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 ABSTRACT 

 This paper presents the dynamic modeling and design of micro motion compliant parallel 
mechanism with flexible intermediate links and rigid moving platform. Modeling of 
mechanism is described with closed kinematic loops and the dynamic equations are derived 
using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered 
for modeling the intermediate flexible link. Based on the Assumed Mode Method theory, the 
governing differential equations of motion are derived and solved using both Runge-Kutta-
Fehlberg4, 5th and Perturbation methods. The mode shapes and natural frequencies are 
calculated under clamped-clamped boundary conditions. Comparing perturbation method 
with Runge-Kutta-Fehlberg4, 5th leads to same results. The mode frequency and the effects 
of geometry of flexure hinges on intermediate links vibration are investigated and the mode 
frequency, calculated using Fast Fourier Transform and the results are discussed.  

                    © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 OMPLIANT mechanism with parallel structures that provide the required motion by flexure hinges, have 
been adopted in many small-scale applications. In order to use flexure hinges, compliant mechanism makes 

smooth motions without problems such as friction losses, need for lubrication, hysteresis, maintenance, and 
drawbacks. Clearly, precision is the most important factor for micro positioning applications[21].  

For this purpose, the flexibility of link improves accuracy and some other characteristics of manipulator such as 
minimizing the energy needed to run the manipulator, increasing speed, and reducing the internal stresses and 
displacement [24, 26, and 27]. In the case of flexible manipulators, Zhou et al. [28] established dynamic equations of 
flexible (3PRS) manipulator for vibration analysis using the finite element method (FEM).A dynamic model was 
developed based on FEM for a 3-PRR planar parallel manipulator with flexible links in reported works [29, 30].  

The basis work of the flexure hinges was presented by Paros and Weisbord [6]. In kinematic and dynamic 
modeling of compliant mechanisms, the Pseudo-Rigid-Body Model (PRBM) approach is the almost unique method 
that is used in most of researches. The PRBM is used to predict the displacement of compliant mechanism and 
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models the flexure hinge as a revolute joint with an attached torsional spring. Considerable results from applying 
this concept to compliant mechanisms have been obtained by Anathasuresh and Kota [7], Murphy et al. [8]; Saggere 
and Kota [10]; Yu et al. [20]; and Kota et al. [11]. However, the flexure hinge has also translational motion although 
the amount of axial deformation of flexure hinges is small [2].The accuracy of Pseudo-Rigid-Body Model is reduced 
when the x and y deformation of flexure hinges are ignored [3, 5]. 

Most of the previous studies modeled the flexure hinge by using 1DOF for a revolute hinge. However, the 
flexure hinge has also translational motion even though the amount is small [2].The accuracy of the kinematics 
predicted using PRBM is reduced when the x and y deformation of flexure hinges are ignored [3]. 

Flexure hinges have different profiles [1], but circular hinges have been widely used in compliant mechanism. 
Paros and Weisbord [6] and Rong et al. [12] derived analytical compliance equations of circular flexure hinges. Her 
and Cheng [13] used finite element approach to numerically determine the rotational stiffness of circular flexure 
hinges and developed a linear scheme for displacement analysis of compliant mechanism based on the PRBM 
method and linearization of the geometric constraint equations of a compliant structure. Lobontiu et al. [16] derived 
analytical equations to predict the compliances of the corner-filleted flexure hinges along all three axes. They used 
Castiglione’s second theorem to derive the compliance equations and they found that corner-filleted hinges could 
deform more but induce lower stresses than that of circular hinges. 

Shim et al. [17] derived a kinematic model of a six-DOF micro-positioning parallel. The model was derived 
using the PRBM method. However, they did not compare the analytical model with FEA simulations or 
experimental results. Ryu et al. [18] developed a XYθ compliant mechanism with three piezo-actuators. Zhang et al. 
developed a 3-RRR compliant stage. A kinematic model of the stage was derived base on PRBM and x and y 
deformation of flexure hinges was not considered in the model. Yong et al. [3, 4, and 5] presented the kinetostatic 
model of a flexure-based 3-RRR compliant micro-motion stage and investigated the effect of the accuracies of 
flexure hinge equations. Two cases were studied where two kinetostatic results were obtained using two different 
sets of flexure hinge equations and then kinetostatic results were compared to the finite-element-analysis results to 
verify their accuracies. 

