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ABSTRACT

In the present study, nonlinear vibration of coupled carbon nanotubes (CNTSs) in presence
of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory.
CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal
magnetic field. Using von Karman geometric nonlinearity and Hamilton’s principle, the
nonlinear higher order governing equations are derived. The differential quadrature (DQ)
method is applied to obtain the nonlocal frequency of coupled visco-CNTs system. The
effects of various parameters such as the longitudinal magnetic field, visco-Pasternak
foundation, Knudsen number, surface effect, aspect ratio and velocity of conveying
viscous are specified. It is shown that the longitudinal magnetic field is responsible for an
up shift in the frequency and an improvement of the instability of coupled system. Results
also reveal that the surface effect and internal conveying fluid plays an important role in
the instability of nano coupled system. Also, it is found that trend of figures have good
agreement with previous researches. It is hoped that the nonlinear results of this work
could be used in design and manufacturing of nano/micro mechanical system in advanced
nanomechanics applications where in this study the magnetic field is a controller
parameter.
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1 INTRODUCTION

NTs are as one of the stable families of nanostructures where they are becoming the most promising material

for nano-electronics, nano-devices and nano-composites because of their enormous application such as nano-
pipettes, actuators, reactors, fluid filtration devices, targeted drug delivery devices and scanning ion conductance
microscopy [1-2]. Due to its potential, nanotubes are used in nano technology, particularly in recent years utilized in
vibration of CNTs with/without conveying fluid.

In this regard, Zhen and Fang [3] investigated the nonlocal thermal vibration single-walled carbon nanotubes
(SWCNTs) conveying fluid where an elastic beam model developed for analysis of dynamical behavior of fluid
conveying SWCNTs. Their results showed that the natural frequencies and critical flow velocity increase as the
temperature changes increase. The nonlocal-model’s natural frequencies were smaller than the local model’s natural
frequencies at all temperature changes and flow velocities considered. Vibration analysis of double-walled carbon
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nanotubes (DWCNTs) based on nonlinear EBB and nonlocal elasticity theories was studied by Fang et al. [4]. They
considered clamped-clamped condition and used Hamilton’s principle to drive nonlinear equations of motion. The
influences of nonlocal parameters, nonlinear Van-der-Waals forces, aspect ratio and Winkler constant were
discussed on nonlinear coaxial and non co axial vibration. Wang and Ni [5] used EB classical beam to modeling the
nanotubes as a continuum structure conveying viscous fluid. They found that the effect of fluid viscosity on the
vibration and instability of CNTs can be ignored but increasing the velocity of flow fluid has remarkable effect on
the frequency and stability of CNTs. A nonlinear model developed for the flow-induced frequency of a SWCNT by
Soltani and Farshidianfar [6], who solved the nonlinear equation of motion by the energy balance method. They
indicated that the nonlinearity of the model can be effectively tuned by applying axial tension to the nanotube.
Ghorbanpour Arani et al. [7] developed nonlinear vibration and stability of a smart composite micro-tube made of
Poly-vinylidene fluoride reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under
electro-thermal loadings. The microtube conveyed a fully developed isentropic, incompressible and irrotational fluid
flow. Their results indicated that increasing mean flow velocity considerably increases the nonlinearity effects so
that small scale and temperature change effects become negligible. It had also been found that stability of the system
was strongly dependent on the imposed electric potential and the volume percent of BNNTSs reinforcement.

Knudsen number (Kp) is the dimensionless ratio that introduced mean free path of the fluid molecules to a

characteristic length of the flow geometry and it is used as a discriminate for identifying the different flow regimes
[8]. The effects of Knudsen-dependent nano flow velocity on vibrations of EBB nano-pipe conveying fluid
investigated by Mirdamadi et al. [8] and Rashidi et al. [9] who reformulated Navier—Stokes equations, with modified
versions of Kn-dependent flow velocity. They found that the Knudsen number has dominated influence on the
critical flow velocity and stability of nano structure conveying fluid.

