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 ABSTRACT 

 A two dimensional generalized thermoelastic problem of a thick circular plate of 

finite thickness and infinite extent subjected to continuous axisymmetric heat supply 

and an internal heat generation is studied within the context of generalized 

thermoelasticity. Unified system of equations for classical coupled thermoelasticity, 

Lord-Shulman and Green-Lindsay theory is considered. An exact solution of the 

problem is obtained in the transform domain. Inversion of Laplace transforms is 

done by employing numerical scheme. Mathematical model is prepared for Copper 

material plate and the numerical results are discussed and represented graphically.    

                                   © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE last few decades has seen a rapid development of generalized thermoelasticity, so as to overcome the 

shortcomings in the classical uncoupled and classical coupled thermoelasticity (CCTE) theories [1,2]. The 

CCTE predicts infinite speed of propagation of thermal disturbances which is contrary to the observed phenomena. 

It also gives unsatisfactory description of thermoelastic behavior of materials at low temperatures, inaccurate in 

studying the response of short laser pulse. Thus, the first modification to CCTE was put forth by Lord and Shulman 

[3] also known as extended thermoelasticity (ETE), wherein one relaxation time was introduced in the Fourier’s law 

of heat conduction to obtain a hyperbolic heat conduction equation. The second modification was made by Green 

and Lindsay [4] also known as temperature rate dependent thermoelasticity (TRDTE), by the introduction of two 

different relaxation times into the constitutive relations of stress tensor and entropy equation. In TRDTE, Fourier's 

law of heat conduction is not violated if the body under consideration has a centre of symmetry. A detailed 

discussion on dynamic problems of thermoelasticity and theory of thermal stresses in generalized thermoelasticity 

can be found in [5,6]. Chandrasekariah [7] has referred to the wave like thermal disturbance as “The Second sound”. 

Hetnarski and Ignaczak [8] examined five generalizations to the coupled theory and obtained many of important 

analytical results. Tripathi et al. [9] discussed a dynamic problem of generalized thermoelasticity in Lord-Shulman 

theory for a semi-infinite cylinder with heat sources. Maghraby and Abdel Halim [10] studied a problem of 

generalized thermoelasticity in Lord-Shulman theory for a half space subjected to a known axisymmetric 

temperature distribution. Aouadi [11] studied the discontinuities in an axisymmetric problem of thermoelasticity 
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without heat source in the context of generalized thermoelasticity. Tripathi et al. [12] studied a problem of 

generalized thermoelastic diffusion interactions in a thick circular plate. Youssef [13] discussed a two dimensional 

generalized thermoelastic problem for a half space subjected to ramp type heating. Recently, Tripathi et al. [14, 15] 

discussed problems on generalized thermoelastic diffusion in a half space due to thermal and mechanical sources 

under axisymmetric distributions. 

In the present paper, the work of Tripathi et al. [12] has been modified by considering a continuous 

axisymmetric heat supply with internal heat generation to a thick circular plate of infinite extent and finite thickness 

within the context of unified system of equations in classical coupled, Lord-Shulman and Green-Lindsay theory. The 

exact solutions for temperature distribution, displacement and the stress components are obtained in the Laplace 

transform domain. Numerical inversion of Laplace transform is performed based on Gaver-Stehfast [16-18] 

algorithm which is considerably more stable and computationally efficient than inversion using the discrete Fourier 

transform. All the integrals were calculated using Romberg’s integration technique [19] with variable step size. The 

application of an internal heat generation is of particular interest in many engineering problems like thick-walled 

pressure vessels, such as a nuclear containment vessel, a cylindrical roller, etc. 

2    FORMULATION OF THE PROBLEM 

Consider a thick circular plate of thickness 2b occupying the space D defined by 0 ,r b z b     . Let the 

plate be subjected to a continuous axisymmetric temperature field dependent on the radial and axial directions of the 

cylindrical co-ordinate system. For time 0t , heat is generated within the plate at the rate ( , , )Q r z t . Under these 

conditions, the thermoelastic quantities in a semi-infinite thick circular plate are required to be determined. 

