, respectively, and the volume fraction 
Vf  may be given as [20]: 
 
 
 

Fig. 1 
Geometry and foundation parameters of the two-directional 
functionally graded variable thickness circular plate. 
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where g is a positive definite exponent called the power-law index. Greater g values imply that volume fraction of 
the ceramic constituent material is greater in the FGM mixture. Therefore, based on Eqs. (1)-(6), one may write: 
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when the circular plate vibrats with a natural frequency ω, it is possible to separate the time dependence, based on a 
Kantorovich-type approximation [19]: 
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i ( 1)-  is the imaginary number. To present a more general solution, the following non-dimensional 

parameters are introduced:
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where Ω is the non-dimensional natural frequency. Kw and Ks are the non-dimensional Winkler and Pasternak 

coefficients of the elastic foundation, respectively. In the remaining of the paper, the bar ( __ ) symbol will not be 
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shown for the sake of simplicity. The governing Eqs. (4a- 4c) may be simplified and rewritten based on Eqs. (8) and 
(9) as: 
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2.2 Boundary conditions 

The most common edge conditions of the solid circular plates may be expressed as follows: 
 

Free edge: 0, 0, 0r r rM N Q= = = (13a) 
 

Simply-supported edge: 0, 0, 0ru M w= = = (13b) 
 

Clamped edge: 0, 0, 0ru w = = = (13c) 

3    THE SOLUTION PROCEDURE 
3.1 Transformation of the governing equations 

By using Taylor’s series expansion, the governing differential equations and the relevant boundary conditions of the 
system are transformed into a set of algebraic equations in terms of the differential transforms of the original 
functions. Solution of these algebraic equations gives the desired solution of the problem. The basic definitions and 
the procedure of employing the method are introduced in the present section. Consider functions 
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)(),(),(0  wu  which are continuous and analytic in a domain R and let 0   represent any point in R. The 

functions )(),(),(0  wu may be expressed by a power series whose centers are located at 0  .  
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In practical applications, a function may be usually expressed by a finite series. Therefore, Eq. (14) may be 

rewritten as 
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negligibly small. In the present research, value of N is so chosen that the calculated natural frequencies converge.  
By substituting Eq. (15) into the governing Eq. (12), the transformed form of this equation around 0 0, =  using 

Taylor’s expansion of the exponential functions, may be obtained as: 
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Simplifying Eq. (16) and rearranging,

 

the equations of motion can be transformed into the following recurrence 
equation: 
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3.2 Imposing the boundary conditions 

By substituting Eq. (15) into the boundary condition Eq. (13), the transformed form of this equation around 00   

may be obtained as: 
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Based on Eq. (18), three edge conditions are available at 1, =  that may be employed in solving Eq. (12) and 

consequently, determination of u0,  and w. Moreover, three additional conditions are required that may be 

extracted from the regularity conditions at the center of the circular plate. The symmetric vibration modes 
correspond to the following assumption for the moderately thick plate: 
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 (19) 

 
By substituting Ui, Wi and Fi (i2,..., n+2) from Eq. (17) into Eq. (18) and applying the regularity conditions, Eq. 

(19), the following equations are resulted: 
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where ij  are closed-form polynomials of   corresponding to nth term. Therefore, they represent closed-form 

series expressions. Eq. (20) can be expressed in the following matrix form: 
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Existence of a non-trivial solution require that: 
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By solving this equation, the non-dimensional natural frequencies will be achieved. In this paper, Newton-

Raphson method is used to solve the final equation of the non-dimensional natural frequencies. In the present study, 
a 0.0001 relative error parameter is chosen as a convergence criterion. 
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where i is the iteration counter. 

4    RESULTS AND DISCUSSIONS 

Present section contains both comparative and new results. Although the first two examples are mainly verification 
examples, almost all examples contain new results that may be used as verification bases for the future researches. 
 

Example 1: As a verification example, a one-directional transversely functionally graded circular plate with the 
following material properties is considered: 3 370 GPa, 2700 kg/m , 380 GPa, 3800 kg/m .m m c cE E = = = =  

The plate has no elastic foundation and its outer edge is free. The first two natural frequencies of the mentioned plate 
are calculated and compared with results reported by Hosseini-Hashemi et al. [23] and Irie et al. [24] in Table 1. 
Results of all references have been computed based on the first-order shear-deformation plate theory but with 
different analytical approaches. Results of reference [24] were obtained for pure metallic and pure ceramic plates. 
Results of the three approaches are almost coincident. This confirms the high accuracy of the proposed approach. As 
it may be expected, the natural frequencies increase due to an increase in the power law exponent g. 

