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 ABSTRACT 

 In this paper, the interface crack of two non-homogenous functionally graded materials 

is studied. Subsequently, with employing the displacement method for fracture of 

mixed-mode stress intensity factors, the continuous variation of material properties are 

calculated. In this investigation, the displacements are derived with employing of the 

functional graded material programming and analysis of isoparametric finite element; 

then, with using of displacement fields near crack tip, the mixed-mode stress intensity 

factors are defined. In this present study, the problems are divided into homogenous 

and non-homogenous materials categories; and in order to verify the accuracy of 

results, the analytical and numerical methods are employed. Moreover, the effect of 

Poisson's ratio variation on mixed-mode stress intensity factors for interface crack be 

examined and is shown in this study. Unlike the homogenous material, the effect of 

Poisson’s ratio variations on mixed-mode stress intensity factors at interface crack 

between two nonhomogenous is considerable. 
     © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N recent years, composite materials have been applied in more and more fields. The interfaces between the 

components often debond for their poor toughness and hence, the interfacial fracture becomes a key failure mode 

for these composite materials. The theoretical foundation for interfacial fracture mechanics was laid by Williams [1] 

due to his rigorous solution of the elastic interface crack problem and the derivation of the characteristic oscillating 

stress singularity. Then, England [2], Erdogan [3] and Rice and Sih [4] developed the interfacial fracture mechanics 

by solving some specific problems. Rice [5] gave the complete form of stress and displacement fields in the vicinity 

of the interface crack tip and offered the interpretation of the complex stress intensity factor (SIF). A complex SIF K 

with real and imaginary parts K1 and K2 implies that tensile and shear effects near the crack tip are intrinsically 

inseparable. The complete solution to a semi-infinite interface crack between two infinite isotropic elastic layers 

under edge loading conditions was given by Suo and Hutchinson [6]. A systemic illustration of the previous 

analytical and experimental works on the interface crack in layered materials was given by Hutchinson and Suo [7]. 

Among the available numerical methods for determining the parameters characterizing crack-tip fields, J-integral 

Rice [8] has obtained a great success for its path-independence in homogeneous materials. Smelser and Gurtin [9] 
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extended the standard J-integral to the interface crack with no change and it was proved to be still path-independent. 

However, they pointed out that the extension of the J-integral is not valid when the biomaterial interface is not 

straight. The interaction integral method was combined with the extended finite element method (XFEM) to 

calculate the mixed-mode SIFs more efficiently for biomaterial interface cracks by Nagashima et al. [10] and 

Sukumar et al. [11]. The interaction integral can also be employed together with the boundary element method 

(BEM) to analyze the problems of two-dimensional interface cracks Matsumto et al. [12] or three-dimensional 

interface cracks Cisilino and Ortiz [13], Ortiz and Cisilino [14] and Johnson and Qu [15] solved the SIFs of three-

dimensional curved cracks on a bimaterial interface under nonuniform temperature conditions by the interaction 

integral technique. Merzbacher and Horst [16] extended the interaction integral to extract the SIFs of interface 

cracks in layered orthotropic solids.  

Most of the previous work was focused on the interface cracks between two homogeneous materials. Meanwhile, 

for a crack in a continuous body with nonhomogeneous material properties, there is a large quantity of research 

work on this fracture problem Eischen[17], Erdogan [18], Chen and Erdogan [19], Noda [20],  Guler and Erdogan 

[21] and Guo and Noda [22,23]. Moreover, the interaction integral has been exploited for nonhomogeneous 

materials for extracting the mixed-mode SIFs and the T-stress Dolbow and Gosz [24], Paulino and Kim [25] and 

Kim and Paulino [26, 27]. Hongjun Yu et al. [28] are employed the interaction integral method to interface crack of 

two nonhomogeneous materials. In order to calculation of mixed mode stress intensity factors for two 

nonhomogeneous materials they presented a new form of interaction integral. Due to the lack of analytical fields and 

numerical solution for the above issue, in order to validation they have been used the comparison of interface crack 

between two homogeneous materials. This method is needed to appropriate definition of actual and auxiliary fields 

which is not depend on derivatives of material properties and has its own complexity. However, among the 

investigations that have been done so far, a small number of related studies are about interface crack between two 

non-homogenous material, and requires to further examination. 