We take the axis of symmetry as the z axis and the origin of the system of co-ordinates is at the middle plane 

between the upper and lower faces of the plate. The problem is studied using the cylindrical polar co-

ordinates ( , , )r z . Due to the rotational symmetry about the z axis, all quantities are independent of the co-

ordinate .  

The unified field equations governing the displacement, the thermal fields and the stress-strain-temperature 

relations in the context of TRDTE, ETE and CCTE for a homogeneous and isotropic medium are given by [11] 

Equation of motion 

 

  ,1i,jj j,ji i1( , u u uiT
t

r     


    


 
 
 

 
 

(1) 

 

Equation of heat conduction 

 

 
2

, 0 0 0 0 ,2
1ii E j jKT C T T u Q

t tt
     

    
       

    
 

 

(2) 

 

The constitutive relations 

 

   ij , , , 1i j j i i i iju u u T T           
 (3) 

 

where   and   are Lamé’s constants, 0  and 1  are relaxation times,   is a material constant given 

by (3 2 ) ,t t       is the coefficient of linear thermal expansion, 0T  is the reference temperature chosen such 

that 0 0( ) / 1T T T  . 

The use of symbol 0  in Eq.(2) makes these fundamental equations possible for three different theories of 

thermoelasticity. For classical coupled thermoelasticity (CCTE) theory, 0 0 11, 0     ; for the Lord-Shulman 

(ETE) theory, 0 1 01, 0, 0     ; for Green-Lindsay (TRDTE) theory, 0 1 00 , 0     . 

The dilatation e is given by  



                                                                                  Generalized Thermoelastic Problem of a Thick Circular Plate…                 117                     

 
 

© 2017 IAU, Arak Branch 

, ,

1
( )

2
ij i j j ie u u   and 

iie e  
 

(4) 

 

The displacement vector, thus, has the form ( ,0, )u u w . The equations of motion can be written as:      

     
2

2

12 2
( ) 1

e T u
u u

r t rr t


     

    
       

    
 

 

(5) 

 
2

2

1 2
( ) 1

e T w
w

z t z t
     

    
      

    
 

 

(6) 

 

 The generalized equation of heat conduction has the form 

 
2 2

2

0 0 0 0 0 02 2
1EK T C T T e Q

t t tt t
       

        
           

        
 

 

(7) 

 

where T is the absolute temperature and e is the dilatation given by the relation  

 

 
1u u w w

e ru
r r z r r z

   
    

   
 

 

(8) 

 

where the Laplacian operator is given by 
2 2

2

2 2

1

r rr z

  
   

 
 

The following constitutive relations supplement the above equations 

 

0 12
u T

e T T
r t

    
 

     
 

 
 

(9) 

 

0 12rr

u T
e T T

r t
    

  
     

  
 

 

(10) 

 

0 12zz

w T
e T T

z t
    

  
     

  
 

 

(11) 

 

rz

u w

z r
 

  
  

  
 

 

(12) 

 

0r z     (13) 

 

We shall use the following non-dimensional variables 

 

0 0 0 0 1 0 0 1 0 0

0
1 1 0 1 2 2

1 0

r r , z z , u u , w w , t c t , c , ,

( )
, c ,

( 2 ) ( 2 )

ij

ij

T T Q
Q

Kc


        



 
   

    

            


   

 
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where 1 E
0

c C

K


   is the dimensionless characteristic length, 

1

2
c

 




  is the speed of propagation of 

longitudinal wave.  

