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 ABSTRACT 

 In this paper, the effect of the crack on dynamic behavior of cracked micro-

beam in the presence of DC and AC loads are investigated. By applying the 

residual axial stress and fringing field stress, a nonlinear analytical model of 

cracked micro-beam is presented and crack is modeled by a massless rotational 

spring. The governing equation of the system is solved using Galerkin 

procedure and shooting method. The equilibria curve and dynamic response of 

cracked cantilever and clamped-clamped micro-beam are extracted below and 

at the onset of the dynamic pull-in instability. The results show that the 

behavior of cracked micro-beam is different from ordinary cracked beam due 

to nonlinear effects. For a fixed relative crack location, increasing the crack 

depth causes increasing in the resonance amplitude and reduction in the 

resonance frequency below dynamic pull-in instability. Also, in cracked 

cantilever micro-beams, by approaching the crack to fixed end, the resonance 

frequency reduces and the resonance amplitude increases. In cracked clamped-

clamped micro-beam, trend of variations of resonance frequency and resonance 

amplitude against the crack location is not regular. At the onset pull-in 

instability, the presence of the crack causes cyclic-fold bifurcation points to 

appear at the lower frequency. Therefore, it causes early pull-in phenomenon 

or unwanted abrupt change at the micro-beam behavior. The achievement of 

this study is simulation of the response of the faulty low-voltage switch and 

MEMS resonators for different severity of crack at the onset of dynamic pull-in 

phenomenon.                              © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ODAY, by increasing development of technology, use of micro-electromechanical systems (MEMS) and 

structures increases in various techniques such as astronavigation, radars, telecommunication and 

biotechnology. Capacitive micro-switches and resonant micro-sensors and pressure Sensor are some of these 

systems. There are a number of actuation methods for MEMS devices. Electrostatic actuation is the most well-

established of this actuation method because of its simplicity and high efficiency [1]. The electric load is composed 

of a DC polarization voltage and an AC voltage. The DC component applies an electrostatic force on the micro-

beam, thereby deflecting it to a new equilibrium position, while the AC component vibrates the micro-beam around 

this equilibrium position [2]. The studies show that, the nonlinear behavior of micro-beams is the result of reaction 
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of several forces such as electrostatic force and mechanical restoring force, which are considered as nonlinear terms 

in the governing equation. The mechanical restoring force is arising from residual, axial and fringing stress [3, 4]. 

When the excitation voltage increases, the balance of the forces is upset and the electric force becomes more than 

mechanical restoring force and it makes the micro-beam collapse and hence the failure of the device. This structural 

instability is known as pull-in phenomenon and the corresponding voltage is considered as pull-in voltage. This 

phenomenon is one of the most significant challenges in designing MEMS. The importance of the knowing the exact 

amount of voltage, especially in capacitive structures, is the determination of sensitivity, frequency response, 

dynamic rate and distortion by it. One can use the pull-in voltage to determine material characteristics such as 

Young modulus and residual stress [5]. Zhang and Zhao [6] studied the pull-in instability of micro-structure under 

electrostatic loading, using one mode analysis method. They showed that there was little difference with the 

established multi-mode analysis on predicting the pull-in voltage for three different structures (cantilever, clamped-

clamped beams and plate with four edges simply-supported) in low axial loading range. Rezazadeh et al. [7] 

extracted the static pull-in voltage of two elastic parallel fixed-fixed and cantilever micro-beams in MEMS under 

nonlinear effects such as residual stresses, fringing field and axial stresses. They showed that, the percentage of pull-

in voltage reduction when compared these micro-beams to simple fixed-fixed and cantilever models is of the order 

of 27-30%. Mojahedi et al. [8] investigated the pull-in instability of electrostatically actuated micro-bridges and 

micro-cantilevers considering different nonlinear effects. They studied the influence of mid-plane stretching, 

electrostatic actuation and axial loading on the static deflection. Wang et al. [9] investigated the pull-in instability 

and vibrational behaviors for a prestressed multi-layer micro-beam with nonlinearities arise simultaneously from 

electrostatic loads and large deformation. They used the same algorithm to the small amplitude free vibration around 

the predeformed bending configuration following an assumed harmonic time mode. The influences of pivotal 

parameters on the pull-in instability behavior and natural frequency were examined, including the length, thickness 

and residual stress of the micro-beam. Mohammad and Ouakad [10] investigated the structural behavior of a MEMS 

system arch micro-beam actuated by electric fringing fields where the electrodes are located at both side of the 

micro-beam. The results showed elimination of the pull-in instability in this kind of systems as compared to the 

regular case of parallel-plates electrostatic actuation. Younis [11] presented exact analytical solutions for the 

electrostatically actuated initially deformed cantilever micro-beam problem.  They used a continuous beam model 

and a single-mode Galerkin technique and derived analytical expression for two commonly observed deformed 

beams configuring the curled and titled. Mohammadi-Alasti et al [12] studied the dynamic behavior of a functionally 

graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and 

nonlinear electrostatic pressure. According to the research results for application of a step DC voltage on thermally 

actuated micro-beam, when the temperature changes get higher, the pull-in voltage decreases and consequently the 

pull-in time increases. For a given primal temperature change, by decreasing the ceramic constituent percent, firstly 

the dynamic pull-in voltage due to decreasing the primal thermal deflection was increased and next due to 

decreasing the micro-beam stiffness, it was decreased. Also, the effect of viscous damping on the pull-in 

phenomenon was shown. 

Most of the research investigated stability of static deflection of micro-beams. But the MEMS devices are often 

dynamically excited and the research shows that, there is a possibility for a dynamic instability to trigger pull-in 

below the statically predicted instability limit. Therefore, the analysis of the behavior of micro-beams under the AC 

loading is important and necessary, because of the nonlinear behavior of MEMS systems. In this regard, Nayfeh et 

al. [13] investigated the dynamic pull-in instability and pull-in phenomenon characteristics in the presence the 

combination of AC and DC and formulated safety criteria near one of their natural frequency. They also used this 

phenomenon to design a low-voltage MEMS RF switches actuated with a combined DC and AC loading. Rezazadeh 

et al. [14] studied the static and dynamic responses of a fixed–fixed and cantilever micro-beam, using both the 

lumped and the distributed models. They introduced design corrective coefficients. Multiplying these design 

coefficients with the static pull-in voltage of the lumped model, the static and dynamic pull-in voltage of a given 

micro-beam can be obtained without the need to solve the nonlinear governing equations. Sedighi et al. [15] 

investigated the effect of the amplitude of vibrations on the pull-in instability and nonlinear natural frequency of 

doubled-sided actuated microswitch by using nonlinear frequency amplitude. They used the Hamiltonian approach 

(HA). They indicated in their research that first term in series expansions is sufficient to produce acceptable accurate 

solutions. 

There is a possibility of failure such as crack, during manufacturing and performance of MEMS. The crack 

increases the flexibility of micro-beam at the crack location and changes its characteristics such as mode shape, 

natural frequency and dynamic response. This fault causes change in the stability threshold and leads to untimely 

pull-in phenomenon. Micro-electromechanical structures utilize brittle material such as polycrystalline silicon 

(polysilicon) under potentially severe mechanical and environmental loading conditions. These structures may be 
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subjected to high frequency and cyclic loading conditions. The researches of the Failure analysis associates show 

that Silicone materials are brittle in ambient air and there is the possibility of the initiation and growth of the crack in 

the silicone MEMS devices [16]. Studies in the field of faulty micro-beams show that the crack leads to reduction in 

the pull-in voltage and the structure triggers pull-in bellow the predicted pull-in voltage of intact micro-beam. 

Motallebi et al. [17] investigated the effect of the open crack depth ratio, crack position and crack number on the 

pull-in voltage in the cracked micro-beam with clamped-clamped and cantilever boundary condition bellow the pull-

in instability. In their work the dynamic pull-in voltage is defined as a step DC voltage, which is applied suddenly 

and leads to instability of system. They solved the governing equation by step by step linearization method (SSLM) 

and Galerkin-based reduced order model. Zhou et al. [18] investigated the effect of slant open crack on the mode 

shape, natural frequency and pull-in voltage of fixed-fixed micro-beam in different crack depths, location and slant 

angle bellow the pull-in instability. They showed the crack position has more significant influence on the pull-in 

voltage value than the slant angle or the depth ratio. They extracted the dynamic response of fixed-fixed micro-beam 

in the area far from pull-in phenomenon using single mode and perturbation method. Sourki et al [19] investigates 

the analysis for free transverse vibration of a cracked micro-beam based on the modified couple stress theory within 

the framework of Euler–Bernoulli beam theory. In this investigation, the influence of diverse crack position, crack 

severity, material length scale parameter as well as various Poisson’s ratio on natural frequencies was studied. The 

results illustrate that the aforementioned parameters are playing a significant role on the dynamic behavior of the 

micro-beam. 

Existing research in literature shows that, there are few studies on the effects of cracks on the micro-beams. In 

these researches, the dynamic behavior of cracked micro-beam under AC voltage was not investigated at the onset 

of dynamic pull-in phenomenon. Also the effect of crack on the dynamic behavior (resonance amplitude and 

resonance frequency) of cracked micro-beam with cantilever boundary condition was not studied. Therefore, in this 

paper the effect depth and location of the crack is investigated on the static and dynamic pull-in instability bellow 

and at the onset of dynamic pull-in instability. The dynamic behavior of cracked micro-sensors and micro-switches 

are simulated as a continuous model of cracked micro-beam with the boundary condition of clamped-clamped and 

cantilever. In this model nonlinear electrical and mechanical force such as fringing field and residual axial force are 

considered. The crack was modeled as massless rotational spring and its stiffness is extracted using principles of 

fracture mechanics. The governing equation of cracked micro-beam is discretized onto a finite-degree-of-freedom 

system consisting of ordinary-differential equations, by means of reduced-order-model. Furthermore, using 

combination of two point-boundary-value problem and shooting method, the governing equation is solved and the 

response is extracted. The static and dynamic response of cracked micro-sensors and micro-switches are extracted 

near natural frequency bellow and at the onset of dynamic pull-in instability for different crack depth and crack 

location. The effect of the fringing field force is neglect in the extracting of the curves of static and dynamic 

behavior of cracked micro-beam; because its value is less than 2 % of excitation force.  

2    MATHEMATICAL MODELING OF CRACKED MICRO-BEAM 

A schematic of view of single-edge cracked cantilever and clamped-clamped micro-beam, subjected to viscous 

damping with a coefficient ĉ  per unit length and actuated by electric load, 
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in Fig. 1. The electric load is composed of a DC polarization voltage and an AC voltage. The dynamic behavior of 

the cracked micro-beam is modeled as Euler-Bernoulli beam of length L, width b, thickness h, which the crack 

divides it into two segments. The governing equations of the transverse vibration of two segments of micro-beam 
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where x̂  is the position along the micro-beam, A and I are the area and moment of inertia of the cross-section, E is 

Young modulus,
 

ˆ
rN  is the residual axial force, 

 
is the material density, d is the capacitor gap width and   is the 

dielectric constant of gap medium.
 0L  is the distance of crack from fixed end. The 
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clamped and cantilever micro-beam, respectively: 

 

1 2

1 2

ˆ ˆˆ ˆ(0, ) ( , )
ˆ ˆˆ ˆ(0, ) 0, ( , ) 0

ˆ ˆ

w t w L t
w t w L t

x x

 
   

 
 

 

(3) 

 
3 2

1 2 2 2

1 3 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(0, ) ( , ) ( , ) ( , )ˆˆˆ (0, ) 0, 0
ˆ ˆˆ ˆ

r

w t w L t w L t w L t
w t N

x xx x

   
    

  
 

 

(4) 

 

In the presence of the crack, the elastic strain energy and stiffness of micro-beams reduce at the crack location. 

This local stiffness is modeled by placing a massless torsional spring in the location of crack (see Fig. 2). The 

stiffness of the spring can be calculated from the fracture mechanic [22]. To satisfy the compatibility requirements, 

one may equate the displacements and bending moments and shear forces of the two segments of beam at the crack 

location. The moment at the crack location is equals to the moment of the torsional spring. Therefore, the 

compatibility requirements at the crack locations are assumed as follow: 
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where K̂  is the equivalent linear stiffness of torsional spring at the crack location as a function of the crack severity. 

In order to facilitate the analysis and identify the vibrational characteristics of system, the following non-

dimensional variables are introduced: 
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Substituting Eq. (6) into Eq. (1) and Eq. (2), it yields: 
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where 
0L L   is relative distance of the beam from the fixed end. Eqs. (9) and (10) are the non-dimensional 

boundary conditions of clamped-clamped and cantilever micro-beams, respectively: 
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The non-dimensional compatibility requirements: 
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The parameters appearing in Eq. (7) and Eq. (8) are: 
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Fig.1 

A schematic view of electrically actuated cracked cantilever 

and clamped-clamped micro-beam. 

  

 

 

 

Fig.2 

A graphical modeling of crack in cracked cantilever and 

clamped-clamped micro-beam. 

3    THE REDUCED ORDER MODEL 

Equation systems (7) to (11) are the nonlinear continuous system. By discretizing equations onto a finite-degree-of-

freedom system consisting of ordinary-differential equations in time, a reduced-order model is generated. Assuming 

that the first mode is dominant mode, one can use the first undamped linear mode shapes of the micro-beam at the 

two side of crack, which satisfies the boundary conditions and compatibility requirement. Then the deflections of 

micro-beam at the two sides of the crack are: 
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Here, 1  is the first natural frequency of the cracked micro-beam. Eqs. (16) and (17) are related to boundary 

conditions of clamped-clamped and cantilever micro-beam, respectively and the Eq.(18) is related to the 

compatibility requirements at the crack location. The non-dimensional spring stiffness K  can be calculated from the 

following formula [22]: 
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where n a h  is the relative depth of the crack. One could multiply Eq. (7) by 
2

11 1( )(1 )x w 
 
and Eq. (8) 

by
2

21 2( )(1 )x w  , substitute Eq. (13) into the resulting equations and use Eq. (14) and Eq. (15) to 

eliminate
1 , 1,2iv

j j  . Then the outcome of first equation is integrated from 0x   to x   and the outcome of 

second equation is integrated from x   to 1x  . Summing two equations of systems yields: 

 
1 1 1

3 3 2 4 4 2 2 2

1 1 1 11 12 1 1 11 12 1 1 3 1 2 3 11 12
0 0 0

1 1
2 2 3 3 3 2 4 4

1 1 11 12 1 1 11 12 1 1
0 0

2 ( ( )) ( ) ( )

2 2

u u u dx dx u u dx dx cu V t u V t dx dx

u dx dx u dx dx cu u

  

  

 

 

         

     

               
          

      
      

     

   
1 1

3 3 2 4 4

11 12 1 1 11 12
0 0

1 1 1
3 4 2 2 5 3 3

1 11 11 12 12 1 11 11 12 12 1 11 11 12 12
0 0 0

2a a a

dx dx cu u dx dx

N u dx dx N u dx dx N u dx dx

 

 

  

  

   

           

      
      

              
          

   

     

 

 

 

 

(20) 

 

Eq. (20) is the periodic function of time and describes the dynamic behavior of an electrically actuated cracked 

micro-beam. Using mathematical manipulation, one could extract an explicit equation in 1u  and solves it 

numerically. 

4    THE EFFECT OF CRACK ON THE STATIC BEHAVIOR AND EQUILIBRIA CURVE OF CRACKED 

MICRO-BEAM 

To simulate the static behavior of cracked cantilever and clamped-clamped micro-beam, all time-varying terms, 

including inertia, damping and variable forcing in Eq. (20) are set equal to zero and time-varying modal variables 

are replaced with constant coefficients [23]. This method results in a nonlinear algebraic equation. The calculated 

mode shapes are plugged into this algebraic equation and it is solved numerically and then the micro-beam static 

deflection is calculated. By means of this method, for the cracked cantilever micro-beam with properties cited in 

Table 1., the variations of maximum deflection at the free end with DC voltage was extracted for a given relative 

crack depth 0.5n   and different crack locations (see Fig. 3). According to the definition of the fringing field force 

and the ratio of fraction
0.65

0.015
d

b
 , the effect of this force is neglected. The value of non-dimensional residual 

axial force is 4rN  . In Fig.3, there is a saddle-node bifurcation point in the each curve. The voltage of each of 
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these saddle-node bifurcation points is the static pull-in voltage for various crack location. If the applied DC 

excitation voltage is equal or more than the static pull-in voltage the micro-beam collapses. According to this figure, 

approaching the crack to fixed end reduces the static pull-in voltage and Stable voltage ranges in equilibrium curve. 

It also decreases the difference between the points of upper branch and lower branch of each curve at a certain 

voltage. Moreover, approaching the crack to free end decreases the rate of static pull-in voltage drop; So that, the 

static pull-in voltages are very near together for crack locations around the free end of micro-beam. 
 

Table 1  

The value of variables in cantilever micro-beam. 
Design variable 

( )L m  ( )b m  
( )h m  ( )d m  

3( )
kg

m
  

( )E Gpa  
  ( )PF

m
  

Value 250 50 3 1.18 2331 169 0.06 8.85 

 

Fig. 4 shows the variation of maximum free end deflection of cracked cantilever micro-beam with DC voltage 

for a fixed relative crack location 0.05   and different crack depths. The results show that, by increasing depth of 

the crack, the static pull-in voltage and stable voltage range in equilibria curve are reduced. Also, an increase in the 

crack depth results in an increase in the drop rate of static pull-in voltage. 

To investigate the effect of the crack on the cracked clamped-clamped micro-beam, a micro-beam with the 

properties listed in Table 2., and under non-dimensional residual axial force 8.7rN 
 
is considered. Similarly in the 

cracked clamped-clamped micro-beam, the ratio of fraction is
0.65

0.007
d

b
 , and then the effect of fringing field 

force is neglected. If the equilibria of cracked clamped-clamped micro-beam under DC loading is plotted for a given 

relative crack depth 0.5n   and different crack locations, it can be seen that the static pull-in voltage drop is not a 

regular trend against crack location (See Fig. 5). The static pull-in voltage is the lowest at the crack 

location 0 , 1   . By changing the location of the crack from the fixed end to relative location 0.25, 
 
the value 

of the static pull-in voltage increases. Then this value is reduced from the relative location 0.25, 
 
to middle of 

the micro-beam. This procedure similarly repeats from 1 
 
to middle of the micro-beam, because of the geometric 

symmetry.  Also, the equilibria of cracked clamped-clamped micro-beam under DC loading for fixed relative crack 

location 0.5   and different crack depths are shown in Fig. 6. In this figure, the reduction of static pull-in voltage 

of cracked clamped-clamped micro-beam against increasing of crack depth is regular trend. Also, the static pull-in 

voltage and stable voltage range in the equilibria curve of cracked micro-beam are so closed together for different 

crack depths. 

One could note from Figs. 3 to 6 that crack has low effect on static pull-in and static equilibria curve. The study 

of these figures shows that the effect of crack on the cantilever micro-beam is more than micro-beam with clamped-

clamped boundary condition. Also, in both boundary conditions, the location of the crack has more effect on static 

pull-in than crack depth.  

 
Table 2  

The value of variables in clamped-clamped micro-beam. 
Design variable 

( )L m  ( )b m  
( )h m  ( )d m  

3( )
kg

m
  

( )E Gpa  
  ( )PF

m
  

Value 510 100 1.5 1.18 2331 169 0.06 8.85 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Equilibria of cracked cantilever micro-beam for fixed relative 

crack depth 0.5n   and different crack locations. 
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Fig.4 

Equilibria of cracked cantilever micro-beam for fixed relative 

crack location 0.05  and different crack depths. 

  

 

 

 

 

 

 

 

 

Fig.5 

Equilibria of cracked clamped-clamped micro-beam for a 

fixed relative crack depth 0.5n   and different crack 

locations. 

  

 

 

 

 

 

 

 

 

Fig.6 

Equilibria of cracked clamped-clamped micro-beam for a 

given relative crack location 0.5   and different crack 

depths. 

5    THE EFFECT OF THE CRACK ON THE DYNAMIC BEHAVIOR OF CRACKED MICRO-BEAM 

The dynamic behavior of cracked cantilever micro-beam, with properties cited in Table 1., is investigated under 

5VDCV  and AC harmonic excitation, near its fundamental natural frequency. The non-dimensional damping 

coefficient is considered as
1c Q , which the quality factor is assumed as 500Q  . By solving Eq. (20), 

constitutes second-order nonlinear periodic equation, the dynamic response of cracked micro-beam is extracted.  

It is used the combination a two-point boundary-value problem and shooting method to calculate periodic 

solution of Eq. (20). The shooting method is used for capturing periodic motion and analyzing their stability for 

nonlinear systems. For example, by solving Eq. (20), the frequency response of free end of cracked cantilever micro-

beam can be extracted under 0.05VACV  for a fixed relative crack depth 0.5n  and different crack locations (see 

Fig. 7). As can be seen in Fig. 7, there is no indication of pull-in phenomenon and the behavior of cracked micro-

beam is softening. As the crack location gets closer to fixed end, the value of resonance frequency decreases and the 

resonance amplitude increases. The value of resonance frequency in intact micro-beam is 5.23 and in cracked 

micro-beam with a crack at fixed end is 4.94 . By approaching the location of crack to free end, sensitivity of 

FRF of cracked micro-beam to crack location decreases and the frequency response curves are closed to frequency 

response curve of intact micro-beam. Also, the frequency response of free end of cracked cantilever micro-beam 
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under 0.05VACV  for a fixed relative crack location 0.05  and different crack depths is plotted in Fig. 8. 

Increasing the crack depth decreases the resonance frequency and increases the resonance amplitude. By increasing 

crack depth, the rate of changing of resonance frequency, amplitude and softening phenomenon increase. 

For dynamic analysis of cracked micro-beam with clamped-clamped boundary condition, it is used the micro-

beam with properties cited in Table 2. This cracked micro-beam is exited under 2VDCV  and AC harmonic 

voltage, near its fundamental natural frequency. The non-dimensional damping coefficient is considered as 

1c Q
 
with quality factor assuming as 1000Q  . Fig. 9 shows the frequency response of the midpoint of 

cracked clamped-clamped micro-beam under 0.01VACV  for a fixed relative crack depth 0.5n   and different 

crack locations. As can be seen in this figure, there is no indication of pull-in and the dynamic behavior of cracked 

micro-beam is hardening. The trend of resonance frequency and resonance amplitude changes versus crack location 

are not regular. The changes of resonance frequency are similar to the changes of static pull-in in Fig.5. Hence, the 

lowest resonance frequency is related to crack which is located near the fixed end and the highest frequency is 

related to location of 0.25,0.75.   Also, the changes of resonance amplitude are reverse of the changes of static 

pull-in voltage in Fig. 5. As shown in Fig. 9, by approaching the crack to fixed end, the rate of the changes of 

frequency and amplitude will have greater intensity. The frequency response of the midpoint of cracked clamped-

clamped micro-beam under 0.01VACV 
 
for a fixed relative crack location 0.5   and different crack depths is 

illustrated in Fig. 10. It follows from this figure that the resonance frequency decreases and resonance amplitude 

increases by increasing the crack depth. 

It can be concluded from the review of Figs. 7 to 10, the presence of the crack with different depths and locations 

causes the changes in dynamic behavior such as resonance frequency reduction and resonance amplitude increasing 

near the natural frequency. These changes indicate the existence of crack in the structure and the location and 

intense of the crack eclipse the dynamic behavior of cracked micro-beam. 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Frequency-response curves of cracked cantilever micro-beam 

for a fixed relative crack depth 0.5n   and different crack 

locations bellow the pull-in instability: 5 V, 0.05VDC ACV V  . 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Frequency-response curves of cracked cantilever micro-beam 

for a fixed relative crack location 0.05 
 
and different 

crack depths bellow the pull-in instability: 5 V, 0.05VDC ACV V  .  
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Fig.9 

Frequency-response curves of cracked clamped-clamped 

micro-beam for a fixed relative crack depth 0.5n   and 

different crack locations bellow the pull-in instability: 

2 V, 0.01VDC ACV V  . 

  

 

 

 

 

 

 

 

Fig.10 

Frequency-response curves of midpoint of cracked clamped-

clamped micro-beam for a fixed relative crack location  

0.5   and different crack depths bellow the pull-in 

instability: 2 V, 0.01VDC ACV V  . 

 

By increasing excitation voltage up to 0.1VDCV  , the dynamic pull-in phenomenon occurrence is possible in 

cantilever micro-beam. Fig. 11 shows the frequency response of the free end of intact cantilever micro-beam 

under 0.1VACV  . The upper branches have been truncated at max 0.9W   because the accuracy of the prediction of 

unstable branch beyond max 0.9W 
 
is dubious. The solid line denotes stable branches and the dashed line denotes 

an unstable branch. The stable branch collides with unstable branch at point A. The slope of curve approaches 

infinity in this point.  As seen in Fig. 11, an up-sweep past point A will result in a jump up (to the upper stable 

branch) or in pull-in. 

In order to investigate the effect of the crack on the behavior of cracked micro-beam at the onset of pull-in 

phenomenon, the frequency response of the free end of cracked cantilever micro-beam under 0.01VACV  for a 

fixed relative crack depth 0.5n  and different crack locations is shown in Fig. 12. As shown in figure, by 

approaching crack to the fixed end, the resonance frequency is reduced and pull-in phenomenon is possible to occur 

at lower frequency. By reducing the distance of the crack from fixed end, the rate of reduction of resonance 

frequency is increased. Also, the frequency response of the free end of cracked cantilever micro-beam under 

0.1VACV 
 
for a fixed relative crack location 0.05 

 
and different crack depths is plotted in Fig. 13. The figure 

shows that, increasing crack depth cause the resonance frequency to decrease and instability to occur sooner. 

Similarly, by increasing excitation voltage up to 0.1VDCV  , the dynamic pull-in phenomenon in clamped-

clamped micro-beam becomes possible and the shape of the curve substantially changes. Fig. 14 shows the 

frequency response of the midpoint of intact clamped-clamped micro-beam under 0.1VACV  . In this case, the 

frequency response curve does not close within the figure. Nayfeh and et al. [13] plotted the curve of intact clamped-

clamped micro-beam similar to Fig. 14, using three modes in Galerkin procedure. In Fig. 14 the dotted-dashed line 

represents a branch of saddles. There are three cyclic-fold bifurcations where a stable branch collides with unstable 

branch of solutions. The slope of curve approaches infinity in these points. As seen in this figure, an up-sweep past 

point A will result in a jump up (to upper stable branch) or down (to the lower right stable branch) or in pull-in. A 

down-sweep past point B will result in a jump up (to left stable branch or upper stable branch) or in pull-in. An up-

sweep past point C will results in a jump down (to the lower right stable branch) or in pull-in. These points are 

undesirable points, because the behavior of the micro-beam changes suddenly in these points and the pull-in 

phenomenon is possible. 

In order to investigate the effect of the crack on the behavior of cracked micro-switch at the onset of pull-in 

phenomenon, the frequency response of the midpoint of cracked clamped-clamped micro-beam under 0.1VACV   
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for a fixed relative crack depth 0.5n   and different crack location is shown in Fig. 15. In this the figure, changes 

of resonance frequency and resonance amplitude near the natural frequency against the changes of crack depth is 

similar to Fig. 9. As can be seen in Fig. 15, the effect of the crack on the cyclic-fold bifurcation A, B and C is more 

than the other points of figure and the curves of various crack location are completely separated in these points. 

Also, these curves are close together in the points far from the resonance frequency and the crack has low effect on 

the curves in these points.  

 

 

 

 

 

 

 

 

 

Fig.11 

Frequency-response curve of free end of intact cantilever 

micro-beam at the onset of the pull-in instability: 

5 V, 0.1VDC ACV V  . 

  

 

 

 

 

 

 

 

Fig.12 

Frequency-response curves of free end of cracked cantilever 

micro-beam for a fixed relative crack depth 0.5n   and 

different crack locations at the onset of the pull-in instability: 

5 V, 0.1VDC ACV V  . 

  

 

 

 

 

 

 

 

Fig.13 

Frequency-response curves of free end of cracked cantilever 

micro-beam for a fixed relative crack location 0.05 
 
and 

different crack depths at the onset of the pull-in instability:
 

5 V, 0.1VDC ACV V  . 

  

 

 

 

 

 

 

 

 

 

Fig.14 

Frequency-response curve of midpoint of intact clamped-

clamped micro-beam at the onset of the pull-in instability: 

2 V, 0.1VDC ACV V  . 
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Fig.15 

Frequency-response curves of midpoint of cracked clamped-

clamped micro-beam for a fixed relative crack depth 

0.5n  and different crack locations at the onset of the pull-

in instability: 2 V, 0.1VDC ACV V  . 

 

Similarly, the frequency response of the midpoint of cracked clamped-clamped micro-beam under 

0.1VACV  for a fixed relative crack location 0.5   and different crack depths is shown in Fig. 16. Fig. 16 shows 

that increasing the depth of crack decreases resonance frequency and increases rate of the changing of resonance 

frequency. Moreover, by increasing the depth of the crack, the cyclic-fold bifurcation appears at lower frequency 

and instability occurs faster. 

To show the effect of the fringing field, the frequency-response curves of free end of cracked cantilever micro-

beam is extracted for a fixed relative crack location 0.05 
 
and crack depths 0.5n  at the onset of the pull-in 

instability:
 

5 V, 0.1VDC ACV V  (see Fig. 17). In this figure the solid line is the frequency response of cracked 

micro-beam by applying the fringing filed force and the dashed line is the frequency response of cracked micro-

beam without the fringing filed. As can see in this figure the fringing field has very low effect on the frequency 

response of the cracked micro-beam and it is negligible.  

Similarly, the frequency-response curves of midpoint of cracked clamped-clamped micro-beam is shown in Fig. 

18 for a fixed relative crack location 0,1 
 
and crack depths 0.5n 

 
at the onset of the pull-in instability: 

2 V, 0.1VDC ACV V  . In this figure the solid line is the frequency response of cracked micro-beam by applying 

the fringing filed and the dashed line is the frequency response of cracked micro-beam without the fringing filed. As 

can see in this figure both curves are very similar to gether.  

 

 

 

 

 

 

 

 

 

Fig.16 

Frequency-response curves of midpoint of cracked clamped-

clamped micro-beam for a fixed relative crack location 

0.5 
 
and different crack depths at the onset of the pull-in 

instability:
 

2 V, 0.1VDC ACV V  . 

  

 

 

 

 

 

 

 

Fig.17 

Frequency-response curves of free end of cracked cantilever 

micro-beam for a fixed relative crack location 0.05 
 
and 

crack depths 0.5n  at the onset of the pull-in instability:
 

5 V, 0.1VDC ACV V  . 
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Fig.18 

Frequency-response curves of midpoint of cracked clamped-

clamped micro-beam for a fixed relative crack location 

0,1 
 
and crack depths 0.5n 

 
at the onset of the pull-in 

instability: 2 V, 0.1VDC ACV V  . 

6   CONCLUSIONS 

The electrostatically actuated MEMS devices are designed and produced to work in a special condition. Therefore 

the changes in the conditions or failure lead to malfunction and collapse of the micro-beam or the same pull-in 

phenomenon. Crack is one of the main faults that may be initiated and grown during the machining or under other 

factors. It was shown in this paper that the presence of the crack in the micro-beams leads to changes on the 

dynamic characteristics such as pull-in voltage and resonance frequency and resonance amplitude near the natural 

frequency. One can use these changes in sensors health monitoring applications. In this paper the dynamic behavior 

of cracked micro-electromechanical resonators was analyzed under AC and DC loading by applying residual axial 

force. The effect of the crack on the static and dynamic pull-in phenomenon was investigated. Since the ratio of the 

width of micro-beam b to capacitor gap width d is large, the effect of the fringing field force on the excitation force 

is less than 2 % for cantilever and 1 % for clamped-clamped cracked micro-beam and then it was neglected. The 

curves of the equilibria and the static pull-in voltage of micro-beam with cantilever and clamped-clamped boundary 

condition were extracted for different crack locations and crack depths. It follows from Figs. 2 to 5, the crack has 

slight influence on the static pull-in voltage and the changes of static pull-in voltage for crack location are more than 

the changes for crack depth. 

Then curves of the frequency response of cracked cantilever and clamped-clamped micro-beam were extracted 

near natural frequency for different crack locations and depths. The dynamic behavior of cracked micro-beam is 

different from ordinary cracked beam, because of nonlinear effects. The dynamic behavior of clamped-clamped 

micro-beam according to parameter 
2

2 DCV  is hardening and the cantilever micro-beam is softening bellow the pull-

in instability. As can be seen from the frequency response curves of cracked cantilever micro-beam bellow the pull-

in instability, by approaching the crack to fixed end or increasing the crack depth, the resonance amplitude and 

softening phenomenon are increased and resonance frequency is reduced. Also, in cracked clamped-clamped micro-

beam, the most reduction of resonance frequency and increasing in resonance amplitude occur at the fixed ends. By 

changing the location of the crack from the fixed end to relative location 0.25, 
 
the resonance frequency 

increases and the resonance amplitude decreases. Then the resonance frequency decreases and the resonance 

amplitude increases by changing the location of the crack from the relative location 0.25, 
 
to middle of the 

micro-beam. This procedure similarly repeats from 1 
 
to middle of the micro-beam. In the cracked clamped-

clamped micro-beam, by increasing the crack depth, the resonance amplitude increases and resonance frequency 

reduces. The researches of this paper show that the effect of crack on the dynamic response is more than static 

response and then the dynamic response is more suitable for crack identification. As shown in the curves of the 

frequency response of cracked cantilever micro-beam at the onset of pull-in instability condition, increasing the 

crack depth or approaching the crack to the fixed end causes the resonance frequency to decrease and the instability 

and pull-in phenomenon to occur at lower frequency. In the curves of frequency response of the cracked clamped-

clamped micro-beam at the onset of pull-in instability condition, there are three cyclic-fold bifurcation. The behavior 

of the frequency response of cracked micro-beam is suddenly changed in these points and it may pull-in. The crack 

leads these points to appear at the lower frequency. Therefore, it causes early pull-in phenomenon or unwanted rathe 

change at the micro-beam behavior. Also, as shown in Figure 16, the effects of crack on the cyclic-fold bifurcation 

points are more than the other points and the curves are separated from each other near these points for different 

crack depths and crack locations.  
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