Displacement fields method is also one of the most important directly calculation method for fracture mechanics 

parameters. This method is employed by Yildirim at al. [29] in order to normal crack on interface of two 

functionally material under mechanical and thermal loads. Because of its simplicity and lack of special complexity, 

this method is used to evaluation and calculation of mixed mode stress intensity factors of interface crack between 

two homogenous and non- homogenous materials, and their accuracy results are compared with other analytical ( for 

interface cracks between two homogeneous materials) and numerical methods. On the other hand, the investigations 

which have done by Ghajar and Moghaddam [30] show that the effect of Poisson's ratio variation on mixed mode 

stress intensity factors of penny-shaped is not negligible. Also, the effect of Poisson's ratio on the IK  and IIK  

stress intensity factors has not been done for interface crack of non-homogenous material. Accordingly, the effect of 

Poisson's ratio variation on mixed mode stress intensity factors is investigated in the present study. 

2    INTERFACE FRACTURE MECHANICS  

Consider the schematic of a bimaterial interface crack shown in Fig. 1. The crack is located along the interface that 

is between two semi-infinite planes. Let the plane above the crack be denoted by material 1 with Young’s modulus 

and Poisson’s ratio of 1E  and 1v , respectively, and let the plane below the crack be material 2 with corresponding 

properties of 1E  and 1v . We proceed to summarize some of the essential ingredients of linear elastic interfacial 

fracture mechanics [5] 

 

      

 

 

 

 

 

 

 

 

 

Fig.1 

Bimaterial interface crack. 
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Let 1 2K K iK   be the complex stress intensity factor. The in-plane traction vector at a distance r ahead of the 

crack takes the form [1] 
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where i 1  , and   is the bimaterial constant that is defined in Eq. (10). From the above equation, we note that 

the dimension of K is   
1 2 i

stress length
 

, whereas that of its amplitude |K| is the familiar [stress][length]
1/2

. The 

energy release rate can be related to the stress intensity factor amplitude through the relation [32] 
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The phase angle  is a measure of the relative proportion of shear to normal tractions at a characteristic distance 

l ahead of the crack tip. It is defined through the relation [5] 
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(7) 

 

The phase angle  is an important parameter in the characterization of interfacial fracture toughness. In 

reporting the phase angle for a given loading configuration, the characteristic length l is taken as the crack 

(ligament) length or a specimen dimension. It is apparent from the above discussion that, unlike the treatment of 

cracks in isotropic media, tension and shear effects are inseparable in the vicinity of interface crack tips and as a 

consequence 1K  and 2K  are not the familiar mode I and mode II stress intensity factors, respectively. 

The Cartesian components of the near-tip asymptotic displacement fields can be obtained from Reference [5]. 

The crack-tip displacement fields in the upper-half plane (replace   by   for the lower-half plane) are [33] 

 

 

 
 

1

1 1

Re , ,1
1,2

2 2 Im , ,

i I

j

j II

j

Krr
u

Kr

u
j

u

   

    

      
  

    
iε

 

 

(8) 



                                                                                                                                                            R.Ghajar et al.                      175                        

 
 

© 2017 IAU, Arak Branch 

 

 

 

 

 

2 2

1 1 1 1

2 2

2

2

cos 2 sin sin 2 cos
2 2 2 2

cos 2 sin sin 2 cos
2 2 2 2

1 4 sin sin 1 4 cos sin
2 2

sin 2 c
2

I II

I

e

A A

A

e

u u

e

u

     

  

   
 

   
  

 
   




 



      
          

      
      

           
      

   
    

   





   

  ε  

 

 

 

 

2

2

1 1

2 2

os cos 2 sin
2 2 2

sin 2 cos cos 2 sin
2 2 2 2

1 4 cos sin 1 4 sin cos
2 2

II A

e

u

    


   
  

 
   

      
        

      
      

          
      

   
    

   

 

ε  

 

 

 

 

where 

 
 

   21 4 cosh
A

e
 


  

 
 

(9) 

 

and  ,r   are polar coordinates with origin at the right crack tip. In Eq. (8), Re[·] and Im[·] denote the real and 

imaginary parts of a complex number, and    log cos log sin logi i rr e r i r      . In addition,   is the 

bimaterial constant which is a function of  , the second Dundurs parameter [34]: 
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where ,i i   and 
ik  are the shear modulus, Poisson’s ratio and the Kolosov constant, respectively, of material i 

( 1,2)i  . 

3    INTERACTION INTEGRAL   

Interaction integral is one of the methods which are using to calculation of stress intensity factors of homogenous 

and non-homogenous materials. The base of interaction integral method is according of J integral method. The 

values of J integral method for point of b on tip of crack that are shown in Fig. 2 is obtained following equation by 

using of volume contour which located between 
1 2 3, ,A A A . At surfaces and crack surfaces of  A   and A   [35]. 
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while W, V  and q represents the strain energy, volume and weigh function respectively, which its value on contour 

surface is such as: 
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The value of q in the middle of the three-dimensional elements, or identical points of Gaussian components are 

obtained by using of Eq. (15). 
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  and N   show the nodes of component and their shape function. On the other hand, for linear elasticity 

material the following relationship is established 
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By substituting of Eq. (16) in Eq. (13), the J integral for non-homogenous material is rewritten as Eq. (17) 
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Fig.2 

Volume field calculation of interaction integral for definition 

of stress intensity factors in related of point b on tip of crack. 

 

Eq. (17) is the general form of J integral for functionally material. Based on this equation, auxJ  integral for 

auxiliary fields is gained as Eq. (18) 
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Of the real fields , ,i ij iju   and auxiliary fields , ,
ij ij

aux aux auxu   in Eq. (17), the sJ  equation is obtained 
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Eq. (20) can be considered the sum of three terms as follows: 
 

s auxJ J J M    (21) 

 

In this way, the interaction integral value M is represented such as Eq. (22) 
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4    BASIC FINITE ELEMENT FORMULATION  

Displacements for an isoparametric finite element can be written as: 
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where 
iN  are shape functions, 

iu  is the nodal displacement corresponding to node i, and m is the number of nodal 

points in the element. For example, for a Q4 element, the standard shape functions are 
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where ( ,  ) denote intrinsic coordinates in the interval [-1,1] and ( ,i i  ) denote the local coordinates of node i. As 

usual, strains are obtained from displacements by differentiation as: 
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where ( )eD x  is the constitutive matrix, which is a function of position for nonhomogeneous materials, i.e., 

( ) ( , )e eD x D x y . The principle of virtual work (PVW) yields the following finite element stiffness equations [37] 
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where eF  is the load vector and the element stiffness matrix is 
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In which e  is the domain of element (e), and T denotes transpose. The reasoning above, at the element level, 
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can be readily extended to the whole domain, which leads to a system of algebraic equations for the unknown 

displacements [37]. 

For simplicity of notation, the superscript (e), denoting the element, is dropped in this section. Material 

properties (e.g., at each Gaussian integration point) can be interpolated from the nodal material properties of the 

element using isoparametric shape functions which are the same for spatial coordinates ( , )x y  [36] 
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Thus, by generalization of the isoparametric concept, the Young’s modulus ( )E E x  and Poisson’s ratio 

( )x   are interpolated as: 
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The above framework allows development of a fully isoparametric formulation in the sense that the same shape 

functions are used to interpolate the unknown displacements, the geometry, and the material properties. Thus, the 

actual variation of the material properties may be approximated by the element interpolation functions (e.g., a 

certain degree of polynomial functions). 

It is clear, functionally elements can approximate the functionally graded material properties better than 

homogenous elements. Hence, it is essential that employing of isoparametric finite element and functionally element 

programming for the numerical solving. 

5    VERIFICATION AND RESULTS  
5.1 Interface crack of two homogenous material 

As shown in Fig. 3, an interface crack between two homogeneous elastic semi-infinite planes is considered. The 

problem with such a configuration was investigated by an analytical approach Rice and Sih [4] and a numerical 

method Sukumar et al. [11]. According to Sukumar et al. [11], when 20W a , the specimen can be thought to be 

infinite and hence, W a is taken to be 30. The exact solution for 
1K  and 

2K  at the right crack tip was given by 

Rice [5] as: 
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oK k ik i a a
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The tension load 0  is applied along the top and bottom edges of the plate. The displacement boundary 

conditions are prescribed such that 1 0u  along the left and right edges and 2 0u   for the bottom node at the left-

hand side. The following data are used for numerical analysis: 1 2 1 2 030; 1; 2 ~1000; 0.3; 1.0W a E E         ; 

generalized plane strain. Eight-node quadrilateral (Q8) elements are used over most of the mesh and six-node 

quarter-point (T6qp) singular elements. 

The comparison of normalized SIFs computed by Eq.(8) and those given in the references is shown in Table 

1. It can be found that the relative errors are all within 5% for 1 0K K and 3% for 2 0K K compared with exact 

solution. good agreement indicates that the present method is reliable for interfacial fracture problems. 
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Fig.3 

Centered crack between two homogenous plane under tension loading. 

 
Table 1

The values of the first and second modes of stress intensity factors with a centered crack under tension.  

Analytical solving[4] 

30w a  
Displacement 

30w a  
  1 2E E  

2 0( )k a k  
1 0( )k a k  

2 0( )k a k  
1 0( )k a k    

-0.0411 1.002 -0.0406 1.010 0.0950 2 

-0.0743 1.004 -0.0770 1.022 0.1710 4 

-0.0967 1.007 -0.1000 1.051 0.2220 8 

-0.1127 1.009 -0.1119 1.055 0.2590  20 

-0.1185 1.010 -0.1198 1.056 0.2720  40 

-0.1220 1.010 -0.1212 1.059 0.2800   100 

-0.1239 1.010 -0.1240 1.061 0.2850    1000 

5.2 Interface crack between two nonhomogeneous material plates 

5.2.1 Variation of Young’s modulus 

As shown in Fig. 4, an interface crack between two nonhomogeneous materials is considered. The upper edge of 

material 1, is under uniform tension loading, equally
0 1  . The displacement boundary condition for lower edge is 

2 0u  , and the lower-left nodal is assumed 
1 2 0u u  . The Young’s modulus for non-homogenous functionally 

graded material 1 and 2 is such as exponential function that can be expressed as: 

 
1

1 0

x
E E e


  (32) 

 
1

2 0

x
eE E


  (33) 

 

In which,   is non-homogeneity parameters of functionally graded material that can be formulated as: 
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(34) 

 

The investigated problem for various relation of    11E w E w is solved. 
1 and 

2 are the Poisson's ratio of 

material 1 and 2; respectively, which are shown in Fig. 4. Some numerical details in order to solve this problem are, 

1 2 1 0 0 0E 1000,E E 10, 1,K a        and 1 2 0.3    . In Tables 2. and 3 results are shown for the crack 

fracture of mixed-mode stress intensity factors, which are compared with displacement and Interaction integral 

method. It is observed, that achieving answers by this method have good accuracy. 
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5.2.2 Linear variation of Young’s modulus 

In this section, the problem of Fig. 4 for the condition that young’s modulus in functionally graded material is linear, 

has been solved. The problem for non-homogenous functionally graded materials in figure as plane stress analytical 

and Young’s modulus, are defined such as: 
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(36) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Centered crack between two non-homogenous plane under 

tension loading. 

 

In which,    1 1k E w E w   is the Young’s modulus variation of material. Some significant details of this 

problem are; 1 2 1 0 0 0E 1000,E E 10, 1,K a        and 1 2 0.3    . Stress intensity factors for interface 

crack are presented according of Tables 4. and 5. It is observed, the stress intensify for exponential and linear 

variation which achieved of isoparametric finite element and displacement method, are so near to analytical results 

and showing the accuracy of results. 

 

 
Table 2 

 Normalized mode-I SIF for interface crack between two exponential non-homogenous materials.  
     1

0

K a

σ πa
 

1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w    

1.251 1.160 1.101 1.091 1.065 1 Displacement  

 

 

 

 

Interaction 

Integral[28] 

1.483 1.389 1.310 1.288 1.252   10 

1.880 1.861 1.842 1.837 1.822    100 

2.199 2.251 2.347 2.581 2.619     1000 

      

1.310 1.190 1.121 1.061 1.030 1   

1.502 1.401 1.330 1.280 1.240 10 

1.874 1.842 1.833 1.830 1.820  100 

2.215 2.210 2.387 2.503 2.591     10000 
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Table 3

Normalized mode-II SIF for interface crack between two exponential nonhomogenous materials. 
     2

0

K a

σ πa
 

1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w    

0  0  0  0  0  1 Displacement  

 

 

 

 

Interaction 

Integral[28] 

-0.1230 -0.1220 -0.1213 -0.1200 -0.1123   10 

-0.1953 -0.1949 -0.1941 -0.1901 -0.1775    100 

-0.2730 -0.2801 -0.2890 -0.2770 -0.2290      1000 

      

0  0  0  0  0   1   

-0.1190 -0.1190 -0.1200 -0.1210 -0.1115 10 

-0.1932 -0.1910 -0.1930 -0.1880 -0.1700   100 

-0.2690 -0.2710 -0.2780 -0.2720 -0.2360      10000 

 
Table 4 
Normalized mode-I SIF for interface crack between two linear nonhomogenous materials. 

     1

0

K a

σ πa
 

1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w    

1.338 1.223 1.129 1.084 1.059 1 Displacement  

 

 

 

 

Interaction 

Integral[28] 

1.673 1.538 1.471 1.399 1.371   10 

2.019 1.811 1.701 1.596 1.539     100 

      

1.310 1.190 1.110 1.060 1.030 1 

1.650 1.520 1.440 1.370 1.330   10 

1.960 1.790 1.670 1.580 1.520     100 

 
Table 5  

Normalized mode-II SIF for interface crack between two linear non-homogenous materials. 
     2

0

K a

σ πa
 

1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w    

0 0 0 0 0 1 Displacement  

 

 

 

 

Interaction 

Integral[28] 

-1.444 -1.357 -1.332 -1.292 -1.226  10 

-2.169 -1.947 -1.823 -1.742 -1.617    100 

      

0 0 0 0 0  1   

-1.410 -1.340 -1.310 -1.280 -1.210 10 

-2.140 -1.920 -1.810 -1.720 -1.600   100  

6    EVALUATION EFFECT OF POISSON’s  RATIO GRADATION ON SIFs 

Poisson's ratio is an important factor for fracture of functionally graded materials (FGMs). It may have significant 

influence on fracture parameters (e.g. stress intensity factors and T-stress) for a crack in FGMs under mixed-mode 

loading conditions, while its effect on such parameters is negligible in homogeneous materials. For instance, when 

tension load is applied in the direction parallel to material gradation, the fracture parameters may show significant 

influence on the Poisson's ratio [31]. In this study for various of a W , the crack fracture of mixed-mode stress 

intensity factors is calculated; then, the variance percent of constant Poisson’s ratio with functionally Poisson’s ratio 

is compared. Hence, the problem of Fig. 4 is studied in this section, again. 

 
1 1

1 0 1 0,  x xE E E eEe  (37) 
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1 1
1 0 2 0  ,  

 
     

x xe e  (38) 

 

  derived by Eq. (34), and   can be written as: 
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It is seen that, difference between mix-mode stress intensify factors for the condition which Poisson’s ratio is 

varied functionally, 5-15 percent is more than the constant Poisson’s ratio condition. Now a sensitivity analysis is 

carried out to demonstrate the trend of 
IK and  

IIK  with respect to   and  . These are shown in Tables 8. and 9. 

For better clarity of the effect of Poisson’s ratio gradation on SIFs, the percentage change in SIFs due to change in 

  for a given   is also shown in parenthesis in the relevant tables. It is observed that 
IK  depends on gradation of 

both modulus of elasticity and Poisson’s ratio. On the other hand, it is obvious that the influence of gradation of 

Poisson’s ratio is considerable. For instance for 0.023 , difference between 
INK  for 0.002  and 0  is 

13%. Ghajar and Moghaddam [30] by considering of gradation indexes for modulus of elasticity and Poisson’s ratio 

were calculated the mode III stress intensity factors for Penny-shaped crack in a solid cylinder by J integral method. 

It is realized that for a given geometry and boundary condition, 
IIIK  depends on gradation of both modulus of 

elasticity and Poisson’s ratio. 
 

Table 6

Comparing of the first mode of stress intensity factors for interface crack with exponential and constant of Poisson’s ratio 

variation (the percentage change in KI due to change Poisson’s ratio). 

     1

0

K a

σ πa
 

 1

1

( )

( )

w
 

w




 1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w   

1.251(0.0)    1.160(0)      1.101(0)       1.091 (0)   1.065(0) 1      1     Displacement  

 

 

1.687(13.8) 1.543(11)    1.430(9.2)    1.374(6.7)    1.305(4.3) 1.25 10   

2.182(16.1) 2.11 (13.4) 2.050(11.3) 2.013(9.6)    1.956(7.4) 1.50 100 

       

1.251            1.160          1.101           1.091          1.065     1      1     

1.483           1.389          1.310           1.288          1.252     1      10    

1.880           1.861         1.842           1.837         1.822     1     100  

 

 
Table 7 

Comparing of the second mode of stress intensity factors for interface crack with exponential and constant of Poisson’s ratio 

variation (the percentage change in KII due to change Poisson’s ratio). 
     2

0

K a

σ πa
 

1

1

( )

( )

w
 

w




 1

1

( )

( )

E w

E w
 

Method 

0.6a w  0.5a w  0.4a w  0.3a w  0.2a w     

0(0.0) 0(0) 0(0) 0(0) 0(0) 1      1    Displacement 

 

 

-0.1384(12.7) -0.1350(10.7) -0.1319(8.8)   -0.1272(6)    -0.1166(3.9) 1.25 10  

-0.1253(15.4) -0.2204(13.1) -0.2144(10.5) -0.2054(8.1) -0.1888(6.4) 1.50 100 

       

0         0         0         0         0         1      1      

-0.1230 -0.120  -0.1213 -0.1200 -0.1123  1       10    

-0.1953 -0.1949 -0.1941 -0.1901 -0.1775 1      100  
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Table 8

Sensitivity of KI to gradation indexes  and  for interface crack (the percentage change in KI due to change in   for a given   

is shown in parenthesis). 
    

0        0.0150      0.0184     0.0205     0.0219     0.0230      

0          1.020          1.023         1.035          1.047          1.060          1.781          

0.0005 1.021(0.1) 1.035(1.3) 1.051(1.6) 1.068(2.1) 1.093(3.2) 1.850(3.9) 

0.0009 1.025(0.5) 1.045(2.2) 1.062(2.7) 1.086(3.8) 1.114(5.1) 1.891(6.2) 

0.0013 1.033(1.3) 1.054(3.1) 1.075(3.9) 1.108(5.9) 1.129(6.6) 1.919(7.8) 

0.0017 1.037(1.7) 1.066(4.3) 1.095(5.8) 1.122(7.2) 1.142(7.8) 1.941(9.0) 

0.0020 1.041(2.1) 1.084(6.0) 1.112 (7.5) 1.141(9.0)   1.176(11.0)   2.011(13.0) 

Table 9

Sensitivity of KII to gradation indexes  and  for interface crack (the percentage change in KII due to change in   for a given 

  is shown in parenthesis). 

    

0 0.0150 0.0184 0.0205 0.0219 0.0230 

0          -0.00230             -0.1022         -0.1211         -0.1454         -0.1633          -0.1857          

0.0005 -0.002307 (0.3) -0.1027(0.5) -0.1218(0.6) -0.1467(0.9) -0.1667(2.1) -0.1907(2.7) 

0.0009 -0.002311(0.5) -0.1033(1.1) -0.1229(1.5) -0.1491(2.6) -0.1696(3.9) -0.1949(5.0) 

0.0013 -0.002316(0.7) -0.1041(1.9) -0.1243(2.7) -0.1522(4.7) -0.1721(5.4) -0.1979(6.6) 

0.0017 -0.002320(0.9) -0.1053(3.1) -0.1266(4.6) -0.1541(6.0) -0.1740(6.6) -0.2001(7.8) 

0.0020 -0.002323(1.1) -0.1064(4.2) -0.1287(6.3) -0.1567(7.8) -0.1793(9.8)   -0.2053(10.6) 

7    CONCLUSIONS 

In the present work, the modes I and II stress intensity factor in FGMs considering gradation on elastic properties 

has been numerically investigated. In order to solve the problems, the displacement fields and isoparametric finite 

element analysis are employed. Because of the complexity of analytical method in interface crack of two non-

homogenous material and existence derivatives of material properties and, complexity of problem on tip of crack, 

this method are presented. To assess the accuracy of the present numerical scheme, benchmark solutions from 

literature available for homogeneous material and FGMs were studied.  It was observed that accurate results are 

obtained compared to the reference solutions. Further, to investigate the influence of elastic properties on the modes 

of  I and II SIFs, different scale of gradation for both modulus of elasticity and Poisson’s ratio were considered. It 

was observed that generally gradation of modulus of elasticity has more influence on KI and KII. However its 

influence is altered for different crack geometries and gradation index. Percentage changes in KI and KII due to 

change in  for a given   was drawn in relevant tables for better clarity of the effect of gradation of Poisson’s ratio. 

It was concluded that the influence of gradation of Poisson’s ratio can be non-negligible and has to be taken into 

account, e.g. penny-shaped crack in a solid cylinder and interface crack. Percentage changes in KI and KII depend on 

the crack geometry and gradation indexes   and  . Generally, it is inferred that accurate estimation of modes KI 

and KII SIFs require a numerical scheme to account for gradation of modulus of elasticity and Poisson’s ratio, as 

well. 
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