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ABSTRACT
Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an
internal pressure and a uniform temperature field is investigated. The material creep and
mechanical properties through the radial graded direction are assumed to obey the simple power-
law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal
and creep strains. Creep strains are time temperature and stress dependent. Using equations of
equilibrium, compatibility and stress-strain relations a differential equation, containing creep
strains, for radial stress is obtained. Ignoring creep strains in this differential equation, a closed
form solution for initial thermo-elastic stresses at zero time is presented. Initial thermo-elastic
stresses are illustrated for different material properties. Using Prandtl-Reuss relation in
conjunction with the above differential equation and the Norton’s law for the material uni-axial
creep constitutive model, radial and tangential creep stress rates are obtained. These creep stress
rates are containing integrals of effective stress and are evaluated numerically. Creep stress rates
are plotted against dimensionless radius for different material properties. Using creep stress rates,
stress redistributions are calculated iteratively using thermo-elastic stresses as initial values for
stress redistributions. It has been found that radial stress redistributions are not significant for
different material properties. However, major redistributions occur for tangential and effective
stresses.
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1 INTRODUCTION

'UNCTIONALLY graded materials are used in modern technologies for structural components such as those

used in nuclear, aircraft, space engineering and pressure vessels. Elastic, plastic and creep stress analysis of
these components have attracted wide attention due to combining different material properties and loading
conditions. Time-dependent creep stress and damage analysis of thick-walled spherical pressure vessels of constant
material properties have been investigated by Loghman and Shokouhi [1]. They studied the creep stress and damage
histories of thick-walled spheres using the material constant creep and creep rupture properties defined by the theta
projection concept [2]. Loading conditions included an internal pressure and a thermal gradient. Although intensive
investigation considering creep of thick-walled spheres and cylinders with constant material properties can be found
in the existing references- Loghman and Wahab [3], Sim and Penny [4]- little publication can be found dealing with
time-dependent creep of FGM spheres and cylinders. Yang [5] presented a solution for time-dependent creep
behavior of FGM cylinders. Following Norton’s law for material creep behavior and using equations of equilibrium,
strain displacement and stress strain relations and considering Prandtl-Reuss relations for creep strain rate-stress
equation, he obtained a differential equation for the displacement rate. There was no exact solution of the equation.
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With some simplifications and using Taylor expansion series, however, he obtained the displacement rate and then
the stress rates were calculated. When the stress rates were known, the stresses at any time were calculated
iteratively. Creep deformation and stresses in thick-walled cylindrical vessels of FGM subjected to internal pressure
were presented by You et.al. [6]. They obtained a closed form solution for steady state creep stresses in FGM
cylinders. Thermal stresses were not considered and stress redistributions were not presented. Time-dependent
deformation and fracture of multi-material systems at high temperature were presented by Xuan et. al. [7]. They
considered a thick-walled sphere of FGM material subjected to an internal pressure. Using Norton’s law for material
creep behavior and using equations of equilibrium, compatibility, stress-strain relations and considering the Prandtl-
Reuss relations, obtained a differential equation for the radial stress rate. Radial and circumferential stress
distributions with different material creep properties after two hundred hours were illustrated. In this work,
however, thermal stresses are not included and stress redistributions are not considered.
The main objective of this paper is to present a time-dependent creep stress redistribution analysis of FGM

spheres.

2 THEORETICAL ANALYSIS
2.1 Basic formulation for thermo elastic creep stress analysis of FGM spheres

Consider a sphere with an inner radius 7 and outer radius 7, subjected to an internal pressure p and a uniform
temperature field 7. The total strains are the sum of elastic, thermal and creep strains

&, =¢,0, +2¢,0, +a,T +¢ (la)

£y =0, (¢ +ep)o, +a, T +s (1b)
where ¢, =1/E, ¢, =—v/E and «,, a,are elastic and thermal expansion radial dependent coefficients
respectively.

In this study, v is considered to be a constant, E, o, and «, are assumed to obey the power-law variation as
— » — — B
E=Eyr” and a, =a, = a,r".

The equilibrium and compatibility equations in spherical symmetry are written as

di+ 2(o, —0,)

r — O 2
dr r (22)

96 &8 (2b)
dr r

Substituting the radial and circumferential strains from Egs. (1a) and (1b) into the compatibility Eq. (2b) and
using equilibrium Eq. (2a) the following differential equation for the radial stress is obtained

2 _ 20.E (p+5) 2E N deS 2E #°
r? d Oz'r +r(4—¢)£—Mar __ a, oﬁ” T_ o dey  2Er (Sg _g:) 3
dr dr 1—-v) 1—p l—o dr 1-u

where creep strains, ¢ and &, on the right hand side of the above differential equation are time, temperature and
stress dependent.

2.2 Thermoelastic stress analysis of FGM spheres

Ignoring the creep strain terms on the right hand side of the above differential equation gives the following
differential equation for thermoelastic stress analysis

2

d d
P9 - S 2pvlo, = JrT @)
dr dr
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where

o — 1-2v J:_ZaOEOﬂ
1-v 1-v

It is obvious that the homogeneous solution to Eq. (4) can be obtained by assuming
o, =Cr

Substituting Eq. (6) into Eq. (4) one can obtain the following characteristic equation
A +B—p)A—2¢p0 =0

The roots of Eq. (7) are

-3 1
L R

2

-3 1
4 =222 3=y +8pv

2 2

117

&)

(6)

)

(8a)

(8b)

Since 0.5>0v >0 the discriminant of Eq. (7) is always greater than zero. Therefore, 4, and A, are real and

distinct. The homogeneous solution of Eq. (4) is therefore
Om = Clrll +C2rﬂq

The particular solution of the differential Eq. (4) may be obtained as

Op = ulril """2’/12
where
) —r” R(r)
D wer )
w = [RO r“R(r)
W@, r%)

in which R(r) = Jr**”T is the expression on the right hand side of Eq.(4) and W is defined as

W(r}"' r,lz ) _ r;ﬂ rﬂi _ (ﬂz ) )r,qur/l,—l
’ llr4171 ﬂzr/12—l 1

Therefore, 1, and u, may be obtained by the following integration

s 2E aOﬂT

ﬁ+w

2E()a()ﬁT
7] ;nmldr:l_ 71— — )
(4, %V A=0)A,=4)f+o—4 +2)
4 2E aOﬂT

rﬂ+qafl] +2

/3+<0

*—f dr — — 2E,a, BT
(4, /1)%% A=0)A,=4)f+p—14,+2)

Pro—7,+2
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Substituting Egs. (14) and (15) into Eq. (10) one can obtain the particular solution

2E0a0ﬂT p+o+2
o, == r (16)
A1-v)f+to—4+2)(B+p—1,+2)

The complete solution of Eq. (4) can be written as

o =Cr* +Cyr — G an
where
_ 2E,a, T (18)
A=0)B+o=A+2(f+9—1+2)
Using Eq. (2a) the expression for the tangential stress may be written as
2
o, = (1+%)Clr‘ﬂ +(1+%)Czr% _qyfretz +§+ VGr/ o2 (19)
The constants C, and C, are determined from the boundary conditions
atr=rn—o0,=—p
(20)
atr=r —o, =0
Substituting the above boundary condition into Eq. (17) the constants C, and C, are obtained
_ GG R + pri
€= e (21a)
G(rﬁ+<p+2r A ﬂ+g0+2 /11) pr
C — i 0 0 21b
’ A (1P)

Substituting the constants C, and C, from Egs. (21a) and (21b) into Eqs. (17) and (19) and using Eq. (18) the
expressions for radial and circumferential thermoelastic stresses are obtained

2E,0, fT -
0, = {[ T P
A=0)(B+o—4+2(B+e—1,+2) KRt =ty

(},E)ﬁ+q)+2 A P+o+2 ﬂq)

]r

+[(7;ﬂ+f/’+2’bﬂl 7,bﬂ+¢+2 A )] ﬂ+¢1+2}+ (rﬂ'z ril r()l‘ rﬂfz)
r%rﬂ‘ —r ;’A2 rlzrl' ri‘r%
; (22a)
2Ea T rﬂ+§0+2 ﬂq rﬂ+§0+2 A
o, = Y (a2
A-)f+o-4+)(L+e—14,+2) A
A (r-"”“r&‘— ) e PO e
U+ r L e
(S e o)
P+ Dy 1+ ﬁ)r;' )l
+
= (22b)
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The above thermoelastic stresses are the initial elastic stress distribution which will be changed with time as the
creep process progresses. These thermoelastic stresses and the effective stresses are shown in Figs. 1-3 for different
material properties.

2.3 Time-dependent creep stress analysis of FGM spheres

Considering the temperature field to be steady, the differential equation (3) containing creep strains may be rewritten
in terms of creep strain rates as follows

d*o do - 2E r° dés 2E.r*
2940, 40 200220) o 2B 4o 2R s s (23)
dr dr (1-v) l1-v dr l1-v

The creep strain rates are related to the current stresses and the material uniaxial creep constitutive model by the
well-known Prandtl-Reuss equation

. C (éf

& ==[o, —0o,] (24a)
O-e

-C ée

& =—-lo,—0o,] (24b)
20

e

in which the material uniaxial creep constitutive model is defined by the Norton’s equation

¢ = B(r)o™” (25)

where B(r) =b,r" and n(r)is considered to be a constant n(r) = n, in this study. Substituting from Eq. (25) into
Egs. (24a) and (24b) one can obtain

& = B(r)o! [0, ~0,] (262)
B n—1
o (r)zog (0, o] (26b)

The Von-Mises and Tresca’s equivalent stress are the same in spherical symmetry
o, =|o,~ 0| @7

In the absence of temperature field, tangential stress is always greater than radial stress. For many applicable
loading combinations, however, tangential stress is greater than radial stress. Therefore, Eqs. (26a) and (26b) may be
written as follows

i =—B(r)o’ (28a)
.. _B()o,
- ’T (28b)

Substituting from Eqs. (28a) and (28b) into differential Eq. (23) the following differential equation is obtained

&6 do - E,r""!
G2r + I"(4 _ q)) O-r _ 2¢(1 20) G-r — Or d
dr & (d-v)

1-v {[5

2
r

+24B0)00) (29)

The homogeneous solution of this differential equation is therefore
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O = Dlrll +D2rﬂ1 (30

where 4, and A, are defined in Eqs. (8a) and (8b). The particular solution can be obtained similar to thermo-elastic
solution as

{[7 (B( )o,)}

= (31

u, f (/12—/11);’]2”' dr
AL+ B0en)
= —f dr (32)
(/1 /’Ll)rﬂo-%—ll
Egs. (31) and (32) may be written
E— e 1+p—2,

u = =0k = /11)[‘/1 (BG )dr+3f (BO' ) dr] (33)

_ _L 2491, i n Loy i n
Uy = (I—U)(/lz—/ll)[fr dr(Bo;)dr-l—Eifr dr(Bo-g)dr] (34)

. _ d . . .
Selecting u=r>*""" and dv:d—(Baf) dr and using (fu dv:u.v—fv du) integration by part one can
r

obtain
— EU 24+0—4 n o I+p—4, n
’41——(1_0)(/12_21)[7 (Bo!)+(1 g17+/11)fr (Bo?!) dr] (35)
_ E, 29—ty (o _ o4
R UM AR p+2) [ (Bol) dr] (36)

Then, the particular solution may be written as
G, =ur" +ur” 37)
The general solution for the radial stress rate may be written

G, =Dyr" +Dyr” +urt +ur” (38)

Substituting from Egs. (35) and (36) into Eq. (38) one can get the radial stress rate and then the tangential stress
rate as

E,
.:Dlil_’_Dzlz -0 _ —|—ﬂ, A 1+(p)lB d
o, r r oy /11)( 1) s f (Bo?) dr 9
~(—g+ )" [0 (Bol) dr]
Gy :(i+1)r‘1[Dl+E—( —go+/il)f 0 (Bay) dr]
2 V)4, —4)
L E E, (40)
abv i A _ 1+op—4, _ 2+¢ n
HG DD, — e p+2) [0 (Bal) dr] i B!
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Since inside and outside pressures do not change with time, the boundary conditions for stress rates at the inner
and outer surfaces may be written

atr=r—o0,=0 (41a)

atr=r —o, =0 (41b)
Using the above boundary conditions, the constants D, and D, are obtained

D= b (=g Iy ([ F Bty dr),_,
; ,

(1= 0)(4, — A)(1— (%)M )

— [ Baly A, 1= (=g R AU R (Be) dn), L, — [ R Bel ), 1)

(42)
D, =- (Ut A [ R Bl A,
A-0)(% = )A=CH* )
= [ Bory dn), L 1= (A= DI [ 107 (Bot) dr), L, — oy ([ (Bot) di, L 1)
" 43)
Substituting from Eqs. (42) and (43) into Egs. (39) and (40) the stress rates can be written as follows
S E, o\ -4 Lo/ n
g, = (A=t U ([ 4 (Bl dn),.,
"o Ni-2 I '
(I-v)(4, */11)(1*(7) ) i
— [ Bory A, 1= (=gt = [ PR (Bol) dn),
= [ ey dn, 1
_ E, - (1— (0_’_/11)’,{5442 [(frlwffﬂq (BO':) dr)r:r, _frH»(D*}»l (BG:) d,.)r:ru
(I=v)(4, =) - (70)124‘ )
— U=+ I Bal) dn),, — (A ([ 70 (Bot) dn),_ 11
r
E() A 1+p—4 n o o A 1+p—4, n
HiTou Aot ar [re oy dr——p+ 2" [ 10" (Bal) dr]
(44)

b (A= o DIy [[ o= B,
7;.

(1-0)(4, —ﬂp(l—(%)‘f‘t)

i

G, = (ﬁ + D

— [ Bo ), 1= A= g+ 2 [ R (Bolr,

I+p—4, n E _ I+p—24 n
= andn W s A [ ot
4

H(E Dt - =t -
(I=0)(4, — 41— (70)M )

(=g 2™ I [ (Botyan),.,

— [ Bo ), 1= U= o+ I [ R (Bo ),
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o\ -4 14+p—4 n . _ l+p-4 n
G [ Batan, 1) o+ 1) [ 10 (Bol dr]

E
— a1
(A-v)4 = 4)
B r***Bo”
2(1-v) (45)

Radial and tangential stress rates are obtained from Eqs. (43) and (44) and plotted against dimensionless radius
for different material properties in Figs. 4 and 5. When the stress rates are known, time-dependent creep stress
redistributions at any time ¢, are obtained iteratively

o (rt)=0""(r.t,_ )+ (rt) dt"” (46a)
oy (rt) =0y "(r.t, )+ 6 (rt) dt” (46b)
where
="y d® 47)
k=0

To calculate ¢ (r,t,) and o (r,t,) the stresses at the time 7, , are used. The solution at zero time 7, =0

corresponds to thermo-elastic stresses.

3 RESULTS AND DISCUSSION

The results presented here in this study are based on the following data for geometry, material properties, and
loading conditions in a thick-walled FGM sphere

r, 11, =12, E, =22000 MPa, b, =1.1x10, b, =5, n, =8, v=03, o, =1.2x10° 1/°C,
B=9p=21,—1,-2, T=200C, P, =0, P, =100 MPa

Initial thermoelastic radial stresses at zero time are shown in Fig. 1. The boundary conditions for radial stresses
at the inner and outer surfaces of the sphere are satisfied for all material properties. There are not significant
differences among radial stresses for all material properties. Tangential thermo-elastic stresses at zero time are
shown in Fig. 2 for different material properties. They are tensile throughout thickness. For f =@ =—2and

f = @=—1, however, they are highly tensile at the inner surface of the vessel where the radial stresses are highly
compressive. It means the maximum shear stress whichis 7z, = (0, —o,)/2 will be very high at the inner surface

of the vessel and can cause yielding to occur. Also highly tensile tangential stresses at the inner surface of the sphere
will also decrease the fatigue life of the vessel. Therefore in selection of material for such a vessel, the material
identified by = ¢ =2 is the best because of the best shear stress distribution throughout thickness. This can be
well understood from Fig. 3 which shows the effective stress distribution throughout thickness for all four cases of
material properties. Effective stresses are, indeed, twice as the maximum shear stresses (o, =27, ) . Therefore, it
is clear from Fig. 3, that the material with # =@ =2 has a uniform and best shear stress distribution throughout
thickness. In Fig. 3, a reference stress has also been identified in which the effective stresses are identical for all
material properties.

Radial and tangential stress rates are plotted against dimensionless radius for different material properties in
Figs. 4 and 5. Fig. 4 shows that the radial stress rates are zero at the inner and outer surfaces of the sphere which
satisfy the boundary conditions. The maximum rate of change of radial stresses belong to =@ =—2 and then
p=p=—-1, f=¢p=1 and f =@ =2, respectively. Therefore, minimum changes in radial stresses with time

will take place for the material identified by S = ¢ =2 as will be explained next in radial stress redistributions.
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Fig. 1

Initial thermoelastic radial stresses in the FGM
sphere for f=¢p=-2, f=p=—1, f=p=1
and f =@ =2 atzero time.

