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 ABSTRACT 

 The main aim is to study the two dimensional axisymmetric problem of thick circular 

plate in modified couple stress theory with heat and mass diffusive sources. The 

thermoelastic theories with mass diffusion developed by Sherief et al. [1] and kumar 

and Kansal [2] have been used to investigate the problem. Laplace and Hankel 

transforms technique is applied to obtain the solutions of the governing equations. The 

displacements, stress components, temperature change and chemical potential are 

obtained in the transformed domain. Numerical inversion technique has been used to 

obtain the solutions in the physical domain. Effects of couple stress on the resulting 

quantities are shown graphically. Some particular cases of interest are also deduced. 

      © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 LASSICAL first gradient approaches in continuum mechanics do not address the size dependency that is 

observed in smaller scales. Consequently, a number of theories that include higher gradients of deformation 

have been proposed to capture, at least partially, size-effects at the nano-scale. Additionally, consideration of the 

second gradient of deformation leads naturally to the introduction of the concept of couple-stresses. Thus, in the 

current form of these theories, the material continuum may respond to body and surface couples, as well as spin 

inertia for dynamical problems. The existence of couple-stress in materials was originally postulated by Voigt [3]. 

However, Cosserat [4] were the first to develop a mathematical model to analyze materials with couple stresses. 

Lacking an internal material length scale parameter, classical elasticity and plasticity cannot be used to interpret the 

size effect observed in numerous tests at micron and nanometer scales. However, higher-order (non-local) 

continuum theories contain material length scale parameters and are capable of explaining microstructure related 

size (and other effects). Couple stress theories represent one class of such higher-order theories. The classical couple 

stress elasticity theory was proposed by (e.g., Mindlin and Tiersten [5], Toupin [6], Koiter [7] contains four material 

constants two classical and two additional for isotropic elastic materials. The couple stress theory can be viewed as a 

special format of strain gradient theory which uses rotation as a variable to describe curvature, while the strain 

gradient theory uses strain as variable to describe curvature. Couple-stress theory is an extended continuum theory 

that includes the effects of a couple per unit area on a material volume, in addition to the classical direct and shear 

forces per unit area. This immediately admits the possibility of asymmetric stress tensor, since shear stress no longer 

have to be conjugate in order to ensure rotational equilibrium. The two additional constants are related to the 
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underlying microstructure of the material and are inherently difficult to determine (e.g., Lakes [8] Lam et al. [9]. 

Every physical theory possesses a certain domain of applicability outside which it fails to predict the physical 

phenomena with reasonable accuracy. Hence, there has been a need to develop higher-order theories involving only 

one additional material length scale parameter. The small length scale involved in microstructures has questioned 

the applicability of the classical mechanics model. The small size of the material structure, such as the lattice space 

between single atoms, is very important in nanotechnology problems. As this scale is ignored in the classical 

mechanics model, the modified couple-stress theory which was developed by Yang et al.[10], Park and Gao [11]. 

studied the Bernoulli- Euler beam model based on a modified couple stress theory. Simsek and Reddy [12] 

investigated the bending and vibration of functionally graded microbeams using a new higher order beam theory and 

the modified couple stress theory. Recently, Shaat et al.[13] studied the size-dependent bending analysis of 

Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Ghorbanpour Arani et al. 

[14] discussed the problem of vibration of bioliquid-filled microtubules using modified couple stress theory. In this 

problem, the modified couple stress theory is applied to consider the small scale effects while motion equations are 

derived using energy method and Hamilton’s principle for both Euler-Bernoulli beam (EBB) and Timoshenko beam 

(TB) models. Darijani and Shahdadi[15] investigated the effect of shear deformation on the static bending and 

vibration responses of a simply supported microplate by using modified couple stress theory and the governing 

equations and related boundary conditions are solved  simultaneously using Hamilton’s principle. 

Recently, Wang et al. [16] presented a nonlinear bending and post-buckling of extensible microscalebeams based 

on modified couple stress theory where the effects of the material length scale parameter and the Poisson ratio on the 

bending and thermal post-buckling behaviors of microbeams are discussed in detail and the size dependent 

governing differential equations are solved numerically using shooting method. Diffusion plays an important role in 

geophysics, metal oxide semiconductor improvement in crude oil extraction from oil deposits. In present, diffusion 

imaging is essentially used for brain exploration in clinical practice. Nevertheless, new applications are emerging 

outside neuroradiology (cancerology, musculoskeletal radiology…) etc.  Diffusion can be defined as the movement 

of molecules from a high concentration to a low concentration. Thermodiffusion in an elastic solid is due to the 

coupling of the fields of temperature, mass diffusion and strain. Heat and mass exchange with the environment 

during the process of the thermodiffusion in an elastic solid. The concept of thermodiffusion is used to describe the 

processes of thermomechanical treatment of metals (carboning, nitriding steel, etc.) and these processes are 

thermally activated, and their diffusing substances being, e.g. nitrogen, carbon etc. They are accompanied by 

deformations of the solid. 

Podstrigach [17] and Nowacki [18-21] developed the theories of thermodiffusion elastic solid in which the 

coupled thermoelastic model is used and implies infinite speeds of propagation of thermoelastic waves. Sherief et 

al.[1] developed the theory of generalized thermoelastic diffusion that predicts finite speeds of propagation for 

thermoelastic and diffusive waves. Sherief and Saleh [22] worked on a problem of a thermoelastic half space with a 

permeating substance in contact with the bounding plane in the context of the theory of generalized thermoelastic 

diffusion with one relaxation time. Recently, Kumar and Kansal [2] derived the basic equations in generalized 

thermoelastic diffusion for Green Lindsay (GL-model) theory and discussed the Lamb waves. El-Maghraby and 

Abdel-Halim [23] studied a problem of generalized thermoelasticity in Lord and Shulman [24] theory for a half 

space subjected to a known axisymmetric temperature distributions by using Laplace and Hankel transforms 

technique. Tripathi et al. [25] investigated the temperature distribution and thermal stresses in a semi-infinite 

cylinder with heat sources in thermoelastic theory with one relaxation time. Recently, Tripathi et al. [26] discussed 

the problem of a thick circular plate with axisymmetric heat supply in a generalized thermoelastic diffusion by using 

integral transform technique.  

The objective of this paper is to study the two dimensional axisymmetric problem of thick circular plate in 

modified couple stress theory with heat sources by applying integral  transform technique. The normal stress, 

tangential stress, couple stress, temperature change and chemical potential are computed and presented graphically 

for different values of radial distance. Some particular cases are also derived from the present investigation. 

2    GOVERNING EQUATIONS 

Following (Yang et al.[10] Kumar and Kansal [2]) the constitutive relations and the equations of motion in a 

modified couple-stress generalized thermoelastic elastic with mass diffusion in the absence of body forces, body 

couples and mass diffusion sources are given by  
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Constitutive relations 
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Equations of motion 
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Equation of heat conduction 
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Equation of mass diffusion 
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where ijt  are the components of stress tensor,  and   are material constants, ij is Kronecker’s delta, ije are the 

components of strain tensor, ijke is alternate tensor, ijm  are the components of couple-stress,  1 3 2 t     , 

 2 3 2 c     , Here ,t c  are the coefficients of linear thermal expansion and diffusion expansion respectively, 

T is the temperature change, C is the mass concentration,  is the couple stress parameter, ijx  is symmetric 

curvature, i  is the rotational vector, P is the chemical potential of the material per unit mass, b is the coefficient 

describing the measure of mass diffusion effects, a is the coefficient describing the measure of thermoelastic 

diffusion.  1 2 3, ,u u u u is the components of displacement vector,  is the density,   is the Laplacian operator, 

 is del operator. *K is the coefficient of the thermal conductivity, ec is the specific heat at constant strain, Q is the 

heat source, 0T  is the reference temperature assumed to be such that 0/ 1T T . D is the thermoelastic diffusion 

constant, Here 
0 1,   are the diffusion relaxation times with 

1 0 0    and 0 1,   are thermal relaxation times 

with 1 0 0   . Here, 1
1 0 00, 1,        , for Lord-Shulman (L-S) model and 0

0 0,    , for Green 

Lindsay (G-L) model. 

 

 



160                 R.Kumar et al. 

© 2017 IAU, Arak Branch 

3    FORMULATION OF THE PROBLEM  

Consider an axisymmetric homogeneous isotropic, modified couple stress generalized thermodiffusion elastic thick 

plate of thickness 2d defined by the region 0 ,r d z d     . Cylindrical polar coordinates  , ,r z  having 

origin on the surface 0z  , between the lower and upper surfaces of the plate and the z-axis is assumed to be the 

axis of symmetry. Due to symmetry about z-axis all the field quantities depending only on   , ,r z t . 

The initial temperature in the thick plate is given by a constant temperature 0T  and the heat flux  0 ,g F r z  is 

prescribed on the upper and lower boundary surfaces. For 0t , heat is generated within the plate at the rate 

 , ,Q r z t . Under these conditions, thermoelastic quantities in a semi-infinite thick circular plate are required to be 

determined. For the two-dimensional problem, we take the displacement vector  ,0,r zu u u . We define the 

dimensionless quantities: 
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Upon introducing (9) in Eqs. (6)-(8), after suppressing the primes, we obtain 
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By Helmholtz theorem, the displacement vector u  can be expressed as: 

 

u     (14) 
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where two potentials   and   are the Lame’s  potentials  representing irrotational and rotational parts of the 

displacement vector u  respectively. It is possible to take only one component of the vector   to be non-zero, i. e.  

  can be written as: 
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The displacement components ru  and zu  in terms of potential functions   and   in dimensionless form are 

given by 
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where S is the Laplace transform parameter,    is the Hankel transform parameter and ()nJ  is the Bessel function 

of the first kind of order n. Applying the Laplace and Hankel transforms defined by (21) on Eqs. (17)-(20), after 

simplification, we obtain 
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where 
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The general solution of Eq. (22) can be written as: 
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The general solution of the Eq. (25) can be written as: 

 

 
3

1

ˆ cosh ,i i i

i

A m z


  
 

(26) 

 

where 1 2,m m  and 3m  are the roots of the  characteristic equation given by 

 
6 4 2

1 2 3[ ] 0.D G D G D G     (27) 

 

Also ˆ
p  is the particular solution satisfying the equation 

 

   2 2 2 2 2 2 66
1 2 3 6

ˆ ˆ ,p tD m D m D m a Q      (28) 

 

Let the heat generation  , ,Q r z t  be taken as: 

 

 
     0 cosh

, , ,
2

q t r z
Q r z t

r

 


  

 

(29) 
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This is a cylindrical shell heat source releasing heat instantaneously at  0t   and situated   at the centre 0r   

varying in the axial direction where 0q  is the strength of the heat generation. Applying Laplace and Hankel 

transforms defined by (21) on (29), yield 

 

0
ˆ cosh( ),Q Q z  (30) 

 

where 0
0 .

2

q
Q


  

The solution of the Eq. (28) take the form 

 

   

66
6 0

2 2 2
1 2 3

ˆ cosh( ),
1 1 1

t
p

a Q
z

m m m


 

  
 

 

(31) 

 

The complete solution of Eq. (24) can be written as: 

 

   

3 66
6 0

2 2 2
1 1 2 3

ˆ cosh( ) cosh( ),
1 1 1

t
i i

i

a Q
A m z z

m m m






 
  

  
 

(32) 

 

Solving Eq. (23), we get 

 

4 5
ˆ ˆ ˆ     (33) 

 

where ˆ ( 4,5)i i   is a solution of the homogeneous differential equation given by 

 

 2 2 ˆ 0, 4,5i iD m i    (34) 

 

 
The solution of the Eq. (23), yield 

 
5

4

ˆ sinh( ),i i

i

A m z


  
 

(35) 

 

where 4m  and 5m  are the roots of the characteristic Eq. (23). Similarly, the solution of the Eq. (22) is 

 

    
   

3 66
6 0

2 2 2
1 1 2 3

ˆ ˆˆ, , , , 1, , cosh( ) cosh( ) ,
1 1 1

t
i i i i

i

a Q
T C z s R S A m z z

m m m


 



 
  
   
 

  

 

(36) 

   

 where 

 

      

      

    
      

2
55 2 2 77 2 2 22 44 2 2

3
7 10 5 8

2 2 33 77 2 2 22 11 44
1 4 10 5 9

2
2 2 11 55 2 2 33

7 9 8 4

2 2 33 77 2 2 22 11 44
4 10 5 9

,
t i t i t t i

i

i i t t i t t t

i t t i t

i

i t t i t t t

a m a m a a m
R

m a m a a a

m a a a m a
S

m a m a a a

      

      

    

      



    


      
  

    
  


      
 



3

1

, 1,2,3

i

i








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4    BOUNDARY CONDITIONS    

 0 , ,
T

g F r z at z d
z


   


 

 

(37) 

 

0 ,zz zr zt t m at z d      (38) 

 

    ,P t f r at z d    (39) 

 

where  

 

  2, , 0.rF r z z e    (40) 

 

   f r H a r   (41) 

 

and () is the Dirac delta function, H is the Heavy side unit step function.  Applying Laplace and Hankel transforms 

defined by (21) on (40) and (41), we obtain 

 

 
 

2

3/2
2 2

ˆ , ,
z

F z




 





 
 

(42) 

 

 
 1ˆ ,

aJ a
f





  

 

(43) 

 

The non-dimensional values of , ,zz zr zt t m   and P are given by  (1)-(5) and  (9), as: 

 

1
11 12 13 12 1 1 ,z

zz

u
t a e a a T C

z t t
 

         
          

        
 

 

(44) 

 

2 2

12 14 2 2
,r z r z

zr

u u u u
t a a

z r z rr z

         
                    

 
 

(45) 

 
2 2

14 2
2 ,r z

z

u u
m a

r zz


  
     

 
 

(46) 

 
1

15 16 ,t tP e a C a T      (47) 

 

where   

 
2 2 2*2
1 1 1

11 12 13 14 15 162 2
1 0 1 0 1 0 1 21 1 0 2

, , , , , .
4

c b c c
a a a a a a

T T T c T

    

     
       

 

 

Substituting the values of ˆ ˆˆ, ,T C and ̂  from (35) and (36) in the boundary conditions (37)-(39) and with the 

aid of (15), (16), (21) and (40)-(47), we obtain the expressions for displacement components, stresses, temperature 

change and chemical potential as: 
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     
3 5

1 4

ˆ cosh sinh cosh ,r i i i i

i i

u A m d A m d H d
 

 
    

  
   

 

(48) 

 

     
3 5

2

1 4

ˆ sinh cosh sinh ,z i i i i i

i i

u m A m d A m d H d
 

 
   
  
   

 

(49) 

 

   
3 3

1 1

ˆ cosh cosh ,i i i i

i i

T R A m d R H d

 

 
  
  
   

 

(50) 

 

   
3 5

2

1 4

ˆ cosh cosh ,zz i i i i i i

i i

t M A m d M A m d P

 

 
   
  
   

 

(51) 

 

   
3 5

3

1 4

ˆ sinh sinh ,zr i i i i i i

i i

t N A m d N A m d P
 

 
    

  
   

 

(52) 

 

   
3 5

4

1 4

ˆ cosh cosh ,i i i i i i

i i

P K A m d K A m d P

 

 
   
  
   

 

(53) 

 

 
5

14

4

ˆ 2 cosh ,z i i i

i

m a G A m d 


 
   

  
  

 

(54) 

 

   
3 3

1 1

ˆ cosh cosh ,i i i i

i i

C S A m d S H d

 

 
  
  
   

 

(55) 

 

 where 

 

 

 

   

3 51 2 4
1 2 3 4 5

2 2 3 5 3 5 5 3 5 3 3 4 3 4 4 3 4 3

3 3 2 5 2 5 5 2 5 2 2 4 2 4 4 2 4 2
1 1 1

4 4 2 3 2 3 3 2 3 2 5 5 2 3 2 3 3 2 3 2

1 1 3 5 3 5

2 2 2

, , , , ,A A A A A

M h N K g h N K g h N K g h N K g h

M h N K g h N K g h N K g h N K g h
R m g

M h N K g h N K g h M h N K g h N K g h

M h N K g h

R m g

   
    
    

   
 
    

   
    
 
 





 

 

   

 

5 3 5 3 3 4 3 4 4 3 4 3

3 3 1 5 1 5 5 1 5 1 1 4 1 4 4 1 4 1

4 4 3 1 3 1 1 3 1 3 5 5 1 3 1 3 3 1 3 1

1 1 2 5 2 5 5 2 5 2 4 2 4 2 2 4 2 4

3 3 3 2 2 1 5 1 5 5 1 5 1 1 4 1

N K g h N K g h N K g h

M h N K g h N K g h N K g h N K g h

M h N K g h N K g h M h N K g h N K g h

M h N K g h N K g h N K g h N K g h

R m g M h N K g h N K g h N K g h

  
 
    
 
    
 
 

  

    

   

4 4 1 4 1

4 4 1 2 1 2 2 1 2 1 5 5 1 2 1 2 2 1 2 1

,N K g h

M h N K g h N K g h M h N K g h N K g h

 
 

 
 
    
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1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

sinh( ), sinh( ), sinh( ), sinh( ), sinh( ),

cosh( ), cosh( ), cosh( ), cosh( ), cosh( ),

g m d g m d g m d g m d g m d

h m d h m d h m d h m d h m d

    

    
 

 

 

       

 1,..........,5i i   are obtained by replacing 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 column by 

 

     0 1 2 3 4
ˆ ˆ, , ,0,

T

ig F z P P P F P in      
 

 
 

 

 

And 

 

   
   

   

   

366
2 11 226 0

1 2 11 12 132 2 2
11 2 3

3
2 22 66

3 12 4 15 16

1

2 2 2 11 22
11 12 13

, sinh( ), 1 2 cosh( ),
1 1 1

2 sinh , 1 cosh( ),

2

t
i t t

i

t i t i

i

i i i t i t i

a Q
H P R H d P H a a a d

m m m

P Ha d P a S a R H d

M a m a m a R S


  

   

  





       
   

  
        

    

     






 

     

 

3 3 5 5
2

11 12

1 1 4 4

3 3 5 5 5 5
2

2 2 2 2 2 2
12 12 14

1 1 4 4 4 4

3 3 5 5
2 2 22 66 2

15 16

1 1 4 4

, 2 ,

2 , , ,

, 2 ,

i i

i i i i

i i i i i i i i

i i i i i i

i i t i t i i i

i i i i

M a a m

N a m N a m a m G m m

K m a S a R K m



  

   

   

     

   

  
 

 
      

  

       
 

   

     

   

 

 

 

 

5    PARTICULAR CASES   

If 0,   in Eqs. (48)-(55), we obtain the components of displacement and stresses for a generalized thermoelastic 

with mass diffusion medium. The results obtained are similar as given by [26] with the changed value of 

 

 
 

2

3/2
2 2

ˆ ,
z

F z




 





 
 

 

In the absence of diffusion  1 0 ,ta D    in Eqs. (48)-(55), we obtain the components of displacement and 

stresses in a modified couple stress thermoelastic medium. 

If 1
1 0 00, 1, ,         in Eqs. (48)-(55), we obtain the corresponding results for modified couple stress 

thermoelastic with mass diffusion for Lord Shulman (L-S) model. 

If 0
0 0, ,     in Eqs. (48)-(55), we obtain the corresponding results for modified couple stress thermoelastic 

with mass diffusion for Green Lindsay (G-L) model. 

6    NUMERICAL INVERSION OF THE TRANSFORMS 

To obtain the solution of the problem in physical domain, we must invert the transforms in (48)-(55) for all the 

theories. Here the displacement components, normal and tangential stresses, temperature change, chemical potential 

and mass concentration are functions of Z, the parameters of Laplace and Hankel transforms S and   respectively 
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and hence are of the form  ˆ , ,f z s . We first invert the Hankel transform, which gives the Laplace transform 

expression  , ,f r z s  of the function  , ,f r z t  as: 

     
0

ˆ, , , , nf r z s f z s J r d   



   

 

(56) 

 

Now for fixed values of ,r  and Z, the function  , ,f r z s  in (56) can be considered as the Laplace transform 

 g s  of the same function  g t . Following [27], the Laplace transformed function  g s can be inverted as given 

below: 

   
1

,
2

C i

st

C i

g t e g s ds
i

 

 

   

 

(57) 

 

where C  is an arbitrary real number greater than all the real parts of the singularities of  g s . Taking  

,s C iy  we get 

    ,
2

Ct
itye

g t e g C iy dy






   

 

(58) 

 

Now, taking  Cte g t  as  h t and expanding it as Fourier series in  0,2 ,L we obtain approximately the  

formula [27] 

 

    ,Dg t g t E   (59) 

 

   0

1

/ 2 ,k

k

g t C C







     for   0 2 .t L   
 

(60) 

 

and 

    // Re / .Ct ik t L
kC e L e g C ik L 

 
  

 
    

 

(61) 

 

DE  is the discretization error that can be made arbitrarily small by choosing a large enough C.  The values of C 

and L are chosen according to the criteria outlined by [27].  Since the infinite series in (60) can be summed up only 

to a finite number of N terms, the approximate value of  g t  becomes 

   0

1

/ 2 ,

N

N k

k

g t C C



     for   0 2 .t L   
 

(62) 

 

We now introduce a truncation error TE that must be added to the discretization error to produce the total 

approximate error in evaluating  g t  using the above formula. Two methods are used to reduce the total error. The 

discretization errors is reduced by using the ‘Korrecktur’ method [27] and then the ‘  -algorithm’ is used to reduce 
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the truncation error and hence to accelerate the convergence. The Korrecktur method formula, to evaluate the 

function  g t is 

     2 '2 ,CL
Dg t g t e g L t E

       

 

  

where '
D DE E  (Honig & Hirdas [27]). Thus the approximate value of  g t  becomes 

     '
2 2 ,

k

CL
N N N

g t g t e g L t    (63) 

 

where 'N is an integer such that ' .N N  We shall now describe the  -algorithm, which is used to accelerate the 

convergence of the series in (62). Let  N  be an odd natural number and  

1

m

m k

k

s C



 be the sequence of partial 

sums of  (62). We define the   -sequence by 

0, 1, 1, 1, 1
, 1 ,

1
0, , ; , 1,2,3.......m m m n m n m

n m n m

s n m   
 

  


   


 
 

 

 

It can be shown that [27], the sequence 1,1 3,1 ,1, ,..............., N    converges to    0 / 2Dg t E C   faster than 

the sequence of partial sums , 1,2,3......ms m   .  

The actual procedure to invert the Laplace transform consists of (63) together with the  -algorithm. The last 

step is to calculate the integral in Eq. (56). The method for calculating this integral is described by [28]. It involves 

the use of Romberg’s integration with adaptive step size. This also uses the results from successive refinements of 

the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size tends to zero. 

7    NUMERICAL RESULTS AND DISCUSSION   

For numerical computations, following [22], we take the copper material (thermoelastic diffusion solid) as: 

10 -1 -2 10 -1 -2 3 4 2 -2 -1
0

3 -1 -1 -5 -1 -4 3 -1 5 -1 5 -2

-8 -3 3 -3

7.76×10  Kg m  s , 3.86×10  Kg m  s , 0.293×10  K, 1.02×10  m s K ,

0.3831×10  J Kg  K , 1.78×10  K , 1.98×10 m  Kg , 9×10  Kg m s ,

0.85×10  Kg s m , 8.954×10  Kg m
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The software Matlab 7.10.4 has been used to determine the normal stress, tangential stress, couple stress, 

temperature change and mass concentration for different values of couple stress for both L-S and G-L theories are 

computed numerically and shown graphically in Figs. 1-5 respectively. 

In Figs. 1-5, solid line (-) corresponds to L-S 0  , solid line with centre symbol(-*-) corresponds to L-S 

0.05  . Similarly, small dash line (----) corresponds to G-L  0   and small dash line with centre symbol 

 (---*---) corresponds to G-L 0.05   respectively. 

Fig.1 shows that the variations of normal stress with radial distance. The values of normal stress decreases 

rapidly as distance increases in the whole range for both values of   and both L-S and G-L theories. On the other 

hand, the values of  zzt  for L-S theory is higher in comparison to G-L theory for 0.05   and opposite behavior is 

noticed for 0  .  
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Fig. 2 depicts that the variation of tangential stress  zrt
 
with radial distance r. The values of tangential stress 

decrease monotonically with high magnitude in the range 0 1.0r   for both theories of thermoelasticity. Also, the 

values of tangential stress for L-S  0,0.05   is higher in comparison to G-L  0,0.05  . 

Fig. 3 represents that the variation of couple stress zm   with r. Similar trend is noticed for both the values of 

 and both theories of thermoeasticity. On the other hand, the values of  zm   
for 0.5   is smaller in comparison 

to 0,0.05 
 
with small magnitude for both the theories. 

Fig. 4 depicts the variation of temperature change T with radial distance for 0,0.05  . It is noticed that the 

behavior of 0,0.05   is similar for both the theories of thermoelastictiy. The values of temperature change for 

0  is more in comparison to 0.05 
 
 for L-S theory and opposite behavior is noticed for G-L theory. 

Fig. 5 shows that the variations of chemical potential P with r. It is observed that the values of chemical potential 

decrease monotonically in the whole range for both values of  . The effect of Couple stress increases the values of 

chemical potential P for both L-S and G-L theories. 
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Fig.1 

Variation of normal stress with  radial distance. 
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Fig.2 

Variation of tangential stress with radial distance. 
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Fig.3 

Variation of couple stress with radial  distance. 
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Fig.4 

Variation of temperature with radial distance. 
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Fig.5 

Variation of chemical potential with radial distance. 

8    CONCLUSIONS 

The problem of thick circular plate with heat generation in modified couple stress thermoelastic diffusion medium is 

a significant problem of continuum mechanics. The results obtained from above study are summarized as. 

The resulting quantities depicted graphically are observed to be very sensitive towards the couple stress 

parameters. It is evident that the physical quantities are also effected by the different non-classical theories of 

thermodiffusion elasticity. It is observed that the values of  zm   and  P  for G-L theory are more in comparison to 

L-S theory due to the effect of couple stress and reverse behavior is observed for .zrt  Similarly, it is noticed that 

couple stress increases the values of zzt  for L-S theory and decreases the values of temperature for G-L theory.  

The results obtained in the study should be beneficial for people working on modified couple stress with heat 

sources.  
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