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 ABSTRACT 

 Vibration energy harvesting with piezoelectric materials currently generate up to 

300 microwatts per cm2, using it to be mooted as an appropriate method of 

energy harvesting for powering low-power electronics. One of the important 

problems in bimorph piezoelectric energy harvesting is the generation of the 

highest power with the lowest weight. In this paper the effect of the shape and 

geometry of a bimorph piezoelectric cantilever beam harvester on the 

electromechanical efficiency of the system is studied. An analytic model has 

been presented using Rayleigh cantilever beam approximations for piezoelectric 

harvesters with tapered bimorph piezoelectric cantilever beam. In order to study 

the effect of a cantilever beam length and geometry on the generated voltage, 

finite element simulation has been performed using ABAQUS. Design 

optimization has been used to obtain the maximum output power and tapered 

beams are observed to lead to more uniform distribution of strain in the 

piezoelectric layer, thus increasing efficiency. 

                                                       © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

NERGY harvesting is to provide energy using the surrounding environment and its conversion into the 

required electric energy. Energy harvesting have been discussed for decades in macro and micro scales for 

application in different equipment. In order to supply the global demands for energy, processing systems have been 

successfully built on large scales. On the other hand, for low-power equipment, energy harvesting from the 

environment is an appropriate method, because changing the old batteries costs are relatively high. Especially in 

many cases, access to different sensors and actuators for battery change may not be easily feasible. There are 

different mechanisms for vibration energy harvesting including electrostatic and electromagnetic methods and use of 

piezoelectricity materials. [1, 2] 

The performance of energy harvesting equipment depends on the type of materials used in them. Amongst 

energy harvesting different materials, piezoelectric materials are more applied and are more vastly common, for 

their capability to obtain higher power densities [2]. Due to high availability and high piezo constants, the PZT type 

of piezoelectric materials is preferred as well. Other materials are also used including PMN-PT, PZN-PT and PVDF.  
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By increasing width and thickness of beam, a higher output power can also be achieved [3]. Patel et al. [4] 

proposes a versatile model for optimizing the performance of a rectangular cantilever piezoelectric energy harvester. 

The model was used to investigate the effects of substrate and piezoelectric layer length, and piezoelectric layer 

thickness on the performance of a cantilever power scavenger. Findings from a parameter study indicate the 

existence of an optimum sample length due to increased mechanical damping for longer beams and improved power 

output using thicker piezoelectric layers. It is suggested that, in designing with the aim of generating more power, 

the following strategies be used: 1) for the beam, a shorter length, larger width, and lower ratio of piezoelectric layer 

thickness to total beam thickness are preferred in the case of a fixed mass; 2) for the mass, a shortened mass length 

and a higher mass height are preferred in the case of variation in the mass length and the mass height with mass 

width and mass value remain fixed, and a wider width and small mass height are preferred in the case of variation in 

mass width and height (mass length and value remain fixed; and 3) for the case of a fixed total length, a shorter 

beam length and longer mass length are preferred [5]. Beams deformed due to experiencing higher stresses, generate 

more output voltage [6]. Cantilever beams enjoy more advantages than other types of beams, because their 

deformation is more than other types of the beams and so they can produce more power density [7]. Cantilever 

beams are designed and manufactured in different rectangular, trapezoidal, triangular and V-shaped forms [8]. The 

relations required for resonance frequency calculations types of piezoelectric harvesters with common 

configurations have been presented in Ref [8] to facilitate the process of their design. On the micro scale, new forms 

of cantilever beams have also been studied, including the shell structure [9], spiral configuration [10] and zigzag 

[11] ones. Based on this, it is observed that there are different forms for cantilever beam optimization in terms of 

power generation. This paper fundamentally concentrates on design parameters and rates of harvested energy in a 

bimorph piezoelectric beam energy harvester. Motion equations have been obtained based on Euler-Bernoulli theory 

and the Finite Element (FE) simulation has been done using ABAQUS. 

2    CANTILEVER BEAM FREE VIBRATIONS ANALYSIS    

In this section, rectangular, trapezoidal and triangular beam natural frequencies have been estimated. For a uniform 

beam under free vibrations with no damping, motion equation is according to Eq. (1) [12, 13] 
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Coefficient EI shows beam stiffness, m equals to mass per unit length and z is indicative of beam transverse 

displacement in terms of location and time at the place of natural axis in a desirable section of the beam length. 

Beam transverse displace z is expressed using Eq. (2) [14]: 

 

 ( , ) ( , ) ( , )b relz x t z x t z x t  (2) 

 

where ( , )bz x t  equals beam base displacement and ( , )relz x t  indicates beam displacement relative to beam base. 

2.1 Natural frequencies estimation for a rectangular beam 

The schematic of the piezoelectric cantilever beam is shown in Fig 1. Using modal analysis technique, the response 

to free vibrations will be obtained as below: 
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where ( )nw x and ( )nq t  are the state vector orthogonized mass and modal coordinates in the n
th
 mode, respectively 

[13]. By substituting Eq. (3) in (1), one will obtain:  
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where nw  is a positive constant value showing the harmonic response in the cantilever beam. The left hand term in 

Eq. (4) is simplified according to Eq. (5) as follows: 
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where 
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Assuming that ( ) sx
nw x Ce  where C and s are constant, the solution of Eq. (5) will be according to Eq. (7): 
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where C1 and C4 are constants obtained based on boundary conditions. The cantilever beam natural frequencies in 

the n
th

 mode are obtained from Eq. (6), equaling: 
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Since the cantilever beam in this study consists of two materials, terms m and EI will be according to Eqs. (9) 

and (10) [2]: 

 

 

 

 

 

 

 

Fig. 1 

Bimorph piezoelectric cantilever beam for vibration energy 

harvesting. 
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where B is cantilever width,   is cantilever density and h indicates cantilever thickness at different sections. Index 

b shows cantilever beam structure and   is relevant to the piezoelectric material. By applying boundary conditions 

to solve ( )nw x , the frequency equation will be obtained as below [13]; 

  

1 cos cosh 0n n    (11) 

 

where the values of n  for a cantilever beam have been listed in Table 1. 
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Table 1 

Cantilever beam eigenvalues in different modes. 

Node number n  

1 1.875 

2   4.6941 

3   7.8547 

4 10.9956 

 

 

Eq. (7) will accordingly be in the form of Eq. (12) 
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Eq. (12) shows the n
th

 mode shape of the beam. More discussions about the natural frequency calculation of 

different cantilever geometries are found in [15-18]. 

2.2 Natural frequencies estimation for a nonrectangular cantilever beam 

Assuming the constant mode shape obtained according to Eq. (12) in the previous part and using Rayleigh method 

[19], equations relevant to the natural frequencies can be developed. In this state, the cantilever beam width is a 

function of its length and defined according to Eq. (14). 
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where (0)B  is cantilever beam width in the part connected to the wall and r is the ratio of tapering and can written 

as ( ) / (0)r B L B (Fig. 2). According to Eq. (12) we have:  

 

( , ) cos cosh (sin sinh ) sin( )n n n n
n nw x t x x x x t

L L L L

   
  

        
            

        
 

 

(15) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Dimensions of the trapezoidal cantilever beam. 

 

 

where   is a constant number and   and t indicate the angular frequency and the time elapsed, respectively. In the 

general state, kinetic energy of the cantilever beam is obtained according to Eq. (16) as follows: 
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On the other hand, the amount of potential energy is obtained based on Eq. (17) 
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Based on the energy conservation low, thus the natural frequency will equal: 
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It is noteworthy that in the design of energy harvesters, only the 1
st
 mode is usually considered, based on which 

calculations will be made. For the resonance frequency calculation in order to design energy harvesters, simpler 

relations have been presented in Ref [8] for the structure resonance frequency initial estimation. 

3    CANTILEVER BEAM FORCED VIBRATION ANALYSIS    

In this part, the voltage generated due to the cantilever beam forced vibrations has been obtained, based on which, 

influenced by the cantilever base excitation, the motion equation will be according to Eq. (19) 
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where ( )M x  is the bending moment. The stress-strain relation for the beam and piezoelectric layer is: 

 

1 2
b b

bE   (20) 

 

1 1 31 3( )p p
pE d E    (21) 

 

where  denotes cantilever beam strain and  is the stress generated in the cantilever beam. d31 is the 

piezoelectricity module and E3 is the electric field generated in the piezoelectric material. Based on the mode of 

piezoelectric layers connection and circuitry there will be two kinds of series and parallel connections in the circuit, 

shown in Fig 3. 
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(a) 

 
 

(b) 

  

 
(c) 

 

 

 

Fig. 3 

a) Piezoelectric layers in series connection b) Piezoelectric layers in parallel connection c) Structure bimorph piezoelectric cross 

section. 

 

In the piezoelectric series connection, the sign of d31 is opposite in the upper and lower piezoelectric layers (due 

to opposite polarities). Instantaneous electric fields are thus in the direction of each other and their amounts are 

computable in both layers using Eq. (22). 
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In the piezoelectric parallel connection, since the sign of d31 is the same in the upper and lower piezoelectric 

layers, instantaneous electric fields are in opposite directions, respectively calculated according to Eqs. (23) and (24) 

[2] 
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The cantilever internal moment equals: 
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Here it is assumed that the width of the cantilever material and of the piezoelectric layer is the same, shown by 

B. The thickness of the cantilever beam and of the piezoelectric layer equals to hb   and hp, respectively. Regarding 

the different output voltages in series and parallel connections, the piezoelectric coupling effect is expected to be 

different and displacement response Wrel (x,t) is thus different in both states. If we show this value in the series and 

parallel connections by z
S
rel (x,t) and z

P
rel (x,t) respectively, the internal bending moment can be found from the 

following relations where indices S and P respectively refer to the piezoelectric layers in series and parallel 

connections. 
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where 
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L is cantilever beam total length. In the parallel connection state, by using Eq. (27) in (19) the mechanical 

equation of the cantilever beam motion with electric coupling will thus be obtained: 
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where ( )x is Dirac delta function fulfilling Eq. (31). 
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On the other hand, for obtaining electric equations, Eq. (32), used for piezoelectric materials has been applied.  
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where D3 is electric displacement, 1   is stress, 33
T   is dielectric constant in constant stress and E3 indicates uniform 

electric field. By changing Eq. (32), stress will be written in terms of the piezoelectric material Young module and 

strain. Since 33 33 31
T S

pd E   , by using Eqs. (31) and (32), we will have: 
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Electric potential q (t) in one of the piezoelectric layers can be obtained by integrating electric displacement on 

the piezo layer surface according to Eq. (34). 
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where D  is electric displacement vector and n equals to unit vector normal to the surface. By differentiation q(t) 

relative to time, the relation current will be obtained. Then: 
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The 2
nd

 term of Eq. (35) is for the piezoelectric material capacitor property. For convenience, the piezoelectric 

material can be connected to the resistance load which will function as the current source with no external capacitor 

element [2]. The output voltage will thus be obtained as follows: 
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where RL is indicative of resistance due to load. 

3.1 Estimation of the voltage generated in the rectangular cantilever 

Eq. (19) is used for this purpose. According to modal analysis, we have: 
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By multiplying both ends of Eq. (37) by mass normalized function ( )pw x  and integrating in the cantilever 

length, and using the orthogonality condition, the following result (Eq. (39)) will be obtained: 
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For approximation to reality, the damping effect will also be added to equations [20] to obtain the following 

result (Eq. (40)) 
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with a little change in Eq. (36), we have: 
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Using Eq. (3) in Eq. (4), the integral expression can be expressed as below: 
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In the end, Eq. (41) will be in the form of Eq. (43)  
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where 
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Using the function in Eq. (45) for v(t), Eq. (41) will be solved. 
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where c  is the circuit time constant, defined as per Eq. (46): 
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The cantilever motion has been assumed to be harmonic. Given 0
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bz Y e   and 0( ) i tv t V e   in Eq. (40), qk(t) 

will be obtained according to Eq. (47): 
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where  is the excitation frequency and i is a unit imaginary number. On the other hand, based on Eq. (43), we 

have: 
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By substituting Eq. (47) in (48), the value of V0, being indicative of the voltage vibrations amplitude, will be 

obtained based on Eq. (49) 
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(49) 

 

The ratio of the output voltage to the basement beam acceleration called Frequency Response Function (FRF) in 

every piezoelectric layers will thus equal: 
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(50) 

3.2 Estimation of the voltage generated in the toothed rectangular cantilever beam 

For a comb-shaped rectangular cantilever beam which is in effect a structure consisting of some rectangular 

cantilever beam, the response will be a voltage equaling total voltages of each of the individual cantilever beams, 

and thus: 
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(51) 

 

where n indicates cantilever beams used in the structure. 

3.3 Estimation of the in voltage generated the toothed nonrectangular cantilever beam 

Rectangular equations can also be applied to the nonrectangular cantilever beams. Yet, changes including m and I(x) 

(surface inertia) should be made in them, for in that case, contrary to the simpler rectangular cantilever beam, width 

will change along the cantilever beam length. 

4    FINITE ELEMENT SIMULATION AND VERIFICATION OF RESULTS    

In order to verify the obtained results, the results of finite element analysis and the experiment conducted in Ref [21] 

on a rectangular cantilever beam is compared. The mechanical properties and geometric parameters of this case 

study have been respectively stated in Tables 2 and 3. Experimental, analytical and numerical results are listed in 

Table 4. As observed, there is a good compliance between the results. It is of course worthy of mention that the 

damping effect has been ignored in the calculations, and it is expected that by considering this parameter, more 

precision will be achieved in the result. Finite element simulation made for rectangular cantilever beam is shown in 

Fig 4. 

 
Table 2 

Mechanical properties of piezoelectric material used for simulation. 

Piezoelectric(PZT-5A) Value Brass(Sub layer) Value 

Elasticity module, Ep [N/m2] 5.1e10 Elasticity module, Ep [N/m2] 9.7e10 

Density, ρp [kg/m3] 7750 Density, ρp [kg/m3] 8490 

 
Table 3 

Geometric parameters used in the cantilever beam structure applied for simulation and experiment. 

Metal sublayer thickness (mm) Piezoelectric material thickness (mm) Width (mm) Length (mm) 

0.132 0.188 3.175 28.6 

 
Table 4 

Experimental, analytical and numerical results of the bimorph piezoelectric rectangular cantilever beam 

Beam structure  Frequency (Hz) Output voltage (V) 

Experimental result 246     10.24 

Finite element simulation 258.44   9.24 

Analysis result 258.05   9.73 

 
 

 

 

 

 

 

 

Fig. 4 

Bimorph piezoelectric cantilever beam finite elements 

simulation. 
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In order to study the beam form effect, the ratio of the beam both ends has been considered in studies (Fig. 5). 

Ratio 1 denotes rectangular and 0 triangular beams.  

Fig 6. Shows FE models for 3 states of rectangular, trapezoidal and triangular beams. Modelling has been made 

in ABAQUS and the results are shown in Fig. 7 for a point uniform loading. Simulation results show that under 

identical conditions, a triangular cantilever beam has optimized strain distribution and has made it more uniform.  

Regarding calculations, mean strain in the triangular beam will be twice as high as in the rectangular beam. As 

the result of this strain distribution, the triangular beam provides more voltage and power than trapezoidal and 

rectangular beams do. 

For different triangular functions B(x) applied in the analytic relations, for natural frequency and output voltage, 

these relations can also be extended to other geometries such as trapezoidal and triangular shapes. 

 

 

 

Fig. 5 

Beam both ends width. 

  

 
 

 

 

 

 

 

Fig. 6 

Rectangular, trapezoidal and triangular piezoelectric 

cantilever beam harvester finite element models. 

  

 
 

 

 

 

 

 
Fig. 7 

Strain distribution in 3 different piezoelectric harvesters. 

5    CONCLUSIONS 

In this paper, analytical computations were made based on the distributed parameter model to extract the values of 

resonance frequency and output voltage of a bimorph piezoelectric cantilever beam which is the best and the 

simplest structure for application in energy harvesting systems. The equations were obtained based on Euler-

Bernoulli beam and were calculated based on the system natural frequencies. The cantilever beam vibrations are 

based on the cantilever base excitation. Results from these equations and simulation and experimental results had 

much compliance with each other and these relations can be applied to design such harvesters. 

From the strain field point of view, according to the finite element simulation, it was observed that under the 

effect of similar load for types of cantilever beams, with the beam deformation in a triangular state, the strain 

generated on the beam surface moves towards uniformity and in the triangular state, the mean strain will be twice as 

high as in the rectangular state and based on this, the generated voltage will also be higher. 
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