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 ABSTRACT 

 In this article, the nonlocal biaxial buckling load and bending analysis of polymeric 

piezoelectric nanoplate reinforced by carbon nanotube (CNT) considering the surface 

stress effect is presented. This plate is subjected to electro-magneto-mechanical loadings. 

Eshelby-Mori-Tanaka approach is used for defining the piezoelectric nanoplate material 

properties. Navier’s type solution is employed to obtain the critical buckling load of 

polymeric piezoelectric nanoplate for classical plate theory (CPT) and first order shear 

deformation theory (FSDT). The influences of various parameters on the biaxial nonlocal 

critical buckling load with respect to the local critical buckling load ratio (  ) of nanoplate 

are examined. Surface stress effects on the surface biaxial critical buckling load to the non-

surface biaxial critical buckling load ratio (  ) can not be neglected. Moreover, the effect 

of residual surface stress constant on   is higher than the other surface stress parameters 

on it.  increases by applying the external voltage and magnetic fields. The nonlocal 

deflection to local deflection of piezoelectric nanocomposite plate ratio ( ) decreases 

with an increase in the nonlocal parameter for both theories. And for FSDT,  decreases 

with an increase in residual stress constant and vice versa for CPT. 

                                               © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OWADAYS , nano material due to an excellent properties is used to improve the properties of polymeric 

composite materials in the mechanical and electrical engineering [1, 2]. Nano materials are made in different 

shapes such as carbon nanotube (CNT) [3], bororn nitride nanotube [4], and etc. CNTs are one of these shapes 

which are vastly used in many literatures. Also, in composite structures, the CNTs are commonly used as 

reinforcement particularly in polymeric composites. In the recent decades, the improvements of physicochemical 

and thermomechanical properties of polymeric composite is the subject of research interest. Polymeric 

nanocomposites [5] are a new class of materials alternative to usual polymers. In this new class of material, 

nanosized reinforcements are added in polymer matrix offering wonderful improvement in properties of the 
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polymer. For example, because of exceptional specifications of CNT, properties of polymer composites are 

enhanced by applying the CNT that is used as nano-particles, nanotubes, nano-fibers, nano-filler, florence and the 

nanowires [1,2]. Polymeric piezoelectric  nanocomposite are used as actuators, transducers, sensor [6] and 

nanogenerator [7]. This point can be motivated for mechanical and electrical engineering to work in this field. 

At the present time, many researchers investigated various parameters on the buckling behavior of nanoplate [8-

14]. Their results showed that the critical buckling load decreased by increasing the nonlocal parameter and vice 

versa with increasing in the thickness of nanoplate. The critical buckling load has more affected by the small scale 

parameter for uniaxial compression than biaxial compression. As the mode number increases, the nonlocal 

parameter effect on the buckling load increases. The nonlocal parameter has more effect on nanoplates for length 

less than 30 nm. 

Investigating free vibrations of thin-walled cylindrical shells made of FGPM is crucial in theoretical and 

practical aspects. To reach a real model, we should consider the interaction of cylindrical shells and surrounded 

medium with an appropriate model, the Pasternak model is a good choice for this purpose by Pasternak [8]. 

For the orthotropic single layer graphene sheet (SLGS), many researchers showed that the nonlocal buckling 

load increases by applied voltage[15] and the difference between the orthotropic and isotropic buckling loads is 

considerable at the lower nonlocal parameter value [16]. The critical buckling load has more affected by the 

nonlocal parameter at larger number modes [17]. 

Many researches have been presented the investigation of surface stress effect on the critical buckling load. 

Firstly, the theory of surface stress effects is introduced by Gurtin and Murdoch [18]. Two-dimensional finite 

element formulation of anisotropic material with considering surface effect is established by Tian and Rajapakse 

[19]. The surface stress effects on the critical buckling load of nanowires is studied by Wang and Feng [20]. They 

illustrated that the critical buckling load increases with an increase of the positive elastic surface constants. The 

postbuckling behavior of nanoplates based on classical (CPT) and the Mindlin plate theories is investigated by 

Wang and co-worker [21]. They showed that the surface stress effect is more significant as the thickness of the plate 

decreases. 