Using the above non-dimensional variables, the governing Eqs. (5)-(13) take the form, 

 
2

2 2 2 2

12 2

1
( 1) 1

e u
u u

r t rr t


   

    
       

    
 

 

(14) 

 
2

2 2 2 2

1 2
( 1) 1

e w
w

z t z t


   

    
      

    
 

 

(15) 

 
2 2

2 2

0 0 0 0 02 2
1e Q

t t tt t
        

        
           

        
 

 

(16) 

 

 2 2
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u
e

r t
    

  
     

  
 

 

(17) 

 

   













t
e
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u
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(18) 

 

 2 2

12 2 1zz

w
e

z t
    

  
     

  
 

 

(19) 

 

2rz

u w

z r


  
  

  
 

 

(20) 

                                                                                          

where  
2

2 0( 2 )
,

( 2 )E

T

C

 
 

   


 


.  

 

Using Helmholtz decomposition theorem, we seek the displacement components u and w in the form, 

 
2

u
r r z

  
 
  

 
 

(21) 

 
2

2

1
w

z r rr

     
   
  

 
 

(22) 

 

where the potential functions   and   are the Lame’s potentials representing irrotational and rotational parts of the 

displacement vector u  respectively.  

From Eqs. (4), (21) and (22), we obtain 

 
2e    (23) 

 

Using Eqs. (21)-(23) into Eqs. (14)-(16), we get, 

 
2

2

12
1 0

tt
  

   
       

   
 

 

(24) 
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2
2 2

2
0

t
 

 
   

 
 

 

(25) 

 
2 2

2 2 2

0 0 0 0 02 2
1 Q

t t tt t
        

        
             

        
 

 

(26) 

                                                                                                                                     

Eq.(25) for the function   represents a wave equation with wave velocity 1 /v  . This represents a transverse 

wave and it has no effect on temperature. Eq.(26) represents a longitudinal thermal wave moving with velocity 

01 /Lv  . 

We shall assume that the initial state of the medium is quiescent. The boundary conditions of the problem are 

taken as: 

 

0 ( , ) ,g F r z z b
z


   


 

 

(27) 

 

and the traction free surface stress functions, 

 

0,zz rz z b      (28) 

3    ANALYTICAL SOLUTION  

Applying the Laplace transform defined by the relation, 

 

 
0

( , , ) ( , , ) ( , , )ptf r z p L f r z t e f r z t dt


    
 

 

and the Hankel transform of order zero with respect to r of a function ( , , )f r z p  defined by the relation, 

 

*

0

0

( , , ) ( , , ) ( , , ) ( )f z p H f r z p f r z p r J r dr 


      
 

 

where 
0J  is the Bessel function of the first kind of order zero. The inverse Hankel transform is given by the relation  

 

1 * *

0

0

( , , ) ( , , ) ( , , ) ( )f r z p H f z p f z p J r d    


       
 

                                                                   

Applying Laplace and Hankel transform to Eqs. (24)-(26), we get, 

 

   2 2 2 * *

11 0D p p         (29) 

 

 2 2 2 2 * 0D p      (30) 

 

    2 2 2 * 2 2 *

0 0 0 0 01 (1 )D p p p p D p Q                   (31) 

 

where /D z   . On eliminating 
*  between Eqs. (29) and (31), we get, 
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    2 2 2 2 *

1 2 1 0 01 (1 )D k D k p p Q          (32) 

 

where 
1k  and 

2k  are the roots of the characteristic equation given by, 

 

 4 2 2 2 2 3

0( ) 2 ( ( ) ) (1 ) 0k f p k f p p p           (33) 

 

where )1)(1()1()(
1000

2 pppppppf   . The solution of Eq. (32) can be written in the form,   

 
2

* * *

1
i p

i

  


   
 

(34) 

 

where *

i  is a general solution of the homogeneous differential equation given by 

 

 2 2 * 0 , 1,2.i iD i     (35) 

 

The solution of Eq. (35) can be written in the form 

 
* ( , )cosh( ) , 1,2i i iC p k z i    (36) 

 

and *

p  is the particular integral satisfying the equation  

 

    2 2 2 2 *

1 2 1 0 01 (1 )pD k D k p p Q          (37) 

 

We take the internal heat generation ( , , )Q r z t  in the following form 

 

0 ( ) ( )cosh
( , , )

2

q t r z
Q r z t

r

 


  

 

(38) 

 

This is a cylindrical shell heat source releasing heat instantaneously at 0t   and situated at the centre 0r   

varying in the axial direction where 
0q  denotes the strength of the internal heat generation. Let 0

0
2

q
Q


 . 