Recently, it has become clear that when materials and structures shrink to nanometers, surface effects often play
a critical role in their static or dynamical behavior due to increasing ratio of surface/inter face area to volume. Wang
[10] presented an analytical model for predicting inner and outer layers effects on the free vibration of fluid-
conveying nanotubes based on the non-local elasticity theory. They indicated that the surface effects with positive
elastic constant or positive residual surface tension tend to increase the natural frequency and critical flow velocity.
Based on type of continuum elasticity theory, the surface stresses are simulated as a mathematical thin layer that
thickness can be neglected with different material properties from the underlying bulk which is completely bonded
by the membrane. They proposed the following general and simple expression for surface stress—strain relation. [11,
12]. In spite of many researches about behavior of CNTs using nonlocal elasticity theory, there are limited studies
that consider nonlocal visco-elastic systems. Lei et al. [13] presented the dynamic behavior of nonlocal visco-elastic
damped nanobeams where the Kelvin—Voigt visco-elastic model was employed to establish the governing equations
for the bending vibration of nanotubes. They used transfer function method to obtain the natural frequencies and
response functions. The flexural vibration of visco-elastic CNTs conveying fluid and embedded in viscous fluid
based on Timoshenko beam (TB) elasticity theory investigated by Ghavanloo and Fazelzadeh [14] who
demonstrated increasing visco-elastic structural damping coefficient decreases the critical flow velocity.

It has been proved that the CNTs deform when subjected to the magnetic field due to changes in their magnetic
state. There are some studies dealing with on the magneto-elastic behavior of such components in the literatures.
Murmu et al. [15] reported an analytical approach to study the effect of a longitudinal magnetic field on the
transverse vibration of a magnetically sensitive DWCNT based on nonlocal elasticity theory. Results revealed that
presence of a longitudinal magnetic field increases the natural frequencies of the DWCNT. They studied the
influence of small scale effects, temperature change, Winkler constant and vibration modes of CNT on the natural
frequency. Wang et al. [16] studied the effects of magnetic field and elastic medium on wave propagation in CNTs.
They showed that the longitudinal magnetic field increases the velocity wave propagation in some frequency regions
where the longitudinal magnetic field has obvious influence on the velocity of wave propagation in CNTs. The
behavior of nanoplates under an external in-plane magnetic field based on nonlocal elasticity theory is investigated
by Murmu et al. [17], who found that the in-plane magnetic field increases the natural frequencies of the single layer
grapheme sheet.

Murmu and Adhikari [18] investigated nonlocal vibration analysis of double nano beam systems and obtained
governing equations of motion for EBB model in terms of displacements. They solved the coupled equations by the
new analytical method to decouple the set of partial differential equations and they showed that small scale
parameters and stiffness of the coupling springs have important role in stability of double nanobeams system. Also
these researchers [19, 20] investigated the effects of small scale parameter on the transverse and longitudinal
vibration of double nanobeams system. Later Murmu and Adhikari [21] reported nonlocal vibration of double
nanoplate system where two single layered grapheme sheets coupled by polymer matrix. They used explicit closed-
form expressions for natural frequencies for the case when all four ends are simply-supported. They showed the
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98 Nonlinear Instability of Coupled CNTs Conveying Viscous Fluid

effect of stiffness elastic medium, small scale parameter, aspect ratio and higher modes on the natural frequencies of
coupled system based on an analytical method. Recently, GhorbanpourArani and Amir [22] investigated electro-
thermal vibration of double BNNTSs which are coupled by elastic medium using strain gradient theory. Two BNNTs
are placed in the uniform temperature and electric fields, the latter being applied through attached electrodes at both
ends. Moreover, one of the BNNTSs oscillates under flow fluid. They derived the higher-order equations of motion
base on the Hamilton’s principle to obtain the frequency of coupled BNNTSs system.

In this study, nonlinear vibration and stability of a double visco-CNTs system based on EBB theory under
longitudinal magnetic field with surface effect, conveying fluid is considered. Using Hamilton’s principle, the
couple governing equations are derived and DQM is presented to estimate the frequency and critical fluid velocity of
double bonded visco-CNTs. Several effects of fluid flow on the vibration behavior of the coupled system are
investigated thoroughly; moreover the effects of other parameters such as small scale, surface effect, magnetic field
and visco-elastic medium modulus are discussed in details.