Alzahrani et al. investigated the small scale effect on the bending of graphene sheets under hygro-thermo-

mechanical loadings [22]. They showed that the deflection of graphene sheet increases with an increase in moisture 

and temperature. Alibeigloo studied the bending of composite plate reinforced by functionally graded carbon 

nanotube embedded in piezoelectric layers using three-dimensional theory of elasticity [23]. They concluded that the 

displacement decreases with an increase in CNT volume fraction. Furthermore, the effect of the applied voltage on 

transverse displacement is higher than the other displacement. Zhu et al. extended the finite element method for 

bending and free vibration analysis of carbon nanotube-reinforced composite plates based on the first order shear 

deformation (FSDT) [24]. They illustrated that the deflection of nanocomposite plate decreases with an increase of 

the CNT volume fraction. On the other hands, considering the CNT volume fraction is less than 6%, the deflection 

of nanocomposite plate reduces more than 30%.  

Lei et al. developed the element-free kp-Ritz method for the buckling behavior of composite plate reinforced by 

functionally graded single-walled carbon nanotube (SWCNT) using FSDT [25]. The biaxial buckling of 

nanocomposite plate reinforced by SWCNTs using FSDT is studied by Mehrabadi et al. [26]. The Eshelby–Mori–

Tanaka approach is employed to obtain the composite material properties. They showed that both uniaxial critical 

buckling load and biaxial critical buckling load increase with an increase of CNT volume fraction. Also, the uniaxial 

critical buckling load decreases with a decrease in aspect ratio and vice versa for the biaxial critical buckling load.  

In this article, the nonlocal biaxial buckling and bending behavior of polymeric piezoelectric nanocomposite 

plate subjected to electro-magneto-mechanical loadings is reinforced by CNT based on CPT and FSDT are 

investigated. Also, the surface stress effect is considered and Eshelby-Mori-Tanaka approach is used to obtain the 

critical buckling load. Influences of various parameters such as: the nonlocal parameter, surface stress, CNT volume 

fraction, aspect ratio, applied voltage; magnetic fields and elastic foundation on the buckling behavior of nanoplate 

are taken into account in this research.  

2    GEOMETRY OF POLYMERIC PIEZOELECTRIC NANOCOMPOSITE PLATE  

Geometry of polymeric piezoelectric nanoplate reinforced by CNTs is assumed as length a , width b and thickness h 

respectively. Inner and outer diameters of CNTs are id  and od , respectively. As it can be observed in Fig. 1, the 

polymeric piezoelectric nanocomposite plate is placed on the elastic medium and subjected to electro-magneto-
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mechanical loadings. Also, the cartesian coordinate system placed on the center of the middle-plane of polymeric 

piezoelectric nanocomposite plate. 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of polymeric piezoelectric nanoplate reinforced 

by CNTs under electro-magneto-mechanical loadings. 

2.1 Eshelby-Mori-Tanaka approach to obtain the elastic constants 

One of the approaches used to obtain the composite material properties is the Eshelby-Mori-Tanaka approach. In 

this approach, CNT must be straight, long and uniformly distributed in isotropic polymeric piezoelectric nanoplate. 

Hence the stiffness coefficients of polymeric piezoelectric nanocomposite plate are written as follows [27]:  
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(1) 

 

where , , ,f f f fk n m p and m are the Hill’s elastic modulli for the CNTs [27] and the Poisson’s ratio of matrix. 

2.2 Constitutive equations of polymeric piezoelectric nanocomposite plate 

In this research, materials of matrix and fiber of polymeric piezoelectric nanocomposite plate are considered PVDF 

and CNT, respectively. PVDF has a piezoelectric property which easily tolerates applied voltage. In contrast to 

PVDF, CNTs tolerate magnetic fields.  

Displacement of polymeric piezoelectric nanocomposite plate using FSDT can be expressed as: 
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where ,x y  ,  and w are the rotation about to x, y coordinates and  transverse displacement, respectively and it must 

be noted that for CPT /x w x    and /y w y    . 