Y. Tian et al. [22] developed the in-plane and out-of-plane stiffnesses of the flexure hinges derived and the 
influences of the geometric parameters on the performance of the flexure hinges are investigated. In this paper 
dynamic analysis of a compliant micro-motion stage mechanism with three flexible intermediate links is presented. 
This mechanism has 3 3r  degrees of freedom. The 3RPR links arranged in parallel and each link has 2 circular 
flexure hinges. Each intermediate link has been treated as a Euler-Bernoulli beam. Structural dynamic equations of 
the proposed compliant mechanism are derived based on Lagrange multiplier and Kane's methods. Also the AMM is 
adopted to discretize the distributed dynamic system of the manipulator system with flexible links and solved using 
Perturbation method and results for the deflection of the intermediate link is compared with Runge-Kutta-Fehlberg 
4,5th. Further, numerical simulations are performed and the assumed mode shapes and frequencies of links to be 
obtained based on clamped-clamped boundary conditions. The natural frequency for each assumed mode and the 
effects of hinges length on vibration of links are investigated. 

 
 

 

 
 
 
 
 
 
 
 

Fig. 1  
Modeling of parallel micro-positioning compliant mechanism. 

2    COMPLIANT MICRO-MOTION SYSTEM CONFIGURATION 

The present parallel compliant mechanism consists of three chains that connect the end-effector to a fixed base. The 
three chains are 120 degree apart from each other and mechanism also has a symmetrical configuration. The 
compliant micro-motion mechanism illustrated in Fig. 1. The end- effector translates along x and y axis and rotates 
about the z axis. The first flexure hinge in each chain is modeled as having 2DOF hinge. Consequently, first hinge 
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assumes that the flexure hinges in the mechanism act like a 1DOF revolute joint and a 1DOF prismatic joint and the 
second flexure hinges in each chain is modeled as a revolute joint. The shape of the circular flexure hinge is depicted 
in Fig. 2.  

In order to facilitate the formulation of kinematics and dynamics, all coordinates and loops are shown in Fig. 3. 
The three chains are 120 degree apart from each other and mechanism also has a symmetrical configuration, and 
thus is less sensitive to temperature gradient that could change the kinematics of structure due to material expansion 
or contraction. The i iB C are assumed flexible. The first revolute joint in each of chains is active joint and other ones 
are passive joint.  
 

 
 

(a) 

 
  
 

 (b) 

Fig. 2 
Schematic of the flexure hinge (a): Real model, (b): Mechanical model. 

3    KINEMATIC MODEL 

Loop-closure theory incorporates the complex number method to model a mechanism.  
From the loop1, 

 
22 2 2 1 2 2 1 1 1 1 1      A B u L C C A A A B u L  (1) 

 
From loop2, 

 
22 2 2 2 3 2 3 3 3 3 3      A B u L C C A A A B u L  (2) 

 
where 1 2 3, ,L L L  are the length of links and ( )iu t  are axial deformation of flexure hinges. Since the angular 
displacements of the compliant mechanism are small, the small angle approximation of cosine and sine functions 
can be adopted, which sin( ) , cos( ) 1 i i i   . By using real and imaginary component and trigonometric 
identity and some mathematical manipulation of the Eqs.1 and 2 can be simplified as: 
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(3a) 

 
and 

2 3 2 32 2 2 2 3 3 3 3 2 3cos( ) cos( ) cos( ) cos( ) cos( ) cos( )    flex C C flex A Al L C C l L A A      , therefore Eq.(3a) can be 

reduced to: 
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Loop equation obtained from the imaginary component of Eq. 2  is: 
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and 

2 3 2 32 2 2 2 3 3 3 3 2 3sin( ) sin( ) sin( ) sin( ) sin( ) sin( )flex C C flex A Al L C C l L A A           therefore Eq.(4a) can be 

reduced to: 
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(4b) 

 
According to the above simplification Eq. (1) can be obtained: 
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(6) 

 

In which 
1 2C C , 

2 3C C and 
2 3A A are arguments of vector 1 2C C , 2 3C C  and 2 3A A measured in the global X-axis 

and flexl  is the length of the first flexure hinges in each chain. In the above equations 
2C and , 1, 2,3iu i   are 

unknowns. Therefore, there are only four unknowns which required only four equations. For the compliant 
mechanism, there are three inputs that are given as the function of three input rotations. These are in turn by turning 
a function of the PZT displacements, 1pztl , 2 pztl , 3 pztl  respectively. The three inputs are: 

 

  ipzt
i

l

d  

 
(7) 

 
where d  is distance from iA  to the center of piezo-actuator and ipztl  is input displacement by the pizo-actuator. 

