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 ABSTRACT 

 In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of 

hollow and solid spheres under radial symmetric loading condition is considered. A full 

analytical method is used and an exact unique solution of the classic coupled equations 

is presented. The thermal and mechanical boundary conditions, the body force, and the 

heat source are considered in the most general forms and where no limiting assumption 

is used. This generality allows simulate varieties of applicable problems. At the end, 

numerical results are presented and compared with classic theory of thermoelasticity.        

                                          © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 T the classical uncoupled theory of thermo-elasticity predicts, such as the heat equation is of a parabolic type, 

predicting infinite speeds of propagation for heat waves and the equation of heat conduction of this theory does 

not contain any elastic terms contrary to the fact that the elastic changes produce heat effects, etc. which that are not 

compatible with physical observations. Therefore the theory coupled thermo-elasticity has received much attention 

in the literature during the past several decades [1].  

The numbers of papers that present the closed-form or analytical solution for the coupled thermoelasticity 

function. Hetnarski [2] found the solution of the thermo elasticity in the form of a series function. Hetnarski and 

Ignaczak presented a study of the one-dimensional thermo elastic waves produced by an instantaneous plane source 

of heat in homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay type [3]. These authors also 

presented an analysis for laser-induced waves propagating in an absorbing thermo elastic semi-space of the Green-

Lindsay type [4]. Georgiadis and Lykotrafitis obtained a three-dimensional transient thermo elastic solution for 

Rayleigh-type disturbances propagating on the surface of the half-space [5]. Wagner [6] presented the fundamental 

matrix of a system of partial differential operators that governs the diffusion of heat and the strains in elastic media. 

This method can be used to predict the temperature distribution and the strains by an instantaneous point heat, point 

source of heat, or by a suddenly applied dilate force. Bahtui and Eslami [7] studied the coupled thermoelastic 

response of a functionally graded circular cylindrical shell, and used a Galerkin finite element formulation in the 

space domain and the Laplace transform in the time domain. Bagri and Eslami [8] presented a solution for one-

dimensional generalized thermoelasticity of a disk. They employed the Laplace transform and Galerkin finite 

element method to solve the governing equations. 
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The Kelvin-Voigt model at problem of magneto-thermo-viscoelasticity has extensive uses. This theory uses  in 

divers fields, such as geophysics for understanding the effect of the Earth`s magnetic field on seismic wave, 

damping of acoustic waves in a magnetic field, development of a highly sensitive superconducting magnetometer, 

electrical power engineering, optics, supersonic airplanes, etc. [9]. Knopoff [10], Chadwick [11] and Nowacki [12] 

studied these types of problems at the beginning. Misra et al. [13, 14] Abd-Alla et al. [15] and Kaliski [16] studied 

these types of problems considering viscoelastic solid of Kelvin-Voigt type. Abd-Alla and Mahmoud [17] presented 

an analytical solution for magneto-thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected 

to periodic loading. Song et al. [18] studied the problems of a plane harmonic wave at the interface between to 

viscoelastic media under generalized thermo-viscoelastic theory when the media permeate a uniform magnetic field. 

S.M. Abo-Dahab [19] studied the effects of the thermally induced vibration, magnetic field and viscoelasticity in an 

isotropic homogeneous unbounded body with a spherical cavity. 

Sharma et al. [20, 21] employed kelvin-Voigt model of viscoelasticity to study Rayleigh-Lamb waves in thermo-

elastic plates in the context of generalized (GL and LS) and coupled theories of thermoelasticity. Roy-Chudhuri and 

Mukhopdhyay [22] studied the effect of rotation and relaxation time on plane waves in an infinite generalized 

thermoviscoelastic solid of Kelvin-Voigt type with the entire medium rotating with a uniform angular velocity. M. I. 

A. Othman and I. A. Abbas [23] presented an investigation of the temperature, displacement, and stress in a 

viscoelastic half space of Kelvin-Voigt type which the no dimensional governing equations are solved by the finite 

element method. Avijt Kar and M. Kanoria [24] presented an interaction due to step input of temperature on the 

stress free boundaries of a homogeneous visco-elastic isotropic spherical shell in the context of generalized theories 

of thermo-elasticity. Ezzat et al. [25, 26] applied the state space approach to one-dimensional problems of 

generalized thermo-visco- elasticity. 