Using Eq. (1), strain-displacement relations according to von Karman kinematic relations are written as: 
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(3) 

 

In classical or local theory of continuum mechanics, the stress at a point is only proportional to the strain at that 

point. This theory is valid for large scale. In small scale, the stress at a reference point x is a function of the strain at 

all the other points of the body. This phenomenon is known as small-scale effect which is cleared in constitutive 

equations by the parameter 0e a  and its theory is identified as small-scale or non-local theory. For a structure in the 

nanoscale, it is not reasonable to ignore the small-scale effect ( 0e a ). By ignoring this term ( 0 0e a  ), the non-local 

theory reduces to local or classical theory which have no desired accuracy for the analysis of CNTs. The constitutive 

equations of non-local theory for polymeric piezoelectric nanocomposite plate can be written as follows [28, 29]: 
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(4) 

 

where ,ij ijc e  and ii denote stiffness, piezoelectric and dielectric constants, respectively. , ,ij ij iD   and iE  are 

stress, electrical displacement, strain components and electric field, respectively.  

The electric field can be expressed as the electric potential : 

 
E              (5) 

 

The electric potential   must satisfy Maxwell's relation, thus it is considered as [21, 26]: 
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where ( , , )x y t  and 0V are the electric potential function and the applied voltage. The natural frequency of the 

polymeric piezoelectric nanocomposite plate,   is zero for buckling: 

2.3 Derivation of the governing equations 

With considering the surface effect, Hamilton's principle yields [28]: 
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where , sU U   and extW are variations of strain energy, the surface energy, and the external work, respectively.  

Variation of strain energy is expressed as: 
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Substituting Eqs. (3), (5), (6) into Eq. (8) and simplifying it, the subsequent expressions are achieved as: 
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In Eq. (9), the boundary condition expressions are disregarded. The resultant forces ( ijN ), resultant moments 

( ijM ) and in-plane critical buckling loads ( , ,cr cr cr
x y xyN N N ) can be determined as: 
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(11) 

 

where k  is the shear correction factor which is used in FSDT and equal to 5/6. 

Surface stress components considering linear change of z stress component are expressed as following equations 

[30]. 
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where s  and sE  are the residual stress constant and surface Lame constant, respectively.  

Variation of surface energy can be written as: 
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Substituting Eqs. (4) and (12) into Eq. (13) and ignoring the nonlinear expressions, the following terms are 

obtained: for nanopiezoplate (matrix) is considered as: 
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For carbon nanotubes (fibers) [31]. 
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(15) 

 

The electro-dynamic Maxwell relations and variation of external work done by magnetic fields for the polymeric 

piezoelectric nanocomposite plate can be expressed as [32]. 
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where , , , , lH h U J f  and lf
extW  are magnetic intensity vector, perturbation of magnetic field vector, displacement 

vector, electric current density vector, Lorentz force, magnetic permeability and the external work variation, 

respectively. 

Substituting Eq. (2) into Eq. (16) yields for magnetic intensity vector in z direction  0,0, zH : 
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(17) 

 

Correspondingly, variation of the external work for magnetic intensity vector in y direction: 
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(18) 

 

Variations of work done by the elastic foundation and transverse force can be written as [32]: 
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(19) 

 

where ,g wk k ,  and q are Pasternak shear, Winkler spring parameters and transverse force ,respectively. 

Using Eqs. (9), (14), (15), (17) and (19), the governing equations of biaxial buckling load for polymeric 

piezoelectric nanoplate with surface stress effect are obtained as: 

   For CPT: 
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(20) 

 

For FSDT: 
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2.4 The nonlocal governing equations of polymeric piezoelectric nanocomposite plate  

Using nonlocal piezoelasticity theory [33] and substituting Eqs. (4) and (9) into Eqs. (20) and (21), the nonlocal 

governing equations of the biaxial buckling load for polymeric piezoelectric nanocomposite plate can be obtained 

as: 

For CPT: 
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For FSDT: 
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(23) 

 

where: 
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(24) 

3    NAVIER’s TYPE SOLUTION OF THE NONLOCAL BIAXIAL CRITICAL BUCKLING LOAD   

Navier’s type solution for the nonlocal biaxial critical buckling load of polymeric piezoelectric nanocomposite plate 

reinforced by CNT can be defined as: 
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(25) 

 

where n and m are the transverse and axial wave numbers, respectively.  