2 GOVERNING EQUATIONS OF COUPLED SYSTEM

According to the Eringen’s nonlocal elasticity model [23, 24], the stress state at a reference point in the body is
regarded to be dependent not only on the strain state at this point but also on the strain states at all of the points
throughout the body. On the other contract, at the local elasticity theory, the stress state at any point corresponds to
the strain state at this point. The constitutive equations of the partial nonlocal elasticity can be considered as:

(1 _ (eoa) v2 )GNonlocal _ TLocal) 0

where the right hand of Eq. (1) denotes the classical stress and eja is a constant parameter showing the small scale

effect. In the present model, the nonlocal stress (O'Nonlml), the corresponding strain &, . Using above assumptions

for the EBB model, Eq. (1) can be obtained as:

local Local
]GNonoca B

I:l —(eoa)2 v’ x w - @)

The geometry of the system and its surrounding medium are demonstrated in Fig. 1. This figure shows a double
visco elastic CNT system which coupled by visco-Pasternak foundations with length /, radius » and effective tubes
thickness / that CNTs are contain of fluid flow. In this study CNTs are simulated by EBB model where this
simulation can be suitable for CNTs, therefore the displacement filed based on the EBB theory becomes [6]:

~ OW(x,1)
Ux,z,t) =Ux,t)—z———=,
(x,2,t) x,t)—z F™

\~/(x,z, t)=0, ©)

W(x,z,t) = W(x,t).

Using Eq. (3), where U(x,t),W(x,t) and V(xt) are displacement components of middle surface and nonlinear
strain displacement relation can be written:

€xx

2 2
:a_U_Za W+l(6W(x,t)j . 4
ox ol 2 ox

According to Kelvin—Voigt visco elastic model [13] at real life, nano structure mechanical properties depend on
the time variation. Therefore, based on this model and nonlocal elasticity model, the nonlocal visco-elastic
constitutive relation for EBB can be written as [13]:
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achonlocal P
Nonlocal 2
G —(epa) —2—=E|1+g— |e,,. (5)
XX ( 0 ) 5 2 ( gatj

where E and g are Young’s modulus and damping coefficient, respectively. In this study, the energy method is used
to derive higher order governing equations of motion where total potential energy, [ is expressed as [25]:

[=U; -(K+Q), (6)

where U ¢ is strain energy, K is total kinetic energy and €2 is the total external work in coupled system. Therefore,

the motion equations of embedded visco-elastic coupled CNTs conveying viscose fluid can be derived by
Hamilton’s principle given as follows [25]:

4|
I |:8Us _(SKnanotubes +8K Sfluid + 8 i5co—Pasternak + 6Qﬂmd +0Q orentz ):| dr=0, 7
0

where strain energy of nanotubes are [25]:
1 ¢L
Us :EJ‘O IA,- (Cyxi€xxi) dA;dx, (8)

Subscript i denotes the number of nanotube where i=1,2 demonstrate upper and lower nanotubes, respectively.
Substituting Eq. (4) in Eq. (8), total strain energy is defined as:

L 2 2
1 oU; 1 oWi(x,0) W,

US :EJ. ijx! —-‘r—[ —Z dAl X, (9)
04

ax 20 ox o2

and introducing forces and moments at the intermediate of CNTs as follow:

NLocal _ J' cLocal 4 4; ’ plocal _ [ Local . ;4 4;,
XI Ai xxi Xi Ai xxXi

(10)
c

NNonlocal _
xi A; xxi

Nonlocal dA; M)]C\lfonlocal _ J'A G]X)Coinlocalszi'
i

Total strain energy of nanotubes is rewritten as:

(11)

>

L 2
_1.[ M o*w, LYY (5’”’1'] M Ui
(xi) ax2 2 (wi)\ ox (xi) ox

and the total kinetic energy nanotubes can be expressed as [26, 27]:

1 AN AL 1
K anotubes :_th- J.A- { ZJ +( lj I4; dx. (12)
0 i

2 ot ot

This velocity vector for the transmission fluid through the tubes in beam model can be expressed as [27, 26]:
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a0, ow
Vy, =——+Upcos® , V, =——-Ugssind.
X ot f' z ot f’