In the present work a full analytical method is used to obtain the response of the governing equations, therefore 

an exact solution is presented. The method of solution is based on the Fourier’s expansion and Eigen- function 

methods, which are traditional and routine methods in solving the partial differential equations. Since the 

coefficients of equations are not functions of the time variable (t), an exponential form is considered for the general 

solution matched with the physical wave properties of thermal and mechanical waves. For the particular solution, 

that is the response to mechanical and thermal shocks, the Eigen-function method and Laplace transformation is 

used. This work is the extension of the previous paper that presented an exact solution in the spherical coordinates 

[27]. 

2    GOVERNING EQUATIONS   

A hollow sphere with inner and outer radius 
ir  and 

or , respectively, made of isotropic material subjected to radial-

symmetric mechanical and thermal shock loads, is considered. If u is the displacement component in the radial 

direction, the strain-displacement relations in spherical coordinates are as follow: 
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(1) 

 

where  ,  denotes partial derivative. The non-vanishing displacement component is  , tru u r , so that, 
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(2) 

 

The stress-strain-temperature relation for generalized thermo-viscoelastic Kelvin-voigt material type is 
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where , , , ,i j r    and   are Lame’s  constants,  3 2 ,t t       is the thermal expansion coefficient, T is 

the absolute temperature, 
2  is the thermal relaxation, 

0 is the mechanical relaxation time (sensitive part of the term 

of the viscosity). 

For a spherical radial-symmetric system the non-vanishing stresses components may written as: 
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(4) 

 

The equation of motion in the radial direction is 
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where  ,F r t  is the body force in the radial direction. Substituting Eq. (4) into Eq. (5), the Navier equation in terms 

of the displacement components is obtained as: 
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(6) 

 

Heat conduction equation in radial-symmetric direction with the mechanical coupling term is 
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where   is density of the material, k  is thermal conductivity, 
vC  is specific heat of the material per unit mass, 

1  is 

thermal relaxation parameter, 
0T  is reference temperature solid,  ,Q r t  is heat generation source. Mechanical and 

thermal boundary conditions are 
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where ijC  are mechanical and thermal coefficients and by assigning different values for them, different type of 

mechanical and thermal boundary condition may be obtained. These boundary conditions include the displacement, 

strain, stress (for the first and second boundary conditions), specified temperature, and convection, heat flux 

condition (for the third and fourth boundary conditions). The 
1f  to 

4f  are arbitrary functions which show 
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mechanical and thermal shocks, respectively. The initial boundary conditions are assumed in the following general 

form  

 

     5 , 6 7,0 ( ) ,0 ( ) ,0 ( )tu r f r u r f r T r f r        (9) 

 

where
5f to 

7f  are arbitrary functions which show initial distributions of displacement and temperature, respectively. 

3    SOLUTION    

The Eq. (1) and Eq. (3) constitute a system of nonhomogeneous partial differential equations with non-constant 

coefficients (functions of the radius only) has general and particular solution. 

3.1 General solution with homogeneous boundary conditions 

A form of solution can be suitable for Eq.  (1) and Eq. (3) may be assumed for the general solution as: 
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By substituting Eq. (10) into the homogeneous parts of Eqs. (6) and (7) yields, 
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Eq. (11) is a system of ordinary differential equations, where the prime symbol (') shows differentiation with 

respect to radial variable r and if suppose: 
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3.2 Changes in dependent variables 

To obtain a solution for Eq. (11), the dependent variables are changed as: 
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Substituting Eq. (13) into Eq. (11) gives 
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3.3 Solution justification 

The first solution 
1u  and 

1  are considered for the solid sphere as: 
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Eq. (16) shows that 
1u  and 

1  can be the solution of Eq. (14) if and only if 
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The non-trivial solution of Eq. (17) is obtained by equating the determinant of this equation to zero and brings 

the first characteristic equation. The second solutions of  
1u  and 

1  are considered as: 
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Substituting Eq. (18) into Eq. (14) yields 
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The expressions for 

2u  and 
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The non-trivial solution of Eq. (20) is obtained by equating the determinant to zero as: 
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The equality of Eq. (17) with Eq. (20) is interesting as it prevents mathematical dilemma and complexity, and a 

single value for the eigenvalue   simultaneously satisfies both characteristic equations yielded by Eq. (17) and Eq. 