Substituting Eq. (25) into Eqs. (22) and (23), the governing equations can be expressed as following matrix 

form: 

For CPT: 
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For FSDT: 
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(29) 

 

It is noted that the determinant of Eq. (23) should be equal to zero. Then the nonlocal critical biaxial buckling 

load can be obtained as:  

For CPT: 

 

 
2 2 2

1 2(1

/

( ))

cr
x

DC E A
N

B   


  

 

(30) 
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For FSDT: 

 

  2 3 4 1det( ) det( ) det( ) / det( ) /cr
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(31) 

 

where: 
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(32) 

3.1 The deflection of polymeric piezoelectric nanoplate reinforced by CNT  

By eliminating the critical buckling loads in Eqs. (22) and (23), the deflection of polymeric piezoelectric nanoplate 

reinforced by CNT is obtained for CPT and FSDT as following form:  

For CPT: 
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q
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(33) 

 

For FSDT: 
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1 2 3 4 5 6

1 5
7 8 9 10 2

4

1 6 7 5 6 7 6 5
11 3 12 8 13 9 14 15

4 4 4 4 4

, , , , , ,

, , , ,

, , , ,

M N J MQ NQ JQ
a a a a R a S a P

L L L L L L

a aMV NV JV
a W a X a T a a

L L L a

a a a a a a a a
a a a a a a a a

a a a a a

        

       

       

 

 

 

 

(35) 

4    RESULTS AND DISCUSSION      

In this article, the biaxial critical buckling load of nonlocal polymeric piezoelectric nanocomposite plate reinforced 

by CNT using Eshelby-Mori-Tanaka approach are studied. Effects of various parameters such as the volume fraction 

of CNT, aspect ratio, spring and shear constants of the elastic foundation, the nonlocal parameter, surface stress, the 

applied voltage and magnetic fields on the biaxial critical buckling load of piezoelectric nanocomposite plate are 

investigated. 

The material properties, CNTs, and plate dimensions, surface stress parameters for CNTs and nanoplate, elastic 

coefficients, magnetic field intensity and applied voltage are listed in Table 1. [34] 
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The nonlocal uniaxial and biaxial critical buckling load ratios ( 2 2 3

11
12(1 ) /cr cr

x
N N L c h  ) of nanoplate for the 

present work are computed that this results have been listed in Table 2. Comparison between the analytical results of 

the present work and the obtained analytical results by Murmu et al. [13] has a good agreement between them.  

   
Table 1 

Material properties, geometry dimensions, elastic foundation parameter and values of external field [34] 

parameter polystyren PVDF CNT 

E         1.9 GPa          2.5 GPa  

v 0.3  0.3   0.175 

f
V    0.14 

s
          1.7 N/m             0.9108 N/m 

s
E            4 N/m                  5.1882 N/m 

0
e a       0.5nm    0.5nm 

a  25mm         9.26nm  

b  12.5mm         9.26nm  

h 3mm      1nm    

w
k                       8.99950.35TN/m3  

g
k                 2.071273 N/m  

z
H        2e8 A/m  

0
V   2 volt  

0
d          1.494nm 

i
d        1.36nm 

31
e   

   -0.13C/m2 

 
 

32
e   

     -0.145 C/m2 

 
 

15
e       -0.009 C/m2  

24
e      -0.276 C/m2  

 

Table 2 

The nonlocal uniaxial and biaxal critical buckling load ratios ( 2 2 3

11
12(1 ) /cr cr

x
N N L c h   ) of nanoplate (a/b=1, h=0.34nm, E = 

1.06 TPa, K=10  and 0.25  ) 

Murmu et al. [13] 
Nonlocal biaxial critical 

buckling ratio 
Murmu et al. [13] 

Nonlocal uniaxial critical 

buckling ratio 

The nonlocal 

parameter 

(
0

/e a L  ) 