Table 1.exhibit all parameters of compliant mechanism. 
 
 
 

 

Fig. 3 
Coordinate system of the 3-RPR parallel compliant mechanism. 
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4    DYNAMIC MODELING 

Lagrange multipliers and Kane’s method adopted to derive dynamic equation of motion of parallel the compliant 
mechanism with three flexible intermediate links. For the Lagrange method the total kinetic and potential energy are 
evaluated and for the Kane’s method quasi velocities and acceleration of the center of mass for each flexible link 
must be evaluated.  

4.1 Kinetic and potential energy of ith links 

In this paper, for the intermediate flexible links, the dynamic equations of parallel compliant mechanism are 
developed using Euler-Bernoulli beam theory. One of the links as shown in Fig. 4. The component ( , )iW x t  

represents the transverse displacement of link thi link at a distance x from the joint coordinate system along 
the x axis. ( )i i t   represents the angle between the link and the horizontal axis and ( )iu t  are axial deformation 
of flexure hinges. 
 
 
 

x  

( )iu t

( , )iW x t

( )i i t 

A 
B 

x y  

   

 
 
 
 
 
 
 

Fig. 4  
Compliant mechanism with flexure hinge and flexible 
link 
 

 
The total energy of manipulator system includes the kinetic energy of flexure hinges, flexible intermediate link 

and moving platform. The position vector relative to an inertial frame can be written as: 
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(8) 

 
and derivation of Eq. (8): 
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(9) 

 

and velocity of 
thi intermediate flexible link is: 

 

  222 ( ) ( , ) ( ) ( , )           
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(10) 

 
which i=1, 2, 3 in above equations. The total kinetic energy of system is: 
 

  flex link PT T T T  (11) 

 

PT  is kinetic energy of moving platform and linkT  is kinetic energy of flexible intermediate link and flexT is kinetic 

energy of flexure hinges. Then kinetic energy of flexible link and flexure hinges can be obtained as: 
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and total kinetic energy is written as: 
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(12c) 

 
In which 0  and 1  are mass per unit length of flexure hinges and mass per unit length of thi link, respectively. 

In addition pI  is mass moment of inertia of the platform around the center point P, pm is the mass of the platform, 

px and py are positions of platform along X-axis and Y-axis direction, respectively and p is orientation of platform 

at the mass center P. 

4.2 Potential energy 

The potential energy was ignored due to gravitational force because it does not change during plane motion of 
compliant mechanism. The potential energy of intermediate link expresses the internal energy due to bending and 
the elastic deformation of the link. According to Euler-Bernoulli beam theory, the potential energy of the 
intermediate link is given as [23]: 
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where iE is elastic modulus of the thi link, and iI is the second moment of area of the thi link. In order to obtain 
potential energy of flexure hinges, they are modeled as revolute and prismatic joints with constant torsional and 
translational stiffness flexk and xflexk . All the first flexure hinges in each chain are assumed as a combination of 

torsional and translational stiffness and the second flexure hinges have just torsional stiffness. Using the formulation 
presented by Lobontiu, the rotational and translational stiffness of circular flexure hinge can be estimated and given 
as [15]: 
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and potential energy of flexure hinges can be estimated as: 
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In which 

1 flexk is torsional stiffness of first flexure hinge and 
2 flexk  is torsional stiffness of second flexure hinge. 

The total potential energy of the system given as: 
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(17) 

 
The above assumption for flexure hinges when the first flexure hinges is designed with only 2DOF by 

fabricating a relatively thin neck-downed section of the flexure hinge and the second has 1DOF by fabricating a 
relatively thick neck-downed section. 

