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ABSTRACT 
Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an 
internal pressure and a uniform temperature field is investigated. The material creep and 
mechanical properties through the radial graded direction are assumed to obey the simple power-
law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal 
and creep strains. Creep strains are time temperature and stress dependent.  Using equations of 
equilibrium, compatibility and stress-strain relations a differential equation, containing creep 
strains, for radial stress is obtained. Ignoring creep strains in this differential equation, a closed 
form solution for initial thermo-elastic stresses at zero time is presented. Initial thermo-elastic 
stresses are illustrated for different material properties. Using Prandtl-Reuss relation in 
conjunction with the above differential equation and the Norton’s law for the material uni-axial 
creep constitutive model, radial and tangential creep stress rates are obtained. These creep stress 
rates are containing integrals of effective stress and are evaluated numerically. Creep stress rates 
are plotted against dimensionless radius for different material properties. Using creep stress rates, 
stress redistributions are calculated iteratively using thermo-elastic stresses as initial values for 
stress redistributions. It has been found that radial stress redistributions are not significant for 
different material properties. However, major redistributions occur for tangential and effective 
stresses. 
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1    INTRODUCTION 

UNCTIONALLY graded materials are used in modern technologies for structural components such as those 
used in nuclear, aircraft, space engineering and pressure vessels. Elastic, plastic and creep stress analysis of 

these components have attracted wide attention due to combining different material properties and loading 
conditions. Time-dependent creep stress and damage analysis of thick-walled spherical pressure vessels of constant 
material properties have been investigated by Loghman and Shokouhi [1]. They studied the creep stress and damage 
histories of thick-walled spheres using the material constant creep and creep rupture properties defined by the theta 
projection concept [2]. Loading conditions included an internal pressure and a thermal gradient. Although intensive 
investigation considering creep of thick-walled spheres and cylinders with constant material properties can be found 
in the existing references- Loghman and Wahab [3], Sim and Penny [4]- little publication can be found dealing with 
time-dependent creep of FGM spheres and cylinders. Yang [5] presented a solution for time-dependent creep 
behavior of FGM cylinders. Following Norton’s law for material creep behavior and using equations of equilibrium, 
strain displacement and stress strain relations and considering Prandtl-Reuss relations for creep strain rate-stress 
equation, he obtained a differential equation for the displacement rate. There was no exact solution of the equation.  
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With some simplifications and using Taylor expansion series, however, he obtained the displacement rate and then 
the stress rates were calculated. When the stress rates were known, the stresses at any time were calculated 
iteratively. Creep deformation and stresses in thick-walled cylindrical vessels of FGM subjected to internal pressure 
were presented by You et.al. [6]. They obtained a closed form solution for steady state creep stresses in FGM 
cylinders. Thermal stresses were not considered and stress redistributions were not presented. Time-dependent 
deformation and fracture of multi-material systems at high temperature were presented by Xuan et. al. [7]. They 
considered a thick-walled sphere of FGM material subjected to an internal pressure. Using Norton’s law for material 
creep behavior and using equations of equilibrium, compatibility, stress-strain relations and considering the Prandtl-
Reuss relations, obtained a differential equation for the radial stress rate. Radial and circumferential stress 
distributions with different material creep properties after two hundred hours were illustrated.  In this work, 
however, thermal stresses are not included and stress redistributions are not considered. 

The main objective of this paper is to present a time-dependent creep stress redistribution analysis of FGM 
spheres. 