On applying the Laplace and Hankel transform to Eq. (38), we get, 

 
*

0 coshQ Q z  (39) 

 

The solution of the Eq. (37) can be represented as, 

 

  

  
0 1 0 0*

2 2

1 2

1 1
cosh

1 1
p

Q p p
z

k k

  


 
 

 
 

 

(40) 

 

The complete solution ofEq. (32) is given by, 

 

  

  

2
0 1 0 0*

2 2
1 1 2

1 1
( , )cosh( ) cosh

1 1
i i

i

Q p p
C p k z z

k k

  
 



 
 

 
  

 

(41) 

 

On using Eq. (41) into Eq. (29), we get, 
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  
  

2 22 2 22
0 0 0*

2 2
1 1 1 2

1 1
( , )cosh( ) cosh

1 1 1

i
i i

i

Q p pk p
C p k z z

p k k

  
 



   
 

  
  

 

(42) 

 

On solving Eq. (30), we get, 

 
* ( , )sinh ( )D p az   (43) 

 

where 2 2 2 2a p   . In Eqs. (41)-(43), the constants
1 2( , ), ( , )C p C p   and ( , )D p  depend on both  and p. 

Using Eqs. (21) and (22) in Eqs. (19) and (20), the stress components * *,zz rz   take the form, 

 

 
*

* 2 2 2 * 22 2zz p
z


    


  


 

 

(44) 

 

 * 2 2 22 2rz H D D p
r

   
       

 
 

(45) 

 

where H represents the Hankel transform. 

Now applying the Laplace and Hankel transform to the boundary conditions (27) and (28), we get, 

 
*

*

0 ( , ) ,g F z z b
z





   


 

 

(46) 

 
* * 0 ,zz rz z b      (47) 

 

Here, we consider the function ( , )F r z which falls off exponentially as one moves away from the centre of the 

plate in the radial direction and increases symmetrically along the axial direction given by, 2( , ) , 0rF r z z e      

On applying Laplace and Hankel transforms to the above function, we get, 

 

 

2
*

3/2
2 2

( , )
z

F z
p




 



 

 

(48) 

 

Making use of the values of , zz  and rz  in the boundary conditions (46)-(47) and with the aid of Eq. (48), we 

get, 

 

    
    

2 2 2 2 2 22
0 0 0 0

3/22 2 2 21 1 1 2
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sinh( )

(1 ) 1 1

i i i i

i

C k p k k b Q p p g b
b

p k k p

    

  

    
 

   
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(49) 
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i
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  
  



   
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(50) 
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On solving Eqs.(49)-(51) which is a system of linear equations with
1 2( , ), ( , )C p C p  and ( , )D p as unknown 

parameters, we get the complete solution of the problem in the Laplace transform domain. 

3.1 Inversion of Hankel transform 

On applying inversion of Hankel transform to equation (42), we obtain, 
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(52) 

 

Using Eqs.(41)-(43) in Eqs. (21)-(22) and taking inverse Hankel transform, it yields the solution for 

displacement components in Laplace transform domain, 
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(54) 

Applying Laplace transform to Eqs. (17)-(19) and using the solutions given in Eqs. (52)-(54), we obtain the 

stress components in the Laplace transform domain, 
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(57) 

 

 

Eqs. (52)-(57) present the complete solution of the problem in the Laplace transform domain.  
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4    INVERSION OF DOUBLE TRANSFORMS 