Fig. 2

Initial thermoelastic tangential stresses in the FGM
sphere for f=9p=-2, f=p=—-1, f=9p=1
and f =@ =2 atzero time.

Fig. 3

Initial thermoelastic effective stresses in the FGM
sphere for f=¢p=-2, f=p=—1, f=p=1
and f =@ =2 atzero time.

Fig. 4
Radial stress rates versus dimensionless radius in
the FGM sphere for f=¢p=-2, f=p=—1,

P=¢=1and f=p=2.
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Fig. 5 shows that the tangential stress rates are negative at almost a quarter part of the thickness located at the
inside of the sphere and are positive at the remaining thickness of the vessel for all material properties. It means that
the tangential stresses will be decreasing with time at the inner part of the vessel and will be increasing at the
remaining part of the sphere. It is also clear from Fig. 5 that the maximum changes in tangential stresses with time
will take place for material f =@ =—2 and minimum changes will occur for =@ =2. This will be later

discussed in tangential stress redistributions. Time-dependent creep stress redistributions for different materials
identified by f=9p=2, f=¢p=1, f=@p=—1 and f =@ =—2 are shown in Figs. 6-17. Fig. 6 shows radial
stress redistribution in a FGM sphere identified by material property f=¢ =2. As it is expected from our
discussion on radial stress rates, minimum changes has occurred with time from its initial thermoelastic distribution
to its final distribution at the third selected time step. It also satisfies the boundary conditions at the inner and outer
surfaces of the sphere.
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Fig. 8

Time-dependent effective creep stress
redistribution in the FGM sphere from initial
elastic at zero time to third selected time interval
for the case f = ¢ =2.

Fig. 9

Time-dependent radial creep stress redistribution
in the FGM sphere from initial elastic at zero time
to third selected time interval for the case

p=p=1

Fig. 10

Time-dependent tangential creep stress
redistribution in the FGM sphere from initial
elastic at zero time to third selected time interval
for the case S =g =1.

Fig. 11

Time-dependent effective creep stress
redistribution in the FGM sphere from initial
elastic at zero time to third selected time interval
for the case f=¢p =1.
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Fig. 12

Time-dependent radial creep stress redistribution
in the FGM sphere from initial elastic at zero time
to third selected time interval for the case

B=p=-1

Fig. 13

Time-dependent tangential creep stress
redistribution in the FGM sphere from initial
elastic at zero time to third selected time interval
for the case f=¢p =—1.

Fig. 14

Time-dependent effective creep stress
redistribution in the FGM sphere from initial
elastic at zero time to third selected time interval
for the case f == —1.

Fig. 15

Time-dependent radial creep stress redistribution
in the FGM sphere from initial elastic at zero time
to third selected time interval for the case

B=9=-2.
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Tangential stress redistribution for this case f =@ =2 is shown in Fig. 7. It is clear that tangential stresses at

the inner surface of the vessel are decreasing with time while at the outer surface of the sphere are increasing. Thus,
maximum shear stress at the inner surface of the vessel is decreasing with time and at the outer surface of the vessel
is increasing with time. This can also be explained by effective stress redistributions shown in Fig. 8. As the
effective stress is twice as the maximum shear stress at each point throughout thickness, it is clear that the shear
stress distribution becomes more uniform through thickness of the vessel during creep process. Time-dependent
stress redistributions for the case =@ =1 are shown in Figs. 9-11. Stress redistributions take place in the same

direction as for the case = ¢ =2 but with a higher rate of change with time. Radial, tangential and effective stress
redistributions for the materials f =@ =—1 and f =@ =—2 are shown in Figs. 12-17. In Figs. 12 and 15, radial

stress redistributions show little changes with time during creep process for both material properties. However,
significant changes will occur for tangential and effective stresses with time during creep process as shown in Figs.
13, 14, 16, 17 for both material properties. A reference effective stress can be identified for all cases in which the
effective stress is not changing with time during creep process.

4 CONCLUSIONS

Time-dependent creep stress redistribution analysis of thick-walled FGM spheres is investigated for different
material properties. Radial stress redistribution is not significant almost for all material properties. But, major
redistribution occurs for tangential and effective stresses. The best material is identified by f =@ =2 in which a

uniform shear stress distribution will occur throughout the thickness of the FGM sphere. Also minimum changes in
stresses with time during creep process belong to this material. A reference effective stress has been identified for all
four cases of material properties in which there are no changes in effective stress with time at this point.
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