20.85108 20.7524 41.38000 41.5048 0 
17.30685 17.4149 33.71278 34.8297    0.1 
11.5396   11.8198 23.04766 23.6397    0.2 
  7.65244   7.7984 15.2744    15.5968    0.3 
  5.21341   5.3754 10.5488    10.7508    0.4  
  3.91768   3.9180   7.619771  7.8360   0.5 
  3.00305   3.0042   6.001938  6.0084   0.6 

  2.39329   2.4037   4.762199  4.8073   0.7 

    1.938266   1.9917   3.924212  3.9833  0.8 

    1.710532   1.6983 3.38736  3.3966  0.9 

   1.47866    1.4828 2.92683  2.9656 1   

 

Fig. 2 illustrates the nonlocal biaxial critical buckling load to the local biaxial critical buckling load ratio (  ) of 

polymeric piezoelectric nanocomposite plate versus aspect ratios of /a b  for the different volume fraction of CNT. 

It is clear that   decreases with increasing of a/b. As aspect ratio ( /a b ) increases, the stability of piezoelectric 

nanocomposite plate reduces, hence   decreases. Also,   increases with increasing of the CNT volume fraction.  
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Effect of elastic foundation parameters on   of piezoelectric nanocomposite plate is shown in Fig. 3 for different 

value of the nonlocal parameter. It is obvious that spring and shear constants of the elastic foundation increase 

stiffness of polymeric piezoelectric nanocomposite plate, thus, this ratio increases. The difference between 

considering and not considering the elastic foundation is significant for higher nonlocal parameter. On the other 

hand, the influence of elastic foundation parameters on   in lower nonlocal parameter is negligible. 

Fig. 4 depicts the effect of applied magnetic field on   versus the nonlocal parameter. It is concluded that   

increases with an increase in the applied magnetic fields. As magnetic fields in z direction are applied on polymeric 

piezoelectric nanocomposite plate, compressive loads are created then   increases. Also for higher values of the 

nonlocal parameter, the difference of the various applied magnetic field effect on   is clear.  

Fig. 5 shows the external applied voltage effect on   of piezoelectric nanocomposite plate for different values 

of the nonlocal parameter. As it can be seen from this figure,   increases with considering the external applied 

voltage. The positive external applied voltage produces compressive load but negative external applied voltage 

produces tension load. The influence of positive external applied voltage on   is more than the negative external 

applied voltage on it.  

Effects of external parameters on   demonstrate in Fig. 6 for the different nonlocal parameter values. In 

comparison of external parameters,  of polymeric piezoelectric nanocomposite plate is more affected by elastic 

foundation, magnetic field in z direction and the positive external applied voltage than other parameters, 

respectively. 
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Fig.2 

 of polymeric piezoelectric nanocomposite plate versus 

aspect ratio ( /a b ) for various CNT volume fraction. 
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Fig.3 

Effects of elastic foundation parameters on   of polymeric 

piezoelectric nanocomposite plate for different values of the 

nonlocal parameter. 
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Fig.4 

Magnetic field effect on   of polymeric piezoelectric 

nanocomposite plate for different nonlocal parameter values. 
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Fig.5 

  of polymeric piezoelectric nanocomposite plate against 

aspect ratios ( /b h ) for the different external applied 

voltage. 
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Fig.6 

  of polymeric piezoelectric nanocomposite plate versus the 

nonlocal parameter for different external parameters. 

 

Figs. 7 and 8 display the effects of nanoplate and CNT residual surface stress constants ( ,plate CNT

s s
  ) on the 

surface biaxial critical buckling load to the non-surface biaxial critical buckling load ratio (  ) of polymeric 

piezoelectric nanocomposite plate for different aspect ratios of /a b , respectively. As it can be observed   

decreases with an increase in residual surface stress constant of nanoplate and vice versa in residual surface stress 

constant of CNT. As residual surface stress produces tension load thus   decreases. Also, it is noticeable that 

influence of plate

s
  on   is higher than the influence of CNT

s
 .  