4.3 Dynamic equations of motion using Lagrange multiplier method 

The governing equations of motion are derived using Lagrange multipliers method. The Lagrangian is computed 
using kinetic and potential energy as follows: 
 

 L T V  (18) 
 
The dynamic equations of compliant mechanism with flexible links, using the Lagrange multiplier method is 

given as [23]: 
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In which iQ  is the generalized force and k  is thk  Lagrange multipliers. The method of assumed mode is 

applied, and flexible deformation of the thi intermediate link can be expressed as: 
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(20) 

 
Functions ( )ij t  can be considered as generalized coordinates expressing the deformation of the linkage and 

functions ( )ij x are referred to as assumed modes. The clamped-clamped boundary condition is assumed for the 

intermediate links. The eigen function of clamped-clamped beam was derived based on Euler-Bernoulli beam 
theory. According to Euler-Bernoulli beam theory, position-dependent mode shape function for clamped-clamped 
beam is selected as [19]: 
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and j are [19]: 
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(22) 

 
In which j  is the root of the characteristic or frequency equation, and frequency equation of clamped-clamped 

beam is given as [19]: 
 
cos( ) cosh( ) 1j j   (23) 

 
Generalized coordinates for the compliant mechanism with flexible links are , , , , ,i i ij p p pu x y   . The number 

of generalized coordinates is 9 3 , 1, 2,3 r r . For the present compliant mechanism the number of degrees of 
freedom is 3 3 r . Therefore the number of generalized coordinate is greater than the number of degree of freedom 
of compliant mechanism. Then six constraint equations should be considered in equations of motion. The constraint 
equations obtained from closed-loop chains as shown in Fig. 3: 

 

1 1 , 1,2,3     i i i i i iA A A B u L C P A P i  (24) 

 
Equivalence of the real and imaginary parts of both sides of above relation leads to: 

 

2 1

2

cos( ( )) ( ) cos( ( )) cos( ) 0

sin( ( )) ( )sin( ( )) sin( ) 0

        

       




i i i i flex i i p p p

i i i i flex i i p P p

u t l l t x l

u t l l t y l

     

     
 

 
(25) 

 
Eqs. (25) are six constraint equations. Substituting Eqs. (12), (17) and (20) into (18) and (19), and Eq.(19) is 

formulated as follows: 
 

0 0 1 2

2 2 2
2 0 0 1

2 21
1

2 1 2

( )
( ) ( ) 2 ( )

( ) ( ( )) ( ) ( ) ( )

( ) ( ) ( )
2

cos( ( )) sin( ( ))

  
   

 

    

  

  

  


  

 

i ij i
i i

ij i flex i i i i

i flex i xi i

i i i i i i

T T V
A u t m u t Q t

u u

Q t A l u t t m u t t

m l
t m l t k u t

t t

  

    

 

     

 

 
 
 

(26) 

 

2
0 0 0 0 1

2
2 2

( )
2 ( ( )) ( ( )) ( ) ( ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
3

2 ( ) ( )

  
      



      

  

        



i

i i i

flex i i i flex i flex i
ii

i i i i i i i i flex flex i i

flex i i

T T V
A l u t u A l u t t m l t

l
u t u t u t lu t t u t l t t l t l u t t

l u t t

    


      

 2 3 2 2 1

1 2
2 1 1 2 1

) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( )sin( ( )) ( ) cos( ( ))

     

         

    


i

i ij ij ij ij i ij ij flex ij ij ij ij i ij

ij ij i ia i flex i i i flex i i

u t Q t Q t u t Q t l Q t Q t t t

Q t t k t M u l l t u l l t

      

        

 

 
 
 

(27) 

 

1 2 2 3 2 1 2 4( )
( ) 2 ( )( ) 0

  
        


      ij ij i i ij i ij i ij i iflex ij i ij ij i ij ij

ijij

T T V
Q t u Q u Q Q l Q Q t EI Q       


 

 
(28) 

2 4 6

( )  
     

 


 p p
p p

T T V
m y

y y
    

 
(29) 

1 3 5

( )  
     

 


 p p
p p

T T V
m x

x x
    

 
(30) 

 
In which: 
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1 2 2
1 1

0 0

4 2 3
1

0 0

( ( )) , ( ( ))

( ( )) , ( ( ))

 

 

 

 

ilink ilink

ilink ilink

L L

ij ij ij ij

L L

ij ij ij ij

Q x dx Q x dx

Q x dx Q x xdx

   

  

 

 
 

(31) 

 
Eq. (28) can be rewritten in matrix form as: 
 

   
corM K P F    (32) 

 

where M is the modal mass matrix, K is the modal stiffness matrix, P  is the effect of rigid-body motion on elastic 

vibration of flexible links, corF is Coriolis force. 

4.4 Dynamic equations of motion using Kane’s method 

In this section, the Kane’s Method is employed to derive the governing equation of motion for the compliant 
mechanism with flexible links. We select the generalized speed as: 

 

1 2 3 4 5 6( ) , ( ) , ( ) , , ,         P P Pu u t u t u t u X u Y u    (33) 

 
The velocity of point G  for flexible links can be obtained as follow: 
 

[( ( , ) ( )) cos( ) ( ( ( ) ) ( , ))( sin( ))]

[( ( , ) ( ))sin( ) ( ( ( ) ) ( , ))(cos( ))]

          

       

  
  

G i i i i i i i iflex i i i

i i i i i i i iflex i i i

V W x t u t u t x L W x t i

W x t u t u t x L W x t j

     

     
 

 
(34) 

 
and the acceleration of point G for intermediate flexible links can be obtained as below:  

 

2

[( ( , ) ( , ) ( )) cos( ) ( ( , ) ( ))sin( )

( ( ( ) ) ( , ) ( ))(sin( )) ( ( ( ) )

( , ))(cos( ))] [( ( , )

         

        

  

     
   
  

G i i i i i i i i i i i i

i i iflex i i i i i i i iflex

i i i i i i

a W x t W x t u t W x t u t

u t x L W x t u t u t x L

W x t i W x t

       

    

   

2

( , ) ( ))sin( )

( ( , ) ( )) cos( ) ( ( ( ) ) ( , )

( ))(cos( )) ( ( ( ) ) ( , ))(sin( ))]

   

       

     

 
   
   

i i i i

i i i i i i i i iflex i

i i i i i i iflex i i i i

W x t u t

W x t u t u t x L W x t

u t u t x L W x t j

  

    

      

 

 
 
 

(35) 

 
To obtain dynamic equation of motion for flexible generalized coordinate, partial velocity respect to 3 ( ) u t  

can be obtain as following equation: 

3

( )sin( ) ( ) cos( )


     


k G
G ij i i ij i i

V
V x i x j

u
       

 
(36) 

 
The generalized inertia forces of the flexible links can be obtained from the below equation: 
 

*

0 0

[ ( ( , ) ( ) ( ) ( ))

( ( ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( , )]

       

   

    

  

link linkl l
k

k Gi Gi i i ij i ij

i ij i ij ij flex ij i i ij i

U ma V dx W x t x x u t

x u t x x x l x u t x W x t dx

    

      

 

 
 

(37) 

 
Substituting Eq. (20) into Eq. (37) generalized inertia force can be obtained as follow: 
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* 2

10 0

2

1

[ ( ( ) ( ) ( ) ( ))

( ( )( ( ) ) ( ) ( ) ( ) ( )]





       

   

 



  

  

link linkl l r
k

k Gi Gi i ij ij i ij
j

r

i ij i flex i i ij ij ij
j

U ma V dx t x x u t

x u t x l u t x t x dx

     

     
 

 
 

(38) 

 
or 

 

* 1* 2 1*

0

( ( ) ( ) {2 ( ) ( ) ( )( ( ) )} )          
linkl

k ij i ij ij ij ij i ij i flexU Q t Q t x u t x u t x l dx        
 

(39) 

 
In which: 
 

1* 2 2* 2

0 0

( ) , ( ( ))   
link linkl l

ij ij ijQ x dx Q x dx  
 

(40) 

 
and now the generalized active forces of the flexible link can be obtained as below: 

 

2*( )
( )

 
   

 
link link

k i i ij ij
k ij

V V
U E I t Q

q t



 

 
(41) 

 
According to the Kane’s method the generalized inertia forces and the generalized active forces constitute the 

equations of motion as below [23]: 
 

* 0 k kU U  (42) 

 
Substituting Eq. (39) and Eq. (41) into Eq. (42), and the equation of motion can be obtained as follow: 
 

1* 2 1* 2*

0

( ( ) ( ) {2 ( ) ( ) ( )( ( ) )} ) ( ) 0          
linkl

ij i ij ij ij ij i ij i flex i i ij ijQ t Q t x u t x u t x l dx E I t Q         
 

(43) 

 
and finally the equations of motion for flexible link of compliant mechanism can be obtained from following 
equation: 
 

1* 2 1* 2 2 2 * 2*
3( ) ( ) 2 ( ) ( ) ( ) 0            ij i ij ij ij ij ij i i ij i flex i i ij ijQ t Q t Q u t Q u t Q l Q E I t Q         (44) 

 
The comparison of the Eq. (44) and Eq. (28) shows that the Lagrange and Kane’s Methods yielded similar 

results. In addition, these results verify the equations of motion which is obtained by Lagrange Method. For getting 
frequency equation, we use equations of motion in Eq. (28) and for considering a constant angular velocity of 
intermediate link and assuming time-independent axial displacement, one gets: 

 
1 2 1 2 4( ) ( ) 0ij ij i ijQ Q EIQ    

 
(45) 

 

In the above equation 2( )
( )

( )

t

t

 


 


, the equivalent frequency may be evaluated by: 

1 2 4
2

1

( )
( ) ij i ij

ij

Q EIQ

Q




 




 

 
(46) 
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Consequently, from Eq. (46), the natural frequency for the link decreases with angular velocity and for the 
clamped-clamped boundary condition we have: 

 

4 4 41(1 )
( )ij ij

j
Q Q

l


  

 
(47) 

 
By substituting Eq. (48) into Eq. (47), frequency can be obtained as: 
 

4
2 41 2

4 1

((1 ) )
( ) ( )ij i

ij

EI j
Q

l Q

 
    

 
(48) 

 
Therefore, the first term on the right side of the Eq. (48) is the natural frequency expression for non-rotating 

beam. Eq. (48) is similar to the one result given in ref. [14]. 

5    SOLUTION METHODOLOGY 

To solve equations of motion the perturbation method is used, which consists of determining the series convergent 
to the exact solution. Using Taylor series to expand the terms in Eq. (28) or (44), we have: 

 
2

1 2 3 2 2 2 1 4 1 1 2
1 2 3 4 5 6 7 82

( )
( ) ( ) 0        ij

ij ij ij ij ij ij ij ij ij ij

d t
Q a Q a Q a Q t a Q t t a Q a Q a Q t a Q t

dt


  

 
(49) 

 
For mode1, we have: 
 

2
1 1 4 1 1 2
11 1 5 11 6 11 7 11 8 112

( )
( ) ( ) 0      

d t
Q b t a Q a Q a Q t a Q t

dt

    
 

(50) 

 
when ε is small but is different from zero and 1b >>  , we suppose that the solution of above equation can be 
expressed in the form [25]: 

 
2

0 1 2( , ) ( ) ( ) ( ) ...   t t t t       (51) 

 
Substitute Eq. (51) into Eq. (50) and set ε=0 and obtained: 
 

1 1 4 1 1 2
11 0 1 0 5 11 6 11 7 11 8 11( ) ( ) 0     Q b t a Q a Q a Q t a Q t   (52) 

 
1
11 1 1 1 0( ) ( ) ( ) 0  Q b t t    (53) 

 
The general solution of Eq. (52) can be written as: 
 

0 0 0( ) cos( ) ( )  t A t f t   (54) 

 
where 0 0,A   are arbitrary constant. Therefore Eq. (53) can be re-written as: 

 
1
11 1 1 1 0 0( ) ( ) cos( ) ( ) 0    Q b t A t f t    (55) 

 
The homogeneous and particular solutions are: 
 

0 0 1 1 1( ) cos( ) ( ) ( cos( ) ( )) ...      t A t f t A t f t     (56) 
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and flexible deformation of the first intermediate link for mode 1 can be expressed as: 
 

1 1( , ) ( ) ( )W x t t x   (57) 

6    NUMERICAL RESULTS AND DISCUSSION 

In the present compliant mechanism, dynamic analysis of parallel compliant mechanism with flexible links and rigid 
moving platform is considered. Geometrical and material properties of flexible link are given in Table 1. The 
geometrical properties for flexure hinges are given in Table 3. Flexures and intermediate links are modeled as 
aluminum alloy. 

The number of degree of freedom (DOF) for present compliant mechanism is 3 3 r , in which 3 degrees of rigid 
body degree and 3r degrees of elastic motion. Dynamic equation is including of 9 3 r differential equations and 6 
constraint equations. All three joints are controlled separately using proportional and derivative (PD) feedback 
control with gains pk  and dk . Thus the deriving moments applied to three flexure hinges are given as: 

 

( ) ( )    
ia p di i d di iM k k     (58) 

 

di are desired angle of flexure hinge. The deflection of flexure hinges and intermediate links is determined 
based on the prescribed motion of the moving platform. To obtain the deflection, velocity, angular velocity, and 
acceleration, inverse kinematics was used. From inverse kinematics, the displacement and velocity of flexure hinges 
are given as: 

 

1

1

2 2
. 1

2
. 1

( ( ) cos( ) cos( ) cos( ))

( ( )sin( ) sin( ) sin( ))

       

     
i i

i i

i P i flex i i i i C G i A A

P i flex i i i i C G i A A

u X l L C G A A

Y l L C G A A

    

    
 

 
(59) 

 
 

cos( ( ) ) sin( ( ) )     i i i p i i pu t x t y    (60) 

 
Angular velocities of intermediate links are given as: 
 

1
( sin( ( ) ) cos( ( ) ) )

( )
        

  
  i i i p i i p

i i iflex

t x t y
u L l

 
 

(61) 

 
Micro-motion system consists of 3 Tokin AE1515D16 [9], PZT stack actuators assembled into flexure hinges of 

compliant mechanism. According to Eqs. (3-4-5-6-7), the axial displacement of flexure hinges is obtained and 
comparison u  with last work by Paros and Weisbord and Lobontiu are given in Table 2. and illustrated in Fig. 5. 

 
Table 1 
Compliant mechanism physical parameters 

1 2 3 ( ) L L L m  1 (deg)  2 (deg)  3 (deg)  2( )A m  I 4( )m  ρ 3( / )kg m  E 2( / )N m  
0.05249 38 158 278 0.18e-4 1.35e-11 2.77e3 7.1e10 

 
 

Table 2 
Comparisons of various compliance equations with this study 
Case u  error 
Paros and Weisbord 0.5676e-3(m) 3.6% 
Lobontiu 0.5446e-3(m) 8.6% 
This study 0.5885e-3(m) - 
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Table 3 
Geometrical properties of flexure hinge 

iflexL  B t R d 

0.006(m) 3(mm) 0.5(mm) 3(mm) 9(mm) 
 

 

 
 

 
 
 
 
 
 
 
 

Fig. 5 
Variation of axial displacement of flexure hinges vs. 
variation of PZT actuator. 

 
 
 

 
(a) 

 

(b) 

 
 

(c) 
Fig. 6 
First three vibration modes of the 1st intermediate link at the midpoint (a): Mode 1, (b): Mode 2, (c): Mode 3. 
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In this simulation, the moving platform is set to move on a desired trajectory given as: 
 

1

2

2
sin( )

2

2
sin( )

2

  

  



f f
p

f f

f f
p

f f

x x
x C t t

t t

x x
y C t t

t t

const









 

 
 
 

(62) 

 
where 0.2fx mm  and 1ft ms  and 1 20.039, 0.041 C C . And flexible generalized coordinate in the Eq. (25) 

are: 11 12 13 21 22 23 31 32 33[ ]ij          . To solve Eq. (28), initial conditions are adopted 0 , 0 ij ij  .The 

deflection of the midpoint of the intermediate links for 3modes is obtained using perturbation method and Runge-
Kutta-Fehlberg 4, 5th. Fig. 6 shows the amplitude of the first three mode vibration of the first intermediate flexible 
link at the midpoint and reveals that the amplitude of the first mode vibration is larger than the amplitude of the 
second mode vibration and first mode is sufficiently accurate to describe the vibration of flexible link.  
 

 

 

(a) 

 

(b) 

Fig. 7 
The compared results between Perturbation method with Runge-Kutta-Fehlberg 4,5th order for mode1. (a): RKF 4,5th (b): 
perturbation method. 

 

(a) 

 

(b) 

Fig. 8 
The compared results between Perturbation method with Runge-Kutta-Fehlberg 4,5th order for mode2. (a): RKF 4,5th (b): 
perturbation method. 
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The comparison of the deflection versus time for results obtained from perturbation method and Runge-Kutta-
Fehlberg 4,5th order has been depicted in Fig. 7and Fig. 8.  

 
 

 

 
 

 
 
 
 
 

Fig. 9 
First three vibration modes of the 1st intermediate link at 
the x=L/5. 

 

 

 
 

 
 
 
 
 
 
 
 

Fig. 10 
The effect of intermediate link length on deflection. 

 
 

 
(a) 

 

(b) 

 
(c) 

Fig. 11 
Frequency spectra of vibration for the 1st link   (a): Mode 1, (b): Mode 2, (c): Mode 3. 
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It can be observed that there is an excellent agreement between the results obtained from perturbation method 
with those of Runge-Kutta-fehlberg 4,5th order method. Fig. 9, shows the amplitude of the first three modes 
vibration of the first intermediate link at x=L/5. The effect of hinge length on deflection of midpoint of first link is 
illustrated in Fig. 13. It shows that when hinge length increases, the deflection of midpoint of link increases. The 
selected lengths of hinges for this simulation are 0.00625( ) , 0.00725( )flex flexl m l m  .  

 
 

 
(a) (b) (c) 

Fig. 12 
Deflection at the midpoint of intermediate links (a): link 1, (b): link2, (c): link3. 
 
 

 

 
 

(a) 

 

(b) 

 
(c) 

Fig. 13 
The effect of flexure hinge length on deflection of midpoint of first intermediate link for fist three modes. (a):Mode 1, (b): Mode 
2, (c): Mode 3 . 
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Fig. 14 
Position of the platform along X axis. 

 
 

 

 
 

 
 
 
 
 
 
 

Fig. 15 
Position of the platform along Y axis. 
 

 
 

It reveals that amplitude of the first mode of vibration is larger than the amplitude of the second and third mode 
of vibration. In Fig. 10 effect of intermediate link length on deflection is illustrated. By increasing intermediate link 
size, deflection of midpoint increase. The corresponding frequency spectra analysis is performed using the Fast 
Fourier Transform (FFT).The power density of frequency spectra for vibration response of the first intermediate link 
at midpoint is shown in Fig.11. According to the Eq. (25), first three mode frequencies calculated to be 5629.67, 
15493.65, 30423.10. These are the frequencies of the FFT analysis. Fig. 12 shows the elastic vibration at the 
midpoint of intermediate links. The vibration amplitudes for each links are different from each other due to their 
different base motions. According to Lagrange multipliers method, the displacement of the moving platform along X 
and Y axes, calculated based on Eqs. (26, 27, 28, 29, 30), are given in Fig. 14 and Fig. 15. 

7    CONCLUSION 

In this paper, the kinematic and dynamic modeling of a compliant parallel micro-positioning mechanism with 
flexible links is considered. The dynamic equations are derived using Lagrange multiplier and Kane's methods. 
Perturbation and RKF methods are adopted for the solution of dynamic equation of motion and the mode shape 
functions are selected by modeling intermediate link as Euller-Bernouli beam theory with clamped-clamped 
boundary conditions. The corresponding frequency spectra analysis is performed using the FFT. Based on numerical 
results, it is concluded that: 

- Comparing Kane's method and Lagrange method leads to same results but Kan's method is faster than 
Lagrange method to obtaining dynamic equations. 

- For three intermediate links, the elastic deflections are different due to their different base motions. 
- There is an excellent agreement between the results obtained from perturbation method with those of 

Runge-Kutta-Fehlberg 4,5th order method. 
- Increasing of the flexure hinge’s length causes the deflection of intermediate links at certain time to 

increase. 
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- Natural frequencies of three first modes were obtained by using the FFT spectral. 
- Using Lagrange multiplier method, the position of the moving platform can be obtained. 
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