2    THEORETICAL ANALYSIS 
2.1 Basic formulation for thermo elastic creep stress analysis of FGM spheres 

Consider a sphere with an inner radius ir  and outer radius 0r  subjected to an internal pressure p and a uniform 

temperature field T. The total strains are the sum of elastic, thermal and creep strains 
 

    11 122 c
r r r rc c T= + + +  (1a) 

       12 11 12( ) c
rc c c T= + + + +  (1b) 

 
where 11 121 / ,  /c E c E= =-  and  ,  r are elastic and thermal expansion radial dependent coefficients 

respectively.  
In this study,   is considered to be a constant, ,  rE  and   are assumed to obey the power-law variation as 


0E E r=  and 

  0 .r r= =  

The equilibrium and compatibility equations in spherical symmetry are written as 
 

  2( )d
0

d
rr

r r

-
+ =  (2a) 

   d
0

d
r

r r

-
+ =  (2b) 

 
Substituting the radial and circumferential strains from Eqs. (1a) and (1b) into the compatibility Eq. (2b) and 

using equilibrium Eq. (2a) the following differential equation for the radial stress is obtained 
 

   




        
   

( ) 12
2 0 0 0 0

2

2 2 d 2d d 2 (1 2 )
(4 ) ( )

d (1 ) 1 1 d 1d

c
c cr r

r r

E r E r E r
r r T

r rr

+ +-
+ - - =- - - -

- - - -
 (3) 

 
where creep strains,  c

r  and 
c  on the right hand side of the above differential equation are time, temperature and 

stress dependent.  

2.2 Thermoelastic stress analysis of FGM spheres 

Ignoring the creep strain terms on the right hand side of the above differential equation gives the following 
differential equation for thermoelastic stress analysis 
 

  
  

2
2

2

d d
(4 ) 2

dd
r r

rr r Jr T
rr

+¢+ - - =  (4) 



Creep Stress Redistribution Analysis of Thick-Walled FGM Spheres                   117 

 

© 2010 IAU, Arak Branch  

where  
 




1 2

1

-¢ =
-

,  
 


0 02

1

E
J =-

-
 (5) 

 
It is obvious that the homogeneous solution to Eq. (4) can be obtained by assuming 

 
 r Cr=  (6) 

 
Substituting Eq. (6) into Eq. (4) one can obtain the following characteristic equation 

 
   2 (3 ) 2 0¢+ - - =  (7) 

 
The roots of Eq. (7) are 

 
  2

1

3 1
(3 ) 8

2 2

- ¢= + - +  (8a) 

  2
2

3 1
(3 ) 8

2 2

- ¢= - - +  (8b) 

 
Since 0.5 0> >  the discriminant of Eq. (7) is always greater than zero. Therefore, 1  and 2  are real and 

distinct. The homogeneous solution of Eq. (4) is therefore  
 

  1 2
1 2rh C r C r= +  (9) 

 
The particular solution of the differential Eq. (4) may be obtained as 

 
  1 2

1 2rp u r u r= +  (10) 

 
where 
 



 

2

1 2
1

( )
 d

( , )

r R r
u r

W r r

-
= ò  (11) 



 

1

1 2
1

( )
 d

( , )

r R r
u r

W r r
= ò  (12) 

 
in which  ( )R r Jr T+=  is the expression on the right hand side of Eq.(4) and W is defined as 
 

 
   

   
 

1 2

1 2 2 1

1

1
2 11 2 1

1 2

( , ) ( )
r r

W r r r
r r

+ -
- -

= = -  (13) 

 
Therefore, 1u  and 2u  may be obtained by the following integration 

 

  

  
 

 
 

      

2

1

2 1

0 0

20 0
1 1

2 1 12 1

2
21  d

(1 )( )( 2)( )

E T
r r E T

u r r
r

+

+ - +
+ -

-= =
- - + - +-ò  (14) 

  

  
 

 
 

      

1

2

2 1

0 0

20 0
2 1

2 1 22 1

2
21  d

(1 )( )( 2)( )

E T
r r E T

u r r
r

+

+ - +
+ -

-=- =-
- - + - +-ò  (15) 
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Substituting Eqs. (14) and (15) into Eq. (10) one can obtain the particular solution  
 

  


      
20 0

1 2

2

(1 )( 2)( 2)rp

E T
r + +=-

- + - + + - +
 (16) 

 
The complete solution of Eq. (4) can be written as 

 
    1 2 2

1 2r C r C r Gr + += + -  (17) 

 
where 
 

 
      

0 0

1 2

2

(1 )( 2)( 2)

E T
G =

- + - + + - +
 (18) 

 
Using Eq. (2a) the expression for the tangential stress may be written as 

 

   


    1 2 21 2
1 2

2
(1 ) (1 ) (1 )

2 2 2
C r C r Gr + ++ +

= + + + - +  (19) 

 
The constants 1C  and 2C  are determined from the boundary conditions  

 
at i rr r p=  =-  

at 0 0rr r =  =  
(20) 

 
Substituting the above boundary condition into Eq. (17) the constants 1C  and 2C  are obtained 

 
2 2 2

2 1 1 2

2 2
0 0 0

1

0 0

( )i i

i i

G r r r r pr
C

r r r r

     

   

+ + + +- +
=

-
 (21a) 

1 1 1

2 1 1 2

2 2
0 0 0

2

0 0

( )i i

i i

G r r r r pr
C

r r r r

     

   

+ + + +- -
=

-
 (21b) 

 
Substituting the constants 1C  and 2C  from Eqs. (21a) and (21b) into Eqs. (17) and (19) and using Eq. (18) the 

expressions for radial and circumferential thermoelastic stresses are obtained 
 

2 2

1

2 1 1 2

1 1 2 1 1 2

2

2 1 1 2 2 1 1 2

2 2
0 0 0 0

1 2 0 0

2 2
20 0 0 0

0 0 0 0

2 ( )
{[ ]

(1 )( 2)( 2)

( ) ( )
[ ] }

i i
r

i i

i i

i i i i

E T r r r r
r

r r r r

r r r r p r r r r
r r

r r r r r r r r

    


   

        
  

       

 


      

+ + + +

+ + + +
+ +

-
=

- + - + + - + -

- -
+ - +

- -

 

(22a) 
2 2

1

2 1 1 2

1 1

2

2 1 1 2

2 1 1 2

2 2
0 0 0 01

1 2 0 0

2 2
20 02

0 0

1 2
0 0

2 ( )
{(1 )[ ]

(1 )( 2)( 2) 2

( ) 2
(1 )[ ] (1 ) }

2 2

[(1 ) (1 ) )]
2 2

i i

i i

i i

i i

i

E T r r r r
r

r r r r

r r r r
r r

r r r r

p r r r r

r

    


    

    
  

   

   



  


      

  

 

+ + + +

+ + + +
+ +

-
= +

- + - + + - + -

- + +
+ + - +

-

+ - +
+

2 1 1 2
0 0ir r r  -

 

(22b) 
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The above thermoelastic stresses are the initial elastic stress distribution which will be changed with time as the 
creep process progresses. These thermoelastic stresses and the effective stresses are shown in Figs. 1-3 for different 
material properties. 

2.3 Time-dependent creep stress analysis of FGM spheres 

Considering the temperature field to be steady, the differential equation (3) containing creep strains may be rewritten 
in terms of creep strain rates as follows 
 

12
2 0 0

2

2 d 2d d 2 (1 2 )
(4 ) ( )

d (1 ) 1 d 1d

c
c cr r

r r

E r E r
r r

r rr

 




      
  

+-
+ - - =- - -

- - -

     (23) 

 
The creep strain rates are related to the current stresses and the material uniaxial creep constitutive model by the 

well-known Prandtl-Reuss equation 
 

[ ]c e
r r

e



  


= -


  (24a) 

[ ]
2

c e
r

e
 


  


= -


  (24b) 

 
in which the material uniaxial creep constitutive model is defined by the Norton’s equation 
 

( )( ) n r
e eB r =  (25) 

 
where 1

0( ) bB r b r=
 
and ( )n r is considered to be a constant 0( )n r n=  in this study. Substituting from Eq. (25) into 

Eqs. (24a) and (24b) one can obtain 
 

1( ) [ ]c n
r e rB r    -= -  (26a) 

1( )
[ ]

2

n
c e

r

B r
 


  

-

= -  (26b) 

The Von-Mises and Tresca’s equivalent stress are the same in spherical symmetry  
 

e r  = -  (27) 

 
In the absence of temperature field, tangential stress is always greater than radial stress. For many applicable 

loading combinations, however, tangential stress is greater than radial stress. Therefore, Eqs. (26a) and (26b) may be 
written as follows 
 

( )c n
r eB r =-  (28a) 

( )

2

n
c eB r



 =  (28b) 

 
Substituting from Eqs. (28a) and (28b) into differential Eq. (23) the following differential equation is obtained 

 
12

2 0
2

d d 2 (1 2 ) d 3
(4 ) {[ ]( ( ) )}

d (1 ) 1 dd
nr r

r e

E r
r r B r

r r rr

     
 

+-
+ - - =- +

- -

    (29) 

 
The homogeneous solution of this differential equation is therefore 
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1 2
1 2rh D r D r  = +  (30) 

 
where 1  and 2 are defined in Eqs. (8a) and (8b). The particular solution can be obtained similar to thermo-elastic 

solution as 

2

2 1
1 1

2 1

3
{[ ]( ( ) )}

1  d
( )

n
e

rE d
r B r

dr ru r
r



 



  + -

+
-=

-ò  (31) 

1

2 1
2 1

2 1

3
{[ ]( ( ) )}

1  d
( )

n
e

rE d
r B r

dr ru r
r



 



  + -

+
-=-

-ò  (32) 

 
Eqs. (31) and (32) may be written 

 

2 22 10
1

2 1

[ ( ) d 3 ( ) d ]
(1 )( )

n n
e e

E d d
u r B r r B r

dr dr
    

  
+ - + -= +

- - ò ò  (33) 

2 22 10
2

2 1

[ ( ) d 3 ( ) d ]
(1 )( )

n n
e e

E d d
u r B r r B r

dr dr
    

  
+ - + -=- +

- - ò ò  (34) 

 

Selecting 22u r  + -=  and 
d

d ( ) d
d

n
ev B r

r
= and using (  d .  d )u v u v v u= -ò ò  

integration by part one can 

obtain 
 

2 22 10
1 1

2 1

[ ( ) (1 ) ( ) d ]
(1 )( )

n n
e e

E
u r B r B r      

  
+ - + -= + - +

- - ò  (35) 

2 22 10
2 2

2 1

[ ( ) (1 ) ( ) d ]
(1 )( )

n n
e e

E
u r B r B r      

  
+ - + -=- + - +

- - ò  (36) 

 
Then, the particular solution may be written as 

 
1 2

1 2rp u r u r  = +  (37) 

 
The general solution for the radial stress rate may be written 

 
1 2 1 2

1 2 1 2r D r D r u r u r    = + + +  (38) 

 
Substituting from Eqs. (35) and (36) into Eq. (38) one can get the radial stress rate and then the tangential stress 

rate as 
 

1 2 1 1

2 2

10
1 2 1

2 1

1
2

[(1 ) ( ) d
(1 )( )

(1 ) ( ) d ]

n
r e

n
e

E
D r D r r r B r

r r B r

    

  

   
  

  

+ -

+ -

= + + - +
- -

- - +

ò

ò


 (39) 

1 1

2 2

101
1 1

2 1

1 20 02
2 2

2 1

( 1) [ (1 ) ( ) d ]
2 (1 )( )

( 1) [ [(1 ) ( ) d ]
2 (1 )( ) 2(1 )

n
e

n n
e e

E
r D r B r

E E
r D r B r r B

  


   


   

  


   

   

+ -

+ - +

= + + - +
- -

+ + - - + -
- - -

ò

ò


 (40) 
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Since inside and outside pressures do not change with time, the boundary conditions for stress rates at the inner 
and outer surfaces may be written 
 

at 0i rr r =  =  (41a) 
at 0 0rr r =  =  (41b) 
 
Using the above boundary conditions, the constants 1D  and 2D  are obtained 

 

2 1 1

2 1

1 2 1 2 2

0 0

10 0
1 1

0
2 1

1 1 1
2 0

{(1 )[( ) ( ( ) d )
(1 )( )(1 ( ) )

( ) d ) ] (1 ) [( ( ) d ) ( ) d ) ]}

i
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n
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   

 

       

  
  

    

- + -
=

-

+ - - + - + -
= = =

= - +
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- - - + -

ò

ò ò ò

 

(42) 
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0
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e r r e r r e r r

i

E
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  
  

    

- + -
=

-

+ - + - - + -
= = =

=- - +
- - -

- - - + -

ò

ò ò ò

 

(43) 
 

Substituting from Eqs. (42) and (43) into Eqs. (39) and (40) the stress rates can be written as follows 
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Radial and tangential stress rates are obtained from Eqs. (43) and (44) and plotted against dimensionless radius 
for different material properties in Figs. 4 and 5. When the stress rates are known, time-dependent creep stress 
redistributions at any time it  

are obtained iteratively 
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(47)
 

 
To calculate ( ) ( , )i

r ir t  and ( ) ( , )i
ir t  ,

the stresses at the time 1it -  
are used. The solution at zero time 0it =

corresponds to thermo-elastic stresses.  

3    RESULTS AND DISCUSSION 

The results presented here in this study are based on the following data for geometry, material properties, and 
loading conditions in a thick-walled FGM sphere 
 

o

30 6 o
1 0/ 1.2,  22000 MPa,  1.1 10 ,  5,  8,  0.3,  1.2 10  1 / C,

2,1, 1, 2,  200 C,  0,  100 MPa

o i o o o

o i

r r E b b n

T P P

 

 

- -= = = ´ =- = = = ´

= = - - = = =
 

 
Initial thermoelastic radial stresses at zero time are shown in Fig. 1. The boundary conditions for radial stresses 

at the inner and outer surfaces of the sphere are satisfied for all material properties. There are not significant 
differences among radial stresses for all material properties. Tangential thermo-elastic stresses at zero time are 
shown in Fig. 2 for different material properties. They are tensile throughout thickness. For 2 = =- and 

1, = =-  however, they are highly tensile at the inner surface of the vessel where the radial stresses are highly 

compressive. It means the maximum shear stress which is max ( ) / 2r  = -  will be very high at the inner surface 

of the vessel and can cause yielding to occur. Also highly tensile tangential stresses at the inner surface of the sphere 
will also decrease the fatigue life of the vessel. Therefore in selection of material for such a vessel, the material 
identified by 2 = =  is the best because of the best shear stress distribution throughout thickness. This can be 

well understood from Fig. 3 which shows the effective stress distribution throughout thickness for all four cases of 
material properties. Effective stresses are, indeed, twice as the maximum shear stresses max( 2 )e =  . Therefore, it 

is clear from Fig. 3, that the material with 2 = =  has a uniform and best shear stress distribution throughout 

thickness. In Fig. 3, a reference stress has also been identified in which the effective stresses are identical for all 
material properties. 

Radial and tangential stress rates are plotted against dimensionless radius for different material properties in 
Figs. 4 and 5. Fig. 4 shows that the radial stress rates are zero at the inner and outer surfaces of the sphere which 
satisfy the boundary conditions. The maximum rate of change of radial stresses belong to 2 = =-  and then

1, = =-  1 = =  and 2, = =  respectively. Therefore, minimum changes in radial stresses with time 

will take place for the material identified by 2 = =  as will be explained next in radial stress redistributions. 
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