(13)
Work done of the fluid caused by the curvature of the CNT:
L 2 2
oW, oW,
2 2 .
8 g = —J J prVy 2’ cos® 81, +p ¥ 2’ sin® 8U; rdA , dx, (14)
04 ox ox
S
where 0= _a%x and U f is the constant velocity of fluid and kinetic energy of flow fluid is:
L ~ 2 ~ 2
1 oU; om . 15
Kagis=— “‘ —+UrcosO| +| ——U,sin® | dArdx. (15)
muid =3Pr) ), [at s J [at s ] f
0
According to the fluid viscosity effect of CNT, the Navier—stokes equation given as follows [28]:
dV _ o5 oag
pfaz—VP+uV V. (16)

Substituting the fluid velocity vector in Egs. (15-14), Navier-stokes equations in x, z directions given as follows:

- 5 [ am _[PfdAf
p{£+Vfi} a—U+Vfcose :—a—P+ua— a—U+Vfcose L N (172)
ot ox || ot ox ox2| ot
o ol ew P & [ow Jorets 17b
pf‘:—+Vf—}[——\/fsin(ﬁ}:——+u—{——stinO}Af—> (170)
ot ox ]| et oz x| ot
2 2 2 2
OP o0°U; om . o0°U; 20°M .
—Ar=m +m U sin@+m U +m U sin 0+
o T a2 T v o a2
17
a3U1 3 ) N2 (17¢)
pAf 7 +;,LAfo smG—uAfo —— | cosH
ox“ ot 16
2
3 3 2
oP m 0 .
E'Af:ﬂ’lAf 5 +Uf|JAf 3 COS@+Uf|J.Af —2 sin 6+
ox“ ot ox
(17d)
2 2 2 2
o *W *W 2 0%
+m U 0+m U +m U 0.
Mf 5t2 f f Ot Cos mf f oxor mf f 5x2 CoS

In above equations (Egs. (17¢) and (17d)), the effect of viscosity is demonstrated [28, 27].
The governing equations for the conventional fluid-structure interaction problems have been derived by the
assumption of no-slip boundary conditions. Consider a fully developed flow for a Newtonian fluid with a constant

pressure gradient irrespective to gravitational body force; the Navier—Stokes equations will be given as follow [8, 9,
291:

av = 2=
p]-zz—VP+ueV v, (18)
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The solution Navier-Stokes equations and applying boundary conditions for Eq. (19), the final equation for

Knudsen number reaching [8-9]:

VCF-_aveslip =(1+aKn){1+4[2'ﬂJ[ Kn n (19)

Vave,(no_slip) Oy 1+Kn

It is just adequate to replace the Vv

avg,slip

by V. =VCFxV

avg,slip avg,(no-slip) °

effects and Lorentz force will satisfy in this study by respect to [15-17] that Lorentz force vector will drive as below:

in the governing equations. Magnetic field

fx,lorentz:Ov (20)

2 2 2
ool o0U oV oW |

fy Jorentz —on[axz + 2 o |~ Q1)

2 2 2 2
2| W O°W  O°W 2| O°W

fz,lorentz =nH; B + > + =nHy 5 | (22)

Ox oy Oyoz ox

Based on the Visco-Pasternak foundation, the effects of the surrounding medium on the upper and lower nano
tube are considered as follows:

(m) (n)
ow —KWW(”) +G, v2ln) _c ‘W;t , (23)

g - 2KWW(m) -2G,, V2™ o0

where m and n (m #n=1,2 ) indicate number of nanotubes. Here K .C and G are spring, damper and shear

modulus of elastic medium, respectively.

In nano structure such as nanotubes and nano plates, the ratio of surface to volume is high relating micro scale,
therefore the surface effect should be considered. According to Fig. 1 some essential surface layer’s geometric
specifications can be investigated as follows [10, 12]:

2
dAS=R,,,,d0 , circular closed path s
4° =aa our0 [ Roud0= 4" =27 (Ryyy + Riy),
S: Surface layers surrounding out ( out mn )
s 0

24)

(circular closed path) outorin

2
=Routorin Sin(6). , ,
IS quzszS z=Royt orin Sin(0) IR3 S11’12 (6’)d0:>]é :”(Rguz +Ri3n)’
0