The effects of nanoplate and CNT surface Lame constants ( ,plate CNT

s s
E E ) on   of piezoelectric nanocomposite 

plate are illustrated in Figs. 9 and 10 for different aspect ratios of /a b , respectively. It can be seen that the effect of 

surface Lame constants on   in larger values of /a b  is considerable. Also, the effect of CNT surface parameters 

on   of polymeric piezoelectric nanocomposite plate is very lower against the effect of nanoplate surface 

parameters on this ratio. 
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Fig.7 

  against nanoplate residual surface stress constant for 

different aspect ratio of / .a b  
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Fig.8 

  against CNT residual surface stress constant for different 

aspect ratio of / .a b  
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Fig.9 

  with respect to nanoplate surface Lame constant for 

different aspect ratio of /b h . 
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Fig.10 

  against CNT surface Lame constant for different aspect 

ratio of / .a b  

 

 Figs. 11 and 12 depict the effects of 
s

  and 
s

E  on   of piezoelectric nanocomposite plate using CPT and 

FSDT for the various nonlocal parameter ( 0e a ), respectively. It can be seen that   decreases with increasing of 
s

  

for FSDT and vice versa for CPT and the influence of 
s

  on   becomes lower in higher nonlocal parameter for both 

plate theories.  decreases with considering the positive 
s

E  and vice versa with considering the negative
s

E . Also 

the influence of surface Lame constants on   for both plate theories isn't considerable. 

The effects of 
s

  and 
s

E  on the nonlocal deflection to local deflection of polymeric piezoelectric nanocomposite 

plate ratio ( ) with respect to the nonlocal parameter for CPT and FSDT are demonstrated in Figs. 13 and 14, 

respectively. In Fig. 13, it is clear that   decreases with an increase of the nonlocal parameter for both theories. 

Moreover, for FSDT,   decreases with an increase in 
s

  but for CPT, this behavior is inverse.   increases 

considering the positive 
s

E  and vice versa for the negative 
s

E . Moreover, 
s

E has not significant effect on .  
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Fig.11 

Effect of residual surface stress constant on   based on CPT 

and FSDT. 
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Fig.12 

Effect of surface Lame constants on   based on CPT and 

FSDT. 
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Fig.13 

Effect of residual surface stress constant on   based on CPT 

and FSDT. 
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Fig.14 

Effect of surface Lame constants on based on CPT and 

FSDT. 
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5    CONCLUSIONS 

In this research, the biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT 

subjected to electro-magneto-mechanical loadings considering surface effect are studied. Eshelby-Mori-Tanaka 

approach is used to define piezoelectric nanocomposite plate material properties. Navier’s type solution is employed 

to obtain the biaxial critical buckling load of polymeric piezoelectric nanocomposite plate. Various parameter effects 

such as: the nonlocal parameter, aspect ratio, CNT volume fraction, surface stress effect parameters, elastic 

foundation parameters, magnetic field and external applied voltage on the biaxial critical buckling load and bending 

of piezoelectric nanocomposite plate are investigated. The results of this research are listed as follows: 

1. The nonlocal biaxial critical buckling load to the local biaxial critical buckling load ratio (  ) of polymeric 

piezoelectric nanocomposite plate increases with increase of CNT volume fraction, side to thickness 

( /b h ), elastic foundation parameters, CNT surface Lame constant, the external applied voltage and 

magnetic fields. 

2.    of polymeric piezoelectric nanocomposite plate decreases with increase of the nonlocal parameter, 

aspect ratio of /a b , residual surface stress constant and nanoplate surface Lame constant. 

3.    increases with an increase in the external applied voltage, elastic foundation parameters, and magnetic 

fields.  

4.  Effects of surface parameter on the surface biaxial critical buckling load to the nonsurface biaxial critical 

buckling load ratio (  ) of polymeric piezoelectric nanocomposite plate is considerable.   is more affected 

by residual surface stress constant of nanoplate than the other surface stress parameters. 

5.    decreases with increase of residual surface stress constant (
s

 ). 

6. Influence of surface Lame constants on   and the nonlocal deflection to local deflection of polymeric 

piezoelectric nanocomposite plate ratio ( ) for CPT and FSDT isn't considerable. 

7.   decreases with an increase of the nonlocal parameter for both theories.  

8. For FSDT,   decreases with an increase in 
s

  and vice versa for CPT. 
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