Due to the complexity of the solution in the Laplace transform domain, the inverse of the Laplace transform is 

obtained using the Gaver-Stehfast algorithm. Gaver [16] and Stehfast [17,18] derived the formula given below. By 

this method the inverse ( )f t  of the Laplace transform ( )f p  is approximated by, 

 

1

ln 2 ln 2
( ) ( , )

K

j

f t D j K F j
t t

 
  

 
  

 

(58) 

with 

min( , ) (2 )!
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( )! !( 1)!( )!(2 )!
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j M

n m

n n
D j K

M n n n j n n j





 
   

  
 

(59) 

 

where K is an even integer, whose value depends on the word length of the computer used. / 2M K and m is the 

integer part of the ( 1) / 2j  . The optimal value of K was chosen as described in Gaver-Stehfast algorithm, for the 

fast convergence of results with the desired accuracy. The Romberg numerical integration technique [19] with 

variable step size was used to evaluate the integrals involved. All the programs were made in mathematical software 

Matlab. 

5    NUMERICAL RESULTS AND DISCUSSION 

Mathematical model is prepared with Copper material for purposes of numerical computations. The material 

constants of the problem are given below [11]  
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      

      

 

 

 

 

The numerical values for temperature , the radial displacement component u, the axial stress component zz  

have been calculated at the middle of the plane ( 0z  ) for different time instants 0.1 ,1.2t   along the radial 

direction and are displayed graphically for CCTE, ETE and TRDTE theories of thermoelasticity as shown in Figs. 1, 

2 and 3 respectively. The displacement component w vanishes at the middle plane of the plate and the differences 

among the different models for the other stress components are similar to those for the axial stress component
zz .                                     

From Figs. 1, 2, and 3, it is observed that at time 0.1t  , the CCTE, ETE and TRDTE theories show different 

results and for time 1.2t  , the ETE and TRDTE models are in somewhat agreement. This is due to the arrival of the 

elastic wave at the middle plane at this time. From Fig. 1, it is clearly seen that the non-dimensional temperature 

 drops gradually along the radial direction. It is also observed that at time 0.1t   the non-dimensional temperature 

 and axial stress zz exhibit non-zero values for all the three models of thermoelasticity. In addition, 

temperature and radial displacement u do not become identically zero due to presence of the continuous 

axisymmetric heat supply and internal heat generation within it. It is further observed from Fig.3 that at time 0.1t  , 

the axial stress zz  is initially tensile in nature and becomes compressive near 5.r  For time 1.2t  , the axial stress 

zz  is compressive in nature and becomes tensile after 5.r    
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Fig.1 

Temperature distribution   in the middle plane. 

  

 

 

 

 

 

 

 

 

 
Fig.2 

Radial displacement u distribution in the middle plane. 

  

 

 

 

 

 

 

 

 
Fig.3 

Axial stress component zz  in the middle plane. 

6   CONCLUSIONS 

In this study we have used the generalized theories of thermoelasticity i.e. ETE and TRDTE models to solve the 

problem for thick circular plate of infinite extent with continuous axisymmetric heat supply and internal heat 

generation within it and compared the models with CCTE. The generalized theories ETE and TRDTE models 

involve a hyperbolic wave equation, thus predicting finite speeds of heat propagation whereas the CCTE model 

involves a parabolic heat equation, thus predicting infinite speeds of heat wave propagation. Thus for small time the 

differences in results between the three theories are more visible as the heat wave takes time to reach the middle 

plane in ETE and TRDTE models. Thus for studying realistic engineering problems ETE and TRDTE models of 

generalized thermoelasticity must be studied instead of CCTE theory. As a special case, we have constructed a 

mathematical model for copper plate with axisymmetric heat supply and internal heat generation. Note that our 

numerical procedure successfully evaluated the solutions in the time domain. We may also conclude that the system 

of equations in this paper may prove to be useful in studying the thermal characteristics of various bodies in 

important engineering problems using the more realistic generalized models of thermoelasticity instead of CCTE. 
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