(20). Eqs. (21) and (22) give the relation between 
2 3 2, ,A A B   and 

3B , and they play as the balancing ratios that help 

Eq. (18) to be the second solution of the system of Eqs. (14). The complete unique general solutions for the solid 

sphere are 
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1 4   are ratios obtained from Eqs.(17), (20)-(22) and are given in Appendix A. Substituting gu  and g   in 
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where ij  are given in the Appendix. Setting the determinant of the coefficients of Eq. (26) equal to zero, the second 

characteristic equation is obtained. A simultaneous solution of this equation and non-trivial solution of Eq. (17) 

results in an infinite number of two eigenvalues, 
n and 

n . Therefore, gu  and g   are rewritten as: 
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where 
5  to 

15  are ratios presented in Appendix A and are obtained from Eq.(26). Let us show the functions in the 

brackets of Eq. (27) by functions 
1H  and 

0H  as: 
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(28) 

 

According to the Sturm–Liouville theories, these functions are orthogonal with respect to the weight function r 

as: 
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(29) 

 

where  nH r  is the norm of the H function and equals 
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(30) 

 

Due to the orthogonality of function H, every piecewise continuous function, such as  f r , can be expanded in 

terms of the function H (either for 
0H  or 

1H ) and is called the H-Fourier series as: 

 

1

( ) ( )n n

n

f r e H r




  
 

(31) 

 

where ne  equals 
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(32) 

 

According to the numerical results, there are three groups for eigenvalues 
n , where the first 

1n  is real and 

negative, and the second and third ones, 
2n  and 

3n , are conjugate complex with a negative real part, 
n n  , and 

an imaginary part, 
dn . Terms 

dn  and 
n  are the damped and nondamped thermal-mechanical natural 

frequencies, and 
n   is the damping ratio for the n-th natural mode. The non-trivial solution of Eq. (15) is an 

algebraic equation in polynomial form, and the determinant of Eq. (24) is an algebraic equation in the Bessel 

function form. The exact analytical solution for this system of nonlinear algebraic equations is complicated, and the 

numerical method of solution is employed in this paper. Since the Bessel functions are periodic, the system has an 

infinite number of roots. The numerical results of 
n  and 

n  for 50 roots are presented in Sec. 4. Using Eqs. (10), 

(13), (27) and (28), the displacement and temperature distributions due to the general solution become  
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(33) 

 

Using the initial conditions (Eq. (9)) and with the help of Eqs. (31)-(33), four unknown constants, , ,n n na b c  and 

nd  are obtained. 

3.4 Particular solution with non-homogeneous boundary conditions 

The general solutions may be used as proper functions for guessing the particular solution suitable to the non-

homogeneous parts of the Eqs. (6) to (7) and the non-homogeneous boundary conditions (8) as: 
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(34) 

 

For solid sphere, the second type of Bessel function Y  is excluded. It is necessary and suitable to expand the 

body force  ,F r t  and heat source  ,Q r t  in the H-Fourier expansion form as: 
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(35) 

 

where  nF t  and  nQ t  are   
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(36) 

 

Substituting Eqs. (34) and (35) into the nonhomogeneous form of Eqs.(6) and (7) yields 
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(37) 

 

where 
6 12b b  are the coefficients of H-expansion and 

1 5b b  are given in Appendix A. The initial boundary 

conditions for the particular solutions are assumed in the following general form 

 

     ,,0 0 ,0 0 ,0 0tu r u r T r    (38) 
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The guessed functions (Eq. (34)) can satisfy the nonhomogeneous part of navier equation and heat equation Eq. 

(37) if and only if 
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(40) 

 

Taking the Laplace transform of Eq. (38) and using two boundary conditions of Eq. (8) (for solid cylinders, only 

the second and fourth boundary conditions are applicable) give 
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(41) 



                                                                                                                                         S. Bagheri and M.Jabbari                       161 

© 2016 IAU, Arak Branch 

where 
13 23b b  are given in Appendix A. Eq. (41) is solved for    1 6n nG s G s  by the Cramer methods in the 

Laplace domain, where by the inverse Laplace transform the functions are transformed into the real time domain. In 

the process of solution, it is necessary to consider the following points: 

1. Eq. (41) is in polynomial form function of the Laplace Parameter S (not the Bessel function form of 

S).Therefore, the exact inverse Laplace transform is possible and somehow simple. 

2. For the hollow sphere, it is enough to include the second type of the Bessel function  Y r  in the sequence 

of particular solution as: 
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(42) 

 

Substituting Eq. (42) in Eqs. (6) and (7), eight equations are obtained, where using the four boundary conditions 

(Eq. (8)), 12 functions are obtained for the hollow sphere. 

4    RESULTS AND DISCUSSIONS   

As an example, a solid sphere with radius one meter made of Aluminum is considered. The material properties are: 

         6 3 12

1 2 070 ; 0.3; 23 10 1/ K ; 2707 / ; 204 / ; 0; 10 ; 903 /E GFa v kg m K W mK c J kgK               .

The initial temperature 
0T  is considered to be 293K . Now, an instantaneous hot outside surface temperature 

   31, 10T t t , where  t  is a unit Dirac function, is considered and the outside radius of the sphere is 

assumed to be fixed (  1, 0u t  ) . Figs. 1-4 show the wave fronts for the displacement and temperature distributions 

along the radial direction, where the comparison is well justified between the elastic theory and viscoelastic theory. 

For the second example, a mechanical shock wave of the form    121, 10u t t is applied to the outside surface of 

the sphere, where surface is assumed to be at zero temperature (  1, 0T t  ). Figs. 5-8 show the wave fronts for the 

displacement and temperature, where the comparison is well justified between the elastic theory and viscoelastic 

theory. The convergence of the solutions for these examples is achieved by consideration of 2000 eigenvalues used 

for the H-Fourier expansion. More than these numbers of eigenvalues result in the increased round-off and 

truncation errors, which affect the quality of the graphs. The convergence of solution is faster for displacement in 

comparison with the temperature. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Temperature distribution due to input    31, 10T t t  

at 55 10 s. 
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Fig.2 

Displacement distribution due to input    31, 10T t t  

at 55 10 s. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Temperature distribution due to input    31, 10T t t  

at 41 10 s. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Displacement distribution due to input    31, 10T t t  

at 41 10 s. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Temperature distribution due to input    121, 10u t t  

at 55 10 s. 
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Fig.6 

Displacement distribution due to input    121, 10u t t  

at 55 10 s. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Temperature distribution due to input    121, 10u t t  

at 41 10 s. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Displacement distribution due to input     121, 10u t t  

at 41 10 s. 

5    CONCLUSIONS 

In the present paper, an analytical solution for the coupled thermoviscoelasticity of thick sphere under radial 

temperature is presented. Figs. 1 to 8 show relaxation time effect on variation of displacement and temperature. It is 

observed that the peak value of Classic coupled thermoelastic theory for displacement and temperature increases. 

The method is based on the eigenfunctions Fourier expansion, which is a classical and traditional method of solution 

of the typical initial and boundary value problems. The non-competetive strength of this method is its ability to 

reveal the fundamental mathematical and physical properties and interpretations of the problem under studying. 

In the coupled thermoviscoelastic problem of radial-symmetric sphere, the governing equations constitute a 

system of partial differential equations with two independent variables, radius ® and time (t). The traditional 

procedure to solve this class of problems is to eliminate the time variable using the Laplace transform. The resulting 

system is a set of ordinary differential equations in terms of the radius variable, which solution falls in the Bessel 

functions family. This method of the analysis brings the Laplace parameter (s) in the argument of the Bessel 
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functions, causing hardship or difficulties in carrying out the exact inverse of the Laplace transformation. As a 

result, the numerical inversion of the Laplace transformation is used in the papers dealing with this type of problems 

in literature. In the present paper, to prevent this problem, when the Laplace transform is applied to the particular 

solutions, it is postponed after eliminating the radius variable r by H-Fourier Expansion. Thus, the Laplace 

parameter (s) appears in polynomial function forms and hence the exact Laplace inversion transformation is 

possible. 
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