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 ABSTRACT 

 The main goal of this research is to analyse the effect of angular velocity on stability and 
vibration of a simply supported Rayleigh rotating shaft. To this end, non-dimensional 
kinetic and potential energies are written while lateral vibration is considered. Finite 
element method is employed to discrete the formulations and Linear method is applied to 
analyse instability threshold of a rotating shaft. These results represent the significant 
effects of mass moment of inertia, centrifugal forces and rotational speed. Also, the 
differences between Rayleigh and Euler-Bernoulli modelling are delivered. Furthermore, 
the effect of slenderness ratio on instability threshold and the natural frequencies are 
illustrated. Increasing rotational speed leads to decreasing of instability threshold and 
forward and backward natural frequencies. These formulations can be used to choose the 
safe working conditions for a shaft. 
                                                                       © 2014 IAU, Arak Branch.All rights reserved.   
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1    INTRODUCTION 

 OTATING shaft is one of the most commonly employed mechanical elements for power transmission such   
as drill strings and gas turbines. Vibrations occur in rotating machinery due to centrifugal force, gyroscopic 

effect, unbalance mass, external forces and power transmission. Many researches analyze vibration and instability 
threshold of rotating shafts.  

Grybos [1] considered the effect of shear deformation and rotary inertia of a rotor on its critical speeds. Choi et 
al. [2] presented the consistent derivation of a set of governing differential equations describing the flexural and the 
torsional vibrations of a rotating shaft while a constant compressive axial load was acted on it. Jei and Leh [3] 
investigated the whirl speeds and mode shapes of a uniform asymmetrical Rayleigh shaft with asymmetrical rigid 
disks and isotropic bearings. Singh and Gupta [4] studied Free damped flexural vibrations analysis of composite 
cylindrical tubes using beam and shell theories. Kang and Tan [5] studied transverse waves propagating in an 
infinitely long rotating Timoshenko shaft subjected to axial forces and the effects of rotation speed, axial force and 
axial deformation are found. Delivered model included the contributions of axial deformation to the transverse 
vibration of the rotating shaft. Jun and Kim [6] studied free bending vibration of a rotating shaft composed of multi-
step segments. In this research, shaft is modeled as a Timoshenko beam and gyroscopic effect and torque applied at 
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each part of the shaft are considered. Mohiuddin and Khulief [7] represented a finite element formulation of the 
dynamic model for a rotor-bearing system. In this research, the elastodynamic model of coupled bending and 
torsional motions of the rotating shaft is derived and gyroscopic effects and the inertia coupling between bending 
and torsional deformations are considered. Gu and Cheng [8] studied the dynamic response of a high-speed spindle 
subject to a moving mass while shaft is modelled as a high-speed rotating shaft using Timoshenko beam theory and 
the effects of mass moving speed, the Rayleigh coefficient and the mass ratio are discussed. Behzad and Bastami [9] 
investigated the effect of shaft rotation on its natural frequency. In this model, natural frequencies are studied while 
the gyroscopic effect, axial force originated from centrifugal force and Poisson effect are considered. Banerjee and 
Su [10] developed dynamic stiffness matrix of a spinning composite beam to investigate its free vibration 
characteristics including bending–torsion coupling effect. Hosseini and Khadem [11] studied free vibrations of an 
in-extensional simply supported rotating shaft with nonlinear curvature and inertia. In this research rotary inertia and 
gyroscopic effects are included, but shear deformation is neglected and the method of multiple scales is used to 
analyze free vibrations of the shaft.  

In previous research, the effects of moment of inertia and centrifugal force weren’t considered as an important 
factor on instability threshold and forward and backward natural frequencies of a Rayleigh shaft. So the main idea of 
this research is to analyze instability threshold and forward and backward natural frequencies of a Rayleigh shaft 
while the effects of centrifugal force, shaft moment inertia, gyroscopic effect and bending deformation by Euler-
Bernoulli theory are considered. In this model, Rayleigh shaft is used because the results represent the significant 
effects of centrifugal force produced by moment of inertia. In Euler-Bernoulli shaft, moment of inertia isn’t 
considered and the formulation cannot detect instability threshold of the shaft. Also considering large slenderness 
ratio, shear deformation’s effect is neglected.  

In this research, considering lateral and axial vibration, kinetic and potential energies of an element of a Rayleigh 
rotating shaft are derived. In kinetic energy, translational and rotational energy, gyroscopic and centrifugal effects 
are considered and a constant rotational speed is assumed. In potential energy, the bending deformation is 
considered. Then, finite element method is employed to discrete the integral energy equations and the global 
matrixes are assembled. Then using Lagrange formula, the vibration equations are obtained. Considering static 
instability and dropping time dependent terms in vibration equations, instability threshold equations are obtained. 
Solution of these equation leads to equilibrium position and its instability can be found by examining the sign of 
second order derivative of energy equations. Results represent the significant effects of moment of inertia and 
centrifugal terms on forward and backward frequencies and instability threshold, so they cannot be neglected. Also 
the effects of slenderness ratio on forward and backward natural frequencies and instability threshold are delivered.  

2    FORMULATION  

Referring to Fig.1, the kinetic and potential energies of an element of a shaft in a rotating coordinate (with constant 
angular velocity   about x  axis) can be written as (Yigit and Christoforou, [12] and [13]):  

    2 21
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Eq. (1) represents bending potential energy of a shaft’s element. In this equation, v  and w  are the shaft’s 

deflections in y  and z  (lateral) directions respectively, E  is the Young’s modulus of elasticity, eI  is the area 

moment of inertia, ex  is the global coordinate of the first node of element, eI  is the length of element and    

denotes partial derivative with respect to x . Also, index e  refers to element. Eq.(2) represents the kinetic energy of 

a shaft’s element which produced by lateral vibrations. In this equation, 
s

  is the density,   is the shaft angular 

velocity, 
e

J  is mass moment of inertia and ( )  denotes partial derivative with respect to time  t . 

Using the following variables, the energy equations can be converted to a non-dimensional form. 
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For simplicity, in the following equations the sign (  )  aren’t written in non-dimensional variables.  
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Using finite element method and beam’s shape functions, integral equations of energies are converted to scalar 

ones. Beam’s shape functions delivered in Eqs. (4) and (5). In these relations, the variables 
i

v , 
i

w , 
vi
  and 

wi
  are 

the displacement and slope of the element’s nodes, and indexes 1 and 2 refer to the element’s nodes numbers. Also 

 
i

   and  
i

   refer to shape functions of the beam element which represented in the following equations.  
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In Eq. (6),   is the local coordinate of the element and 1x  and 2x  are the global coordinates of the first and 

second nodes of the element, respectively. Also eL  is the length of the element. These parameters are delivered in 

Fig.1. 
Substituting Eqs.(4) and (5) into non-dimensional energy equations and integrating, leads to following equations:  
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For simplicity to find the effect of angular velocity, the parameter   is written outside of kinetic energy 

matrices. In discrete kinetic energy equation, phrases have coefficient   are known as gyroscopic terms and the 

ones have coefficient 2  are known as centrifugal terms. Because the formulations of the above matrices are too 
massive, they aren't represented here.  

 

 

 
 
 
 
 
 

Fig. 1  
The scheme of a rotating shaft. 
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3    TOTAL ENERGY EQUATIONS    

The vectors and matrixes of elements are assembled to obtain the global ones. The notations of global vectors and 
matrixes are similar to the ones used for elements but the index e  which represents “element”, is dropped. To apply 
boundary conditions of simply supported beam, the lateral displacements of the first and last nodes are deleted.  

The final forms of kinetic and potential energies are as follow:  
 

            

            

2

2

1 1

2 2

1 1

2 2

T T Tvv vvJz vvJy wvJy

T T Tww wwJy wwJz vwJz

T v M M v v M v w M v

w M M w w M w v M w

 

 

     

    

              

              

  

  
 (9) 

 

       1 1

2 2

vv ww

e

T T
U v K v w K w         (10) 

 

        

        
1 2 2 1 2 2 1 21 2

1 2 2 1 2 2 1 21 2

T

w w n n nw n w n n

T

v v n n nv n v n n

v v v v v v v

w w w w w w w

   

   





 

 

 

 
 (11) 

4    EQUATIONS OF MOTIONS AND EQULIBRIUM POSITION    

Equations of motions should be found to analyse vibration and instability threshold of the shaft. To this goal, the 
Lagrangian of the system is defined by   as represented in Eq. (12) and the Lagrange formula (i.e Eq. (13)) is 
applied to it. The results are represented in Eqs. (14) and (15).  
 

T U    (12) 

 0d

dt q q

 
 

 
 
 
 

 (13) 

            2 0vv vvJz vvJy wvJy vwJz vv
M M v M v M w M w K v

                                    (14) 

            2 0ww wwJy wwJz vwJz wvJy ww
M M w M w M v M v K w

                                    (15) 

 
Eqs. (14) and (15) are the vibrational equations of a Rayleigh rotating shaft. In these equations, the phrases with 

2  coefficients are the centrifugal terms and the phrases with  , are the gyroscopic terms. In these equations, the 
centrifugal terms have negative sign, so they tend to decrease the stiffness and stability of the shaft. Using 
conventional methods, the forward and backward natural frequencies of the Rayleigh shaft can be found.  

To analyse the instability, equilibrium positions of the shaft should be found and then, its instability should be 
examined. In this research, the static instability of shaft is investigated, so the time dependent terms can be dropped 
from energy equations (Timoshenko and Gere [14]) and static Lagrangian is formed as Eq. (16).  

 

0, 0s v w 
      (16) 

 
Applying Lagrange formula to static Lagrangian, the equilibrium equations can be found (Timoshenko and Gere 

[14]). As a result, the ordinary differential equations are converted to algebraic equations such as those represented 
in the following equations:  
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Solving the above equations concludes equilibrium positions (Timoshenko and Gere [14]) which 

is     0
E E

v w  . This results  represent straight attitude of the shaft. 

Now, examining the sign of second order derivative of the static Lagrangian, the stability of the equilibrium 
position can be found (Timoshenko and Gere [14]) as follow:  
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If the matrix of second order derivatives of the static Lagrangian is positive definite, the equilibrium position is 

stable, otherwise it is unstable (Timoshenko and Gere [14]; Hildebrand [15]). So the following relation is obtained 
for the shaft stability reshold:  
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Eliminating zero matrices in Eq.(22) and considering symmetry of cross section which leads to the same 

matrices in v  and w direction, the condition can be simplified as below:  
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Eq.(23) represents the instability threshold of the shaft. Substituting the parameters of the shaft in obtained 

conditions, its stability can be specified. If all Eigen values of the matrices in Eq. (23) (or Eq. (22)) are positive, the 
shaft is stable, otherwise, if at least one of the Eigen values is zero or negative, the shaft is unstable.  

5    NUMERICAL RESULTS 

The vibration and stability formulation developed above is applied to illustrative example to verify and represent 
results. The first set of results represents validation of formulation.  

The forward and backward natural frequencies of a rotating shaft with simply supported ends are represented in 
the following equation (Rao, [16]). 
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Using vibrational equations (Eqs. (14) and (15)) and dropping centrifugal terms (terms with 2 ), the obtained 
results for backward and forward natural frequencies are the same as Eq.(24).  

Also, assigning 0   in Eqs. (14) and (15), the obtained natural frequencies are the same as the natural 
frequencies of a simply supported beam.  

 

Table 1 
Data used in the modeling. 

6 element used in modelling 11 2
2 10 /E N m   

t
   3

7850 /Kg m   

10D mm   
 

The parameters delivered in Table 1. are used in following simulations. The first part of obtained results is 
delivered in Fig.2  for 

1
15

D
  . In this figure, first forward and backward natural frequencies of a shaft are delivered 

while centrifugal terms are considered and dropped. In this figure, the centrifugal terms are considered in .Cent  
curves while they are neglected in .Gyr  curves. On the other hand, the .Cent  curves are obtained by Euler-

Bernoulli model of the shaft, whereas .Gyr  curves are delivered by Rayleigh model. This figure shows that as the 

non-dimensional rotational speed increases, the difference between .Cent  and .Gyr  curves become large. This 

figure represents the significant effects of centrifugal terms which produced by the moment of inertia of a Rayleigh 
shaft, so these terms couldn’t be neglected in the modelling of a rotating shaft.  

It should be noted that without considering moment of inertia and centrifugal terms (i.e. Euler-Bernoulli 
assumption), the forward natural frequencies have an ascending curve. However, considering these effects (i.e. 
Rayleigh assumption) causes an ascending curve at first and a descending curve at the follow. These effects are 
produced by the negative sign of centrifugal terms which tend to reduce the stiffness of the shaft.  
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Fig. 2  
First forward and backward natural frequencies by 
considering and dropping centrifugal terms for 

1
15

D
  . 

 
 
The effects of non-dimensional rotational speed on the first and second forward and backward natural 

frequencies are delivered in Fig.3 and Fig.4 for 
1

15
D

  . As shown in these figures, both of natural frequencies 

decrease as the rotational speed increases and the first backward frequency vanishes at a specific rotational speed. 
This rotational speed is known as critical rotational speed (CRS) which causes shaft’s instability. At CRS, the 
centrifugal force and moment of inertia of Rayleigh shaft overcome the stiffness of the shaft so the first backward 
natural frequency tens to zero. The CRS only can be detected for a Rayleigh rotating shaft and for an Euler-
Bernoulli beam, this threshold cannot be achieved.  
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Fig. 3 
The effects of non-dimensional rotational speed on 
the first forward and backward natural frequencies 
for 
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15

D
  . 
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Fig. 4 
The effects of non-dimensional rotational speed on 
the second forward and backward natural frequencies 
for 
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15

D
  . 
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Fig. 5  
The effect of rotational speed on first backward 
natural frequency of a shaft for different slenderness 
ratio. 
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Fig. 6  
The effect of slenderness ratio on CRS. 
 

 
 
In the next step, the effects of rotational speed on first backward natural frequency of a Rayleigh rotating shaft 

are delivered in Fig.5 for different slenderness ratios. As shown in this figure, all backward natural frequencies 
decrease as rotational speed increases. Also in this figure, the effects of slenderness ratio on first backward natural 
frequency are represented. As the slenderness ratio increases, the non-dimensional first backward natural frequency 
decreases. Additionally, the effects of slenderness ratio on CRS are delivered in Fig.5, and CRS deceases as 
slenderness ratio increases. As shown in previous results, the CRS depends on parameters of the shaft such as 
slenderness ratio, so in the follow, the effect of slenderness ratio on CRS is delivered in Fig.6. As shown in this 
figure, CRS decreases as slenderness ratio increases and approach to the first natural frequency of a simply 
supported beam. This figure shows that as the slenderness ratio increases, centrifugal force and the effects of 
moment of inertia become large, so they cannot be neglected.  

6    CONCLUSIONS 

In this research, the effects of angular velocity on stability and vibration of a simply supported Rayleigh rotating 
shaft were analysed. To this end, non-dimensional kinetic and potential energies were written while lateral 
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vibrations were considered and finite element method was employed to discrete the formulations. Then linear 
stability method was applied to analyse instability threshold of a Rayleigh rotating shaft. In the follow, the 
significant effects of moment of inertia and centrifugal forces on the first and second forward and backward natural 
frequencies were delivered, so these effects couldn’t be neglected. On the other hand, the results represented the 
differences between Euler-Bernoulli and Rayleigh shaft. Considering moment of inertia (Rayleigh shaft), the shaft 
might become unstable, however an Euler-Bernoulli model couldn’t detect instability threshold. Also, increasing of 
the shaft slenderness ratio led to decreasing of the natural frequencies and critical rotational speed. These 
formulations can be used to choose the safe working conditions for a Rayleigh shaft. As future work, this 
formulation can be applied to different boundary conditions. Also this formulation can be mixed with an axially 
excited shaft to find unstable zone. Moreover, the shaft can be modelled by Timoshenko theory and the effects of 
shear deformation can be examined.  
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