N

where R; and R are the inner and outer radius of the CNT, respectively. To consider the surface stresses into

structure, Gurtin and Murdoch [11] obtained theoretical relations based on the continuum mechanics including
surface stress [11-12]. Based on this type of continuum elasticity theory, the surface is simulated as a mathematical
layer of zero thickness with different material properties. They proposed the following general and simple
expression for surface stress—strain relation in inner and outer CNT’s layers for nonlinear EBB [12]:

s 2 2 2
TSL”f:TS_T_ a_W + }\’S+2HS a_U_Za W+l a_W ,
e 2 ox Ox a2 2l ox

(25)
EStS
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where A°, 4’ and 7° are surface Lame constants and residual surface stress respectively. Therefore, according to
above relation and Hamilton’s principal, motion equations are obtained for each nanotubes as follow:
su(™)

aNNonlocal
) +(m( )+m )52U(m) + azW( ") in0 V2 azW(m) in®=
f fmf Sin +mf f SINno =
ox or? ox
(m) (m) ( ) 20
3rAm 3. m 2. (m
ou + V ow sin 0 — V (6 v )2 cos 6.
f 2 frr frr
T oox“ot ’ T
swim)
aNNonlocal 52 MNonlocal
(m) aW(m) _ M azW(m) 7 *(m) 7 I(m) 64W(m)
ox o X(m) a? o’ T gl
(m)) 2w 2w 2™ o)
(mf+m ) 2mef—cos9+mef sin O —
5;2 ’ OxOt @xz ot 27)
azW(m) 6U(m) azW(m) ' 64W(m) 5 32W(m)
Vim, 5 cos6+mef—sme—prfT+mef 5 cosO—
ax ot ‘ ot T oaxtor ox
w(m) 3(m) 2 (m) Y 3(m)
q(m) ani,(a—) pr oW c0s9+quAf oW sin6+uAf 0 W2 .
ox? x ’ ox Toox“ot
Using Eq. (10) and (5) can be written as:
62 GNonlocal TXAX
GNonlocal _(e a)z XX — TBulk + TSurface
XX 0 6X2 XX XX
*_ 9
Bulk «| oU 82 1( oWV IdA’ : 7E(l+g[0uj]
W | ——z—+—| — A —> s
XX ox 8x2 2\ ox j 2dA=0, J.zsz:I (28a)
A A
daS=as
[Ty [CACARRT (. A NETE. ) Sl
XX 2 2 4S_;S
O Jlox o oox® 20 0ox 2\ ox f2aaS1
ESIS S
62NNonloca1 2 s 2
NNelocal _ (g )P X~ (E A+E't AS) U LW s T [ OV as, (28b)
X ox2 Ox 2 ox 2\ ox
62MNonlocal 2
MYt — (ega)” —25— = —(E 1+ESIS)a s (28¢)
* Ox Ox

Using Egs. (26-28) and use some mathematical manipulations the motion equations of coupled CNT system will
be derived that mentioned in Appendix A.
Dimensionless parameters are defined as follows [27]:
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~ oy _ _
=t ufﬂf%fo, et =Pt
pA;R Rous[EPf Pt
out
kgt o O [E « Cp o _c0n
WTEA dTEa\p’ 8 EA nToy
APREAY S 48 _ APRERY
,:Etzl, I:IOZTZA, B4
EARS,,; n“EA kA

2
Hy—y i AL =
EA A Rout

Equations of motion will be converted to dimensionless form by using above dimensionless parameters.

Visco-Pasternak Foundation

Fluid In Fluid Out —_

Outer surface

Fluid In do |! Bulk of CNT

Inner surface

Spring modulus <4— ‘I Tt
Damper modulus - KL

Fig. 1
Schematic of coupled CNTs conveying fluid under longitudinal magnetic field.

3 SOLUTION PROCEDURE

DQ method is a rather efficient numerical method for the solution of linear and nonlinear partial differential
equations involving one dimension or multiple dimensions [32, 33]. A striking merit of the method is of high
efficiency in computing complex nonlinear problems [34, 35], Compared with the standard numerical techniques
such as the finite element and finite difference methods, the DQ method produces nonlinearity solution of
reasonable accuracy with relatively small computational effort [36, 37]. The traditional linear algebraic approach,
which is very successful for linear numerical computations, has been extended to handle the nonlinear problems.
However, nonlinear problems have actually different from linear ones, linear algebraic and the relative matrix
approaches, which are based on the concept of linear transformation. The Hadamard and SJT product of matrices are
two types of special matrix product, They are alternate matrix approach to handle nonlinear problems [38].

To solve nonlinear equations by using DQ method, at first eliminating all the nonlinear terms in the matrices and
calculating linear eigenvalues and eigenvectors. Then By using the Hadamard and SJT products, the nonlinear
formulations are greatly simplified.

3.1 Hadamard product

Hadamard product of matrices and state its some properties first [39]. Based on the Hadamard product concept, the
Hadamard power and function are also defined [39-38].
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Let matrices Az[aij] and B=[bij}eCNXM S0 AoB=[aijbiJ e C™M | where CNV™ denotes the set of

(NXM) real matrices and symbol ‘o’ denotes Hadamard products.

3.2 SJT product

Chen [38] presented a new multiplication operation—SJT product of matrix and vector. If matrices A = [ad eCNVM|

vector B=| b.. |eC™ | then AOB=|a.b. |e C™¥M CMM s defined as the post multiplying SJT product of matrix

A and vector B, where ¢ 0 * represented the SJT product.

3.3 Linear DQ procedure

DQ according to a spatial variable, a weighted linear combination of function values at some intermediate points in
that variable is used. For example, the n™ order partial derivative of a function g(x) at the i™ discrete point is

approximated [40]:

_ L(x) .
g(x)_—(X_Xi Lo i=1,2,..N, (29)
N N
L(X):H (x-x;), L; (X):H (%;X;). (39)
=1 =1

The weighting coefficient for the first order derivative is explicitly defined by:

c?ELXi) for i#j, ij=1,2,..N, 31)
! (xi-x;)L;(x;)

where x, are the coordinates of the grid points in this work, the non-uniform grid distribution given by the
Chebyshev points are used to calculate the weighting matrices and is given by [40, 41]:

(n) _,
C n —Cn (32)
6“W N (n)

— =) CPw, i=1,...N
gt i

The solution of the motion equations that have been added to Appendix A can be assumed as follows [42, 43]:

ot

u(x,t)=u(x)e ", w(x,T) = v_v(x)eimT. (33)

The DQ numerical solution approach equations of motion of coupled CNTs in dimensionless form as:

n n n
-3 DU (1wl 2 14t 3 CPUM 5 fy i) 3 P
sul™ =01 k=1 k=1 "m gz
n
+ 2P Y, 0,
Mmooy

(34)
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ATZC(Z) (m) ezATZC(4) (m)+1 ( J Zc(“') (m)+1 g( j (lw)ZC(4) (m)
k=1 k=1 m ) k=1 Mm
1 27 n . n — n
+[J Lo Y P +aTg (i) Y, CPW™ -aTeg (iw) 3 D™
im i k=1 k=1
_ 1 n _ _ 1
eﬁfm(] wz Z Cl(/f)w,(fm)7(1+Af',np)mzw§€m)+(l+f;np)eﬁmz Z nglg)wl(cm)
Nm k=1 k=1 ,
n
+2\ijuf(zw)z C(l)wk m) 2en\F}‘muf(zm)z C( )Wk )+pf 1]( j mz Z Cl-(lg)w](fm)
k=1 Nm k=1
*pfmen’f(n J S b m. g 2 zc@) M _p 22 zc<4> (m)
(35)
SW(m) =0: —\/_fmp—(tm)z C(z)wk +e \/_fmu—(zw)z C( )wk ~fm Huf[ jz C(3) (m)
m k=l Nm k=1
o (V& s LV &) )t @) (m)
+fmenp.uf — ZCik Wi +h| — Imzcik Wy, _szcik Wi
Nm Ji=1 Nim i=1 k=1
R/ _n . on n
+Hge 3 WM i1y S cPuim seliig 3 i 2k, W™ -2k 62 3 i)
k=l k=l k=l k=l
K 4K e Zc(z) 1264 p™ -2C 4 (i)e Zcm (m_c 4wyt

k=1 k=1
n .
gl S w2k, 5 CPWM 12K go 5 cum ik, Y )
k=1 = k=1 k=1
n .
Kgen 3 Wi =,

k=1

where @ = wh,/p,;/E the dimensionless natural frequency, ® is natural frequency and p, is density of fluid. Also

the DQ approach form of mechanical linear boundary conditions at both ends in each layer of elastic coupled CNT
may be written in dimensionless form as:

Geometric boundary condition Z C(l) (m)_ -0
W;—1=V;—1=u;—1=0 6@ Zj J
i=17Vi=1"Hi=1=" & JorClamped &i =1...N.
Wi=N=Vi=N=tj=N=0 Z C(1) oI (36)
(; (N-1),"'j

Geometric boundary condition

. 2 N
Geometric B.C. Mxx‘ﬁrst:():(El“‘Esls)a ;V:(EI+ES1S) D @), (m)_, .
Wi=]=Vj=]=tj=1=0 0 68; j=1 S for Pined
Wi=N=Vi=N=Uj=N~= o“w N i=1..N (37)
518 518 m
Maeop, —0:>(EI+E 1 )agz (E1+E I ) .Z]CgN)—l)jWS )0
J:

Geometric B.C.
Eqgs. (36-37) named boundary condition equations and Eqs. (34-35) are domain equation. Linear differential
boundary condition and linear differential equation of motion will be changed to algebraic equations by DQ
approach. Egs. (34-37) lead the following constitutive matrix equation as:
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_{[MbeO] [Mde()]] 2 +{[Dbb]:[o] [Dbd]=[0]] (i) J{[Kbb] [Kbd]} {db}

| Map]  [Mad] | [Pap]  [Daa] | |[Kap] [Kaal] | |da a5)

[M] [D] (K]

T
D ) N RS G | 1 1.1 1 1 122 2 2(.222 2 2 2
{d}—{{ul Uy U UN }{W1W2W3...WN_2WN_]WN }{u1 u2...uN_1uN}{w1 WHWZ WL WNLIWN }} .

where [K],[D] and [M] are the stiffness matrix, damping matrix and mass matrix, respectively, and subscript b

denotes the elements related to the boundary points while subscript d is associated with the remainder elements. Eq.
(38) can be expressed as below:

[Kip [{dp } +[Kepa[{da} =0 =1dy} = _[Kbb]_l [Kpa J{da -

(39)
~[Mgy]@* {dy } ~[Myg]@* {dy } +[Dyp | (i) {dy } +[Dyg | (i) {dy } +[Kp {d } +[Kug [{da} =0,
Using Eq. (39), equation of motion can be written as:
M, ]@? {d,} +[D, Jim){d, } +[K, ]{d, ] =0. (40)

That M_,D, and K_ are the primary mass, damper and stiffness finally matrices which have been written as
follows:

[Me]=[Mdd]-[Mdb]([Kbb]'l[Kbd])
[P F{Paa HPao ) [Kon ' [Koa]) @)
[KeJ~[KaaJ-[an]( [0 ' [Ka )

For solving the Eq. (40) and reducing it to the standard form of eigenvalues problem, it is convenient to rewrite
Eq. (41) as the following first order variable as:

(o Jionf i a0 |-Delmld DT kS0

=

@lda){'] g} ||
(42)
LUS— [ n-gyxn-s) o {dd} ;
= -1 ool “OLm-8)x2m-8)) || [~
[Me](n—S)x(n—S)[Ke}(n—S)x(n—tg) I[Me](n—S)x(n—S)[De](n—S)x(n—S) GO a

A
[ ](2(n—8))X(2(n—8))
where [A],[O] and [I] are the state, zero and unitary matrices, respectively. The solution of Eq. (42) is complex due

to the presence of fluid flow viscous damping. Hence, the results are containing two real and imaginary parts. The
imaginary part is corresponding to the system damping and the real part representing natural frequencies of the
system.
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3.4 Non-linear DQ procedure

The nonlinear DQ numerical solution approach equations of motion of coupled CNT in dimensionless form are
shown at Appendix A. using Hadamard and SJT operators, the nonlinear terms of Eqs. (A1-A2) are simplified. To
solve nonlinear equation by DQ method has some steps that are:

1. Scaling up the linear eigenvectors and using, Hadamard, SJT products and linear eigenