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 ABSTRACT 

 In this paper a composite plate with similar unidirectional fibers is considered. 

Assuming orthotropic structure, theory of elasticity is used for investigating the stress 

concentration. Also, complex variable functions are utilized for solving the plane 

stress problems. Then the effective characteristics of this plate are studied numerically 

by using ANSYS software. In this research a volume element of fibers in square array 

is considered. In order to investigate the numerical finite element modeling, the 

modeling of a quarter unit cell is considered. For determining the elasticity 

coefficients, stress analysis is performed for considered volume with noting to 

boundary conditions. Effective elasticity and mechanical properties of composite 

which polymer epoxy is considered as its matrix, are determined theoretically and also 

by the proposed method in this paper with finite element method. Finally, the 

variations of mechanical properties with respect to fiber-volume fraction are studied. 

                                                   © 2016 IAU, Arak Branch.All rights reserved. 

 Keywords : Composite plate ; Unidirectional fibers ; Effective elastic constants ; 

Orthotropic plate.   

1    INTRODUCTION 

 OMPOSITE  materials which consist of two or more constituent materials are commonly used in advanced 

structural applications, e.g. in the marine and aerospace industry. This is because of appropriate mechanical 

properties such as high specific strength and stiffness, low density and high resistance to corrosion. However, the 

limited understanding of the composite material behavior requires more research. This is further complicated by the 

fact that these materials behavior is dependent on lay-up, loading direction, specimen size and environmental effects 

such as temperature and moisture.  

Research on determination of effective elastic constants for anisotropic materials is very important in composite 

structures. 

Unidirectional fiber reinforced resin matrix composites are used in some structural applications, due to their 

various reasons especially to their excellent mechanical behavior in terms of their specific stiffness in the direction 

of the fibers. The prediction of the mechanical properties of unidirectional composites has been the main objective 

of many researchers. The well-known models that have been proposed and used to evaluate the properties of 

unidirectional composites are Voigt [1] and Reuss [2] models. The Voigt model is also known as the rule of mixture 

model or the iso-strain model, while the Reuss model is also known as the inverse of mixture model or the iso-strain 

model. Semi empirical models have emerged to correct the rule of mixture model where correcting factors are 
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introduced. Under this category, it is noticed three important models: the modified rule of mixture, the Halpin-Tsai 

model [3] and Chamis model [4]. The Halpin-Tsai model emerged as a semi-empirical model that tends to correct 

the transverse Young’s modulus and longitudinal shear modulus. The Chamis micromechanical model is the most 

used and trusted model which give a formulation for all five independent elastic properties. Hashin and Rosen [5] 

initially proposed a composite cylinder assemblage model to evaluate the elastic properties of unidirectional 

composites. Moreover, Christensen [6] proposed a generalized self-consistent model in order to better evaluate the 

transversal shear modulus. Also the Mori-Tanaka model [7] is a famous model which is widely used for modeling 

different kinds of composite materials. This is an inclusion model where fibers are simulated by inclusions 

embedded in a homogeneous medium. The self-consistent model has been proposed by Hill [8] and Budianski [9] to 

predict the elastic properties of composite materials reinforced by isotropic spherical particulates. Later the model 

was presented and used to predict the elastic properties of short fibers composites [10]. Recently, a new 

micromechanical model has been proposed by Huang et al. [11, 12]. The model is developed to predict the stiffness 

and the strength of unidirectional composites. 

In this paper a composite plate with unidirectional fibers is considered. Assuming orthotropic structure and using 

ANSYS software, effective characteristics of this plate are studied. Numerical studies are performed for some stress 

states in a representative cell for determination the effective elastic properties of unidirectional reinforced composite. 

2    COMPUTATIONAL PROCEDURE 
2.1 Definition 

This study considers a composite plate with unidirectional fibers, as shown in Fig. 1. As it is shown, unidirectional 

fibers are parallel to “z” direction. 

 

 

 

 

 

 

 

Fig.1 

Schematic and coordinate of composite plate with 

unidirectional fibers. 

2.2 Elasticity effective parameters in orthotropic composite plates 

Theory of elasticity can be used for investigating the stress concentration of composite plates with unidirectional 

fibers. The generalized Hook's law relating strains to stresses can be written as follows:  

 

   , , ,ij klA i j x y z    (1) 

 

where  A is the stiffness matrix and ij  and ij  are the strain and stress components, respectively. Proof of 

the form of the stress-strain relations for the various cases of material property symmetry is given by Tsai [8]. For 

example, if there are two orthogonal planes of material property symmetry for a material, the stress-strain relations 

in coordinates aligned with principal material directions are as follows and are said to define an orthotropic material. 
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where:  
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(3) 

 

, ,x y zE E E - Young's moduli in the x , y and z-directions. 

, ,xy yz zx   - Poisson's ratio in the xy plane, yz  plane and zx  plane. 

, ,xy yz zxG G G - Shear modulus in the xy  plane, yz  plane and zx  plane. 

3    THE EFFECT OF MATRIX AND’S PARAMETERS ON THE ELASTICITY COEFFICIENT OF            

     ORTHOTROPIC PLATES      

Complex variable functions are used for solving the plane stress problems [13]. In this procedure, the elasticity 

coefficients of composite structures are dependent to the material properties of matrix and fibers and also to the 

situation of the fibers in the matrix. These coefficients are as follows: 
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(4) 

 

where,  

 
3 4    (5) 

 

In this study a composite plate with unidirectional fibers parallel to “z” direction is considered. So, for 

orthotropic plates: 

 

, , , ,x y xz yz xy yx yz xz zx zyE E G G            
 

 

In the above equations, , , , , , , ,x y z xy yz zx xy yzE E E G G G    and zx  are the mean composite 

material modulus and  , ,m m mE G    and , ,b b bE G  are the matrix and fiber’s coefficients, respectively. 

The strength of a fiber-reinforcement composite material must be determined in terms of the strengths of the 

fibers and the matrix and also their relative volumes (relative to the total volume of the composite material). So, for 

calculating these coefficients, it is necessary to define the fiber-volume fraction which is dependent to the fiber-

reinforcement geometries and the distance of the fibers. 



                                                                                                                                                         S. Daryazadeh et al.                107              

© 2016 IAU, Arak Branch 

Considering the fiber-reinforcement geometry in square arrangement illustrated in Fig. 2 and two vectors as 1w  

and 2 1

iw w b e  , fiber-volume fraction for a composite plate with unidirectional fibers is: 
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(6) 

 

where “a”  is the radius of the fibers. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Schematic diagram of square fiber arrangements. 

 

Using Eq. (6), fiber-volume fraction it can be calculated for different fiber arrangement structures.  

In this study, composites with unidirectional similar fibers and constant radius are investigated as orthotropic 

materials. 

These materials with volume “V”, stress and strain are described as follows: 

 

ij ij ij ij

V V

dV and dV       (7) 

 

In Cartesian coordinates, Hook’s law is as follows: 
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(8) 

 

where ijb   is the coefficient of elasticity of composite material. Matrix of coefficient of elasticity is symmetric so, 

ij jib b .  

Since the composite has the same elasticity properties in “x” and “y” directions: 

 

11 22 13 23 55 66, ,b b b b b b    (9) 

4    DETERMINATION OF COEFFICIENTS OF ELASTICITY BY NUMERICAL ANALYSIS      
4.1 Finite element modeling 

The numerical finite element modeling is widely used in predicting the mechanical properties of composites. In this 

paper for numerical analysis, a plane element of fibers in square array is considered which symmetric exists on all of 

its lines. In order to investigate the numerical finite element modeling, a quarter unit cell for a square array is 

considered in plane “xy” using ANSYS software as shown in Fig. 3. 
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Fig.3 

Quarter square array element in plane “xy”. 

 

Numerical analysis of volume element causes to study about stress-strain and stress concentration. The infinite 

flat plate problem with a circular hole is evaluated using ANSYS while applying uniform normal pressure on the 

hole border. PLANE182 element was selected. This is a triangular element with four nodes and two degree of 

freedom in each node. The 4-node element is defined by four nodes having two degrees of freedom at each node; 

translations in the nodal x and y directions. This element can be used either as a plate element (in plane strain and 

plane stress) or as an axisymmetric problems. This element is used in flat problems and the models with symmetrical 

stress mode. One of the important characteristics of this element is that the orthotropic material axle is consistent 

with the direction of the coordinate system of the element.  

A regular two-dimensional arrangement of fiber in a matrix was adequate to describe the overall behavior of the 

composite, and was modeled as a regular uniform arrangement, as illustrated in Fig. 2. This model assumed that the 

fiber was a perfect cylinder of radius 0.8, in a square (1 × 1) of the matrix. It is assumed that the geometry, material 

and loading of the unit cell are symmetrical with respect to x-y coordinate system as demonstrated in Fig. 3. For 

composite with fibers in constant radius as 0<a<1, fiber-volume fraction can be calculated by Eq. (6). So, 

considering 
190 , 0.8, 1, 2a b w      fiber-volume fraction is obtained as 0.504  . Therefore, 50.4% volume 

fraction fibers were inserted into the square matrix uniformly as illustrated in Fig. 4. 

 

 

 

 

 

 

 

Fig.4 

Plane element in mesh formed. 

 

In this analysis polymer epoxy and glass are considered as matrix and fiber, respectively. Mechanical properties 

of epoxy matrix and glass fibers are given in Table 1. [4]. 

 
Table 1 

Mechanical properties of the matrix and reinforcement of the composite plate. 
Material E (MPa) G (MPa) v 

Epoxide matrix 4200 1500 0.4 

glass fibers 74800 31000 0.2 

 

For determining the elasticity coefficients ijb , stress analysis is performed for considered volume with noting to 

boundary conditions. In the present procedure, normal strains are applied to two directions and shear strains are 

applied to two planes as follows. 

4.2 The first numerical testing 

The first numerical testing is unidirectional tension in “z” direction. In this condition, tensor of average values for 

strains is as follows: 

 
30, 0, 10 , 0, 0, 0.x y z xy yz xz            (10) 

Boundary conditions for this structural analysis are as follows: 
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In plane xy: 
310zu    and 0xy xz     

where zu  is displacement in “z” direction.  

Stress components are determined as: 

 
1 1 1 1

0 0 0 0

( 1, ) , ( , 1) ,x x y y z zx y dy x y dx dxdy               

(11) 

 

Therefore, according to Eqs. (8), by the first numerical testing three coefficients of elasticity can be determined 

as follows: 
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In Fig. 5 the result of the first condition for ξ = 0.504 is shown. 

 

 
 

(a) 

 
 

(b) 

  

 
 

(c) 

 

Fig.5 

Stress distribution of normal stresses: a)
 x  , b) y and  c) 

z . 
 

4.3 The second numerical testing 

Unidirectional tension in “x” direction is considered as the second numerical testing. In this condition, tensor of 

average values for strains is as follows: 

 
310 , 0, 0, 0, 0, 0x y z xy yz xz            (13) 

 

Boundary conditions for this structural analysis are as follows: 

On the line x=1:  310xu   and 0xy zx   .  
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where 
xu  is displacement in “x” direction. In this situation, there are symmetric conditions on other lines and the 

following equations are obtained: 

 
1 1

0 0

( 1, ) , ( , 1)x x y yx y dy x y dx         
 

(14) 

 

Therefore, according to Eqs. (8), by the second numerical testing two coefficients of elasticity can be determined 

as follows: 
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4.4 The third numerical testing 

The third numerical testing is shearing in “xy” plane. In this condition, tensor of average values for strains is as 

follows:   

 
30, 0, 0, 10 , 0, 0x y z xy yz xz            (16) 

 

Boundary conditions for this structural analysis are as follows: 

On the lines x=0 , x=1: 0x  and 0yu  . 

On the line y=1: 0y   , 310xu  and the  of line y=0:  0y   and 0xu  . 

where 
yu  is displacement in “y” direction.  

The shear stress component is as follows: 
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(17) 

 

Therefore, according to Eqs. (8), by the third numerical testing another coefficient of elasticity can be 

determined as follows:  
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4.5 The fourth numerical testing 

Shearing in “yz” plane is considered as the fourth numerical testing. To carry out numerical analysis on longitudinal 

shear using the capabilities of ANSYS software system, the construction of a 3D model of cell is required. But it is 

possible to restrict the 2-D analysis in the 2D dimensional, if we use a mathematical analogy between the problems 

of longitudinal shear (as a special case anti- plane shear deformation) and the problems of steady-state temperature 

distribution in a plane domain. 

The solution of anti- plan problem for the case of longitudinal shear is defined as the transverse displacement 

w(x,y) in the direction of reinforcement. Displacement function must satisfy the harmonic equation in domain S in 

the sectional of volume
 1 2S S S   (as shown in Fig. 3).The harmonic equation has the same form in domains

 1S  

and 
2S : 

 
2 0w   (19) 
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The shear stress components can be expressed in terms of the displacement w(x,y) with taking into account 

the different shear modulus for the fibers and matrix as follows:  

 

1 1 2 2

1 1 2 2, , ,xz yz xz yz

w w w w
G G G G

x y x y
   

   
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   
 

 

(20) 

 

At the external boundaries of the domain S under specified conditions: 
xz xy znl m p   , where l and  m are 

components of the unit normal to the plane, and
 znp   is the external longitudinal load.  

On the other hand the stationary heat conduction problem is defined as the harmonic equation for the 

temperature field T(x,y): 

 
2 0T   (21) 

 

The heat fluxes in different areas are determined by the following formulas: 
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(22) 

 

where K1 and  K2 are the coefficients of thermal conductivity for respective areas. 

At the external boundaries of the domain S under specified conditions: . .x y nQ l Q m Q  , where 
nQ  is external 

heat flux defined on the boundary. 

As it can be seen, the boundary value problem of longitudinal shear (19, 20), are the same as the boundary-value 

problem of heat conduction (21, 22). So solving the stationary the heat conduction problem for determination of 

,x yQ Q , can help us for determination of  shear stress components in the longitudinal shear problem. It means: 

 

,x xz y yzQ Q    (23) 

 

Therefore, according to Eqs. (8), by the fourth numerical testing another coefficient of elasticity can be 

determined as follows: 
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The results of this simulation at temperature (T = 10−3°C) in nodes on line y=1 are presented in Fig. 6. These 

results correspond to the displacement w at longitudinal shear. 

 

 

 

 

 

 

 

 

 

 

Fig.6 

The distribution of temperature at temperature (T = 10−3°C) 

on line y=1. 

 

 

Fig. 7 shows the heat fluxes in nodes at temperature (T = 10−3°C) on line y=1. These results correspond to the 

stress xz  and  yz .  
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(a) 

 
(b) 

Fig.7 

The heat flux: a) 
xQ , b) 

yQ in nodes at temperature (T = 10−3°C) on line y=1 and ξ = 0.504. 

  

In this way, elasticity coefficients such as poison ratio, modulus of elasticity and shear modulus of composite 

plate can be obtained. 

5    NUMERICAL ANALYSIS RESULTS     

Effective elasticity properties for ξ = 0.504 is determined by theory of complex functions and numerical procedure 

proposed in this research. Table 2 .  shows theoretical and numerical effective elastic constants. Numerical values 

are calculated by ANSYS. 

 
Table 2 
Theory and numerical results of effective elasticity properties for ξ = 0.504 

Elasticity properties symbol Numerical Method (by ANSYS) Theoretical Method (by Vanin Formula) 

Modulus of elasticity 

(MPa) 
xE  15868 18050 

yE  15868 18050 

zE  48875 43840 

Modulus of shear 

(MPa) 
xyG  4100 4080 

xzG  4960 4900 

yzG  4960 4900 

Poisson’s ratio xy  0.29 0.28 

yz  0.13  0.118 

zx  0.32 0.33 

6    RESULTS AND DISCUSSION   

In this section, variation of  1 2, yx

m m

EE
E E

E E
   and  

xy

m

G
G

G
  versus different values of   are 

obtained for unidirectional glass fibers in a square pattern. Mechanical properties of composite are determined 

theoretically ( by Vanin formula) and also by the proposed numerical method in this paper ( by ANSYS).  

The variation of  1E  versus different values of   for unidirectional glass fibers in a square pattern is depicted in 

Fig. 8. xE  is modulus of elasticity of composite in fibers direction and mE   is modulus of elasticity of matrix. In 

this figure, the curve 1 is obtained from theoretical formulation and the curve 2 is obtained by the method of this 
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paper. As it can be seen, the behaviors of curves are linear. Fig. 8 shows that for small value of   the value of 
1E   

is near to 1. Also for the maximum value of   (ξ = 0.504), the value of 
1E   is near to the modulus of elasticity of 

fibers b

m

E
E

, as it is predicted.   

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

The variation of  
1E  versus different values of   for 

unidirectional glass fibers in a square pattern. 

 

Fig. 9 shows the variation of  
2E  versus different values of   for unidirectional glass fibers in a square pattern.  

yE  is modulus of elasticity of composite in perpendicular direction of fibers and  mE  is modulus of elasticity of 

matrix. In this figure, the curve 1 is obtained from theoretical formulation and the curve 2 is obtained by the method 

of this paper. As it can be seen, the behaviors of curves are nonlinear. In Fig. 9, we see that for small value of     , 

the value of 
2E   is near to 1. Also for the maximum value of   (ξ = 0.504), 

2E   is near to a value that is smaller 

than the modulus of elasticity of fibers ,b

m

E
E

 because these results are obtained in perpendicular direction of fibers.  

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

The variation of  
2E  versus different values of   for 

unidirectional glass fibers in a square pattern. 

 

The variation of  G versus different values of   for unidirectional glass fibers in a square pattern is shown in 

Fig. 10.  xyG  is shear modulus of composite in xy plane and  mG  is the shear modulus of matrix. In this figure, 

the curve 1 is obtained from theoretical formulation and the curve 2 is obtained by the method of this paper. As it 

can be seen, the behaviors of curves are nonlinear. Fig. 10 shows in small value of     , the value of G  is near to 1. 

Also for the maximum value of   (ξ = 0.504), G  is near to a value that is smaller than the shear modulus of 

fibers b

m

G
G

. This result is coincident to curves obtained by Vanin.  
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Fig.10 

The variation of  G  versus different values of   for 

unidirectional glass fibers in a square pattern.  

 

7    CONCLUSIONS 

In this research assuming orthotropic structure for a composite plate with unidirectional fibers, the effective 

elasticity and mechanical properties are determined theoretically and also by finite element method.  A volume 

element of fibers in square array is considered which plane symmetric exists on all of its planes. In order to 

investigate the numerical finite element modeling, the modeling of a quarter unit cell is considered. For determining 

the elasticity coefficients, stress analysis is performed for considered volume with noting to boundary conditions. In 

the present procedure, normal strains are applied to three directions and shear strains are applied to three planes. So, 

the effective elasticity and mechanical properties of composite which polymer epoxy is considered as its matrix are 

determined theoretically and also by the proposed method in this paper. 

The variations of mechanical properties with respect to fiber-volume fraction   are studied and the following 

results are obtained: 

1. In direction of fibers, the behaviors of ratio 
1E  due to   are linear. The results show that for small value of  

,  the value of 
1E   is near to 1. Also for the maximum value of

 
 , the value of 

1E  is near to the modulus 

of elasticity of fibers ,b

m

E
E

 as it is predicted.  

2. In perpendicular direction of fibers, the behaviors of ratio 
2E due to 

  

are nonlinear. The results show that 

for small value of     , the value of 
2E   is near to 1. Also for the maximum value of  , the value of 

2E   

is near to a value that is smaller than the modulus of elasticity of fibers ,b

m

E
E

 because these results are     

obtained in perpendicular direction of fibers.  

3. The behaviors of ratio G   are nonlinear. The results show that in small value of    , the value of G  is near 

to 1. Also for the maximum value of  , the value of G  is near to a value that is smaller than the shear 

modulus of fibers .b

m

G
G

 This result is coincident to curves obtained by Vanin. 
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