 
Example 2: In the next stage, results of circular plates with heterogeneous materials whose heterogeneity is along 
either the radial or axial direction are verified. To this end, present results are compared with results of Gupta et al. 
[25] for radially-graded plates and results of Hosseini-Hashemi et al. [23] for transversely-graded circular plates.  
 
 
Table 1 
A comparison between the first two natural frequencies calculated for various gradient indices of FGM circular plates with free 
edges ( 0.25) =  

Natural frequency Approach Fully metallic  Fully ceramic 

310g  410g  510g  610g   210g  310g  410g  510g  

1  Present 4.22077 4.21066 4.20964 4.20953  8.18787 8.25915 8.26652 8.26736 
Ref. [23] 4.22077 4.21066 4.20964 4.20953  8.18787 8.25915 8.26652 8.26736 
Ref. [24] 4.20953  8.26736 

2  Present 14.6019 14.5688 14.5653 14.5652  28.3073 28.3822 28.3890 28.6055 
Ref. [23] 14.6018 14.5688 14.5653 14.5652  28.3082 28.3823 28.3890 28.6055 
Ref. [24] 14.5652  28.6055 
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Table 2 
A comparison between the first two natural frequencies (in Hz) determined by different approaches for plates with clamped edges 
and different geometric and material parameters 

 Approach 
0.5      0     1    

0.01 =  0.1 =  0.2 =   0.01 =  0.1 =  0.2 =   0.01 =  0.1 =  0.2 =  

0g =  
1  Present 23.292 226.725 421.497  24.045 243.779 453.189  29.075 282.733 524.532 

Ref. [25] --- 226.733 421.525  --- 243.808 453.212  --- 282.716 524.570 
             

2  Present 95.34076 875.346 1449.097  97.437 894.572 1481.720  102.347 939.011 1554.205 
Ref. [25] --- 875.331 1449.767  --- 894.530 1481.709  --- 939.044 1554.172 

              
1g   

1  Present 34.922 341.173 640.05413  37.552 366.82 688.04  43.594 425.401 796.109 
Ref. [23] --- --- ---  37.5518 366.905 688.625  --- --- --- 

             

2  Present 142.962 1325.662 2234.7088  146.106 1355.3 2284.4  153.468 1421.829 2394.746 
Ref. [23] --- --- ---  146.107 1355.70 2288.44  --- --- --- 

              
3g =  

1  Present 38.529 376.618 707.503  41.403 404.927 760.549  48.097 469.639 880.248 

2  Present 157.731 1465.422 2478.164  161.199 1497.524 2532.499  169.32 1571.854 2656.018 

 
 
Table 3 
A comparison between the first two natural frequencies (in Hz) determined by different approaches for plates with simply-
supported edges and different geometric and material parameters 
 Approach 0.5      0     1    

0.01 =  0.1 =  0.2 =   0.01 =  0.1 =  0.2 =   0.01 =  0.1 =  0.2 =  

0g =  
1  Present 11.846 117.561 229.271  12.101 120.012 234.307  12.552 124.518 243.345 

Ref. [25] --- 117.572 229.282  --- 120.035 234.294  --- 124.538 243.383 
             

2  Present 72.024 685.233 1212.643  72.842 692.531 1225.904  74.937 712.1301 1259.646 
Ref[25] --- 685.212 1212.67  --- 692.517 1225.922  --- 712.141 1259.648 

              
1g   

1  Present 18.940 187.817 366.599  19.453 192.181 375.49  20.183 200.265 391.574 
Ref. [23] --- --- ---  18.1443 180.081 352.383  --- --- --- 

             

2  Present 109.160 1041.751 1858.564  110.02 1051.4 1876.2  113.2112 1079.876 1925.118 
Ref. [23] --- --- ---  109.220 1043.97 1868.96  --- --- --- 

              
3g =  

1  Present 20.225 200.676 392.320  20.662 205.071 401.257  21.475 213.182 417.392 

2  Present 119.793 1145.627 2052.531  121.015 1157.323 2073.748  124.400 1189.098 2128.776 

 
 
Table 4 
A comparison between the first two natural frequencies (in Hz) determined by different approaches for plates with free edges and 
different geometric and material parameters. 

 Approach 0.5      0      1    

0.01 =  0.1 =  0.2 =   0.01 =  0.1 =  0.2 =    0.01 =  0.1 =  0.2 =  

0g =  
1  Present 22.7692 224.226 429.721  22.075216 217.46905 417.14345   21.079 207.69109 398.51442 

Ref. [25] --- 224.185 429.680  --- 217.473 417.107   --- 207.704 398.503 

2  Present 94.552 887.073 1531.626  94.207806 883.83021 1525.8592   94.254 883.83379 1523.891 
Ref. [25] --- 887.054 1531.659  --- 883.826 1525.883   --- 883.826 1523.929 

               
1g   

1  Present 34.136792 336.422 645.86205  33.097 326.23383 626.59509   31.606122 311.47359 597.94164 

2  Present 141.77348 1336.141 2323.6880  141.248 1331.0921 2312.5825   141.31337 1330.814 2299.3046 

 
2  Present 37.665415 371.432 714.42950  36.517267 360.19274 693.18932   34.869457 343.92261 661.69672 

2
 

Present 156.42764 1477.616 2583.1379  155.836 1472.092 2572.173   155.919 1471.948 2564.086 



193                   M.M. Alipour and M. ShariyatA Power Series Solution For Free Vibration of Variable Thickness… 
 

© 2011 IAU, Arak Branch 

Table 5 
Influence of various material heterogeneity, geometric, thickness, and foundation parameters of a clamped two-directional 
functionally graded circular plate resting on an elastic foundation 

   g=0 g=1 g=3 g=5 g=10 g=20 g=35 g=50 g=100 

0.1 =  Baseline 
1  5.0616 7.6161 8.4075 8.7628 9.1902 9.5058 9.6742 9.7486 9.8412 

2  18.493 28.1271 31.0931 32.3786 33.8909 34.9882 35.5679 35.8231 36.1397 

           
0.5    

1  5.4482 8.1974 9.0496 9.4321 9.8922 10.2319 10.4130 10.4932 10.5929 

2  19.0147 28.7927 31.8298 33.1461 34.6946 35.8181 36.4116 36.6728 36.9970 

           
0.5     

1  4.7075 7.0838 7.8197 8.1501 8.5475 8.8409 8.9974 9.0666 9.1528 

2  18.1748 27.5247 30.4266 31.6841 33.1634 34.2368 34.8038 35.0534 35.3631 

           
0.5   

1  7.4182 11.2058 12.3699 12.8846 13.4991 13.9503 14.1902 14.2961 14.4278 

2  23.6615 36.0577 39.8999 41.5114 43.3685 44.6941 45.3882 45.6924 46.0687 

           
0.5    

1  3.47298 5.2238 5.7613 6.0045 6.2991 6.5179 6.6349 6.6868 6.7513 

2  14.3023 21.5728 23.8285 24.8273 26.0183 26.8918 27.3561 27.5610 27.8158 

           
50wK   

1  9.7787 10.7764 11.1491 11.3601 11.6425 11.8657 11.98894 12.0441 12.1134 

2  20.3447 29.1244 31.9299 33.1633 34.6248 35.6907 36.25524 36.5039 36.8128 

           
20sK   

1  14.2291 14.5066 14.5745 14.6719 14.8358 14.9809 15.06476 15.1031 15.1516 

2  34.9988 39.1313 40.6442 41.4315 42.4457 43.2269 43.65185 43.8412 44.0779 

            
0.2   Baseline 

1  4.7048 7.1424 7.8957 8.2189 8.5970 8.8702 9.0142 9.0775 9.1560 

2  15.3825 23.7074 26.2912 27.3079 28.4299 29.2036 29.6008 29.7733 29.9855 

           

0.5    
1  5.0606 7.6812 8.4921 8.8400 9.2469 9.5409 9.6959 9.7639 9.8484 

2  15.7442 24.2615 26.9069 27.9482 29.0974 29.8897 30.2964 30.4731 30.6904 

           
0.5     

1  4.3758 6.6447 7.3449 7.6452 7.9966 8.2503 8.3841 8.4429 8.5158 

2  15.0507 23.1997 25.7271 26.7211 27.8181 28.5744 28.9627 29.1314 29.3389 

           
0.5   

1  6.5394 10.0162 11.0825 11.5205 12.0198 12.3732 12.5573 12.6377 12.7372 

2  18.0568 28.1315 31.2408 32.3943 33.6162 34.4309 34.8416 35.0185 35.2348 

           
0.5    

1  3.3313 5.0377 5.5607 5.7910 6.0656 6.2668 6.3737 6.4209 6.4796 

2  12.6442 19.3114 21.3844 22.2413 23.2189 23.9113 24.2722 24.42997 24.625 

           
50wK   

1  9.5594 10.4123 10.7396 10.9192 11.1553 11.3392 11.4396 11.4844 11.5406 

2  17.4301 24.8454 27.247 28.2081 29.278 30.0203 30.4026 30.5688 30.7736 

           
20sK   

1  13.7956 13.9962 14.0473 14.1223 14.2487 14.36 14.424 14.4532 14.4901 

2  32.587 35.3412 36.4635 37.0011 37.6577 38.1433 38.4014 38.5152 38.6565 
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For cases where the material properties vary in the transverse direction, the material properties are similar to 
those defined in the foregoing example. The numerical results have been reported and computed for the first two 
modes of vibration to investigate effect of the heterogeneity parameter ,  density parameter ,  and thickness 

parameter  on the natural frequencies. Results are obtained for 0,1,3,g = 0.5,0,0.5, = =-  0.01,0.1,0.2, =  and 
0  and are listed in Tables 2 to Tables 4 for circular plates with clamped, simply-supported, and free edges, 

respectively. Therefore, the results are computed for thin ( 0.01), =  relatively thick ( 0.1), =  and thick ( 0.2), =  
plates. Results of reference [25] correspond to g=0 whereas results of reference [23] are related to 0 = =  and 

plates with clamped or simply-supported edges. There is an excellent agreement between present results and results 
of references [23] and [25], especially, for plates with clamped edges. The discrepancies are especially negligible for 
higher natural frequencies. As it may be expected, for plates with less restrained edge conditions, the overall rigidity 
of the plate and subsequently, the natural frequencies are lower. However, since the circular plates with free edges 
are indeed unrestrained, this conclusion does not hold. As it may be readily noted from Tables 2 to Tables 4 majority 
of the present results are new and can be used for future comparative studies. 

 
Example 3: To evaluate influences of various parameters: geometric parameters, thickness variation, material 

gradient indices, edge conditions, and coefficients of the Winkler-Pasternak foundation, a sensitivity analysis is 
carried out for thick ( 0.2) =  and relatively thick ( 0.1) =  clamped two-directional functionally graded circular 
plates. A case associated with an isotropic uniform-thickness plate with clamped edge is considered as a baseline to 
assess effects of the parameters individually. Results of the sensitivity analysis are shown in Table 5. Due to the 
specific definition of the dimensionless natural frequency, although the natural frequencies are expected to increase 
with an increase in the plate thickness, they are lower for thicker plates. However, effects of other parameters on the 
natural frequency may be observed directly. Results reveal that since greater power-law indices (g) lead to an FGM 
mixture with a greater ceramic volume fraction, the natural frequencies are greater for greater g values. Higher 
positive  and  values increase the plate rigidity in the radial direction so that influence of the clamping support 

may affect regions that are far from the edges more pronouncedly. Therefore, the bending rigidity and subsequently, 
the natural frequencies increase. Greater   values lead to cross sections with greater heights. Hence, they increase 

the natural frequencies.  
Presence of the elastic foundation reduces the plate movability and subsequently, increases the apparent 

(extensional or bending) rigidity of the plate and increases the natural frequencies. Results confirm that effect of 
Pasternak coefficient of the elastic foundation on the natural frequencies of the plate is more remarkable in 
comparison with an identical Winkler coefficient. 

 
Example 4: In the present example, variations of the natural frequencies and their rates with respect to the power-

law index of the transverse variations of the material properties (g) are studied for various cases. The thickness ratio 
of the plate is assumed to 0.1. =  In this regard, simultaneous effects of the power-law index and parameters such 
as variations of the cross section in the radial direction and Winkler or Pasternak coefficients of the elastic 
foundation on the first two natural frequencies of the plate are investigated. 
    Results are depicted in Figs. 2 and 3 for the first and second natural frequencies of a simply-supported plate 
resting on an elastic foundation, respectively. Results of a plate with a free outer edge are shown in Figs. 4 and 5. It 
may be easily verified that the cases with 0g  and g  correspond to pure metallic and pure ceramic plates, 

respectively.  
 
   

Fig. 2 
Simultaneous effects of variations of the cross section in the 
radial direction, Winkler or Pasternak coefficients of the elastic 
foundation, and effect of the power-law index of the material 
mixture on the first natural frequency of a simply-supported 
plate. 
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Fig. 3 
Simultaneous effects of variations of the cross section in the 
radial direction, Winkler or Pasternak coefficients of the elastic 
foundation, and effect of the power-law index of the material 
mixture on the second natural frequency of a simply-supported 
plate. 

  
  
 

 

Fig. 4 
Simultaneous effects of variations of the cross section in the 
radial direction, Winkler or Pasternak coefficients of the elastic 
foundation, and effect of the power-law index of the material 
mixture on the first natural frequency of a plate with a free edge. 

  
  

 

 

Fig. 5 
Simultaneous effects of variations of the cross section in the 
radial direction, Winkler or Pasternak coefficients of the elastic 
foundation, and effect of the power-law index of the material 
mixture on the second natural frequency of a plate with a free 
edge. 

 
 
 
Results illustrated in Figs. 2-5 reveal that for plates fabricated from a mixture whose power-law exponents are 

almost zero (metallic plates), the natural frequency is the minimum. The natural frequency increases asymptotically 
as the power-law exponent increases so that increasing the power-law exponent of the material beyond 10 leads to 
an ignorable increase/enhancement in the natural frequencies of the plate. As it may be seen from Figs. 2-5, in low 
values of the power-law exponent, the frequencies vary with higher rates. As it may be expected, higher frequencies 
may be achieved for greater   and smaller   values. In other word, while increasing the stiffness of the cross 

sections of the circular plate in the radial direction may increase the natural frequencies of the plate, the natural 
frequencies are increased when the mass density of the mixture of the materials is reduced in the radial direction. 
Figs. 6 and 7 illustrate influence of exponent of variations of the elasticity modulus in the radial direction on the 
natural frequencies of a circular plate with a simply-supported edge. As it may be readily observed, the natural 
frequencies increase with an increase in .  However, in contrast to graphs plotted for evaluating effects of the 

power-law exponent (Figs. 2-7), the curves do not exhibit an asymptotic behavior. Finally, from the presented 
results, it may be inferred that the reduction in rigidity due to reduction of the sections heights may be somewhat 
compensated by the power or exponential laws exponents of the material properties in the radial, transverse or both 
directions. 
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Fig. 6 
Influence of exponent of variations of the elasticity modulus in 
the radial direction on the first natural frequency of a circular 
plate with a simply-supported edge. 

  
 

 

Fig. 7 
Influence of exponent of variations of the elasticity modulus in 
the radial direction on the second natural frequency of a circular 
plate with a simply-supported edge. 

5    CONCLUSIONS 

In the present paper, a closed-form semi-analytical solution is employed to investigate free vibration of two-
directional functionally graded circular plates having various edge restraints and variable thickness resting on 
Winkler-Pasternak elastic foundations. In this regard, the differential transform technique is utilized. A 
comprehensive sensitivity analysis consists of evaluating influences of various parameters is performed. The 
proposed close-form solution covers complex combinations of the material properties heterogeneity in both radial 
and transverse directions, thickness variations, edge restraints, and coefficients of the two-parameter elastic 
foundation. Comparisons made with the special cases available in literature, have verified the accuracy of the 
proposed solution. As the results show, degradations caused by a group of the factors (e.g., the geometric 
parameters) in the vibration behavior of the structure may be compensated by a group of factors of different nature 
(e.g, the material heterogeneity parameters). Moreover, employing the elastic foundation leads to higher natural 
frequencies and postponing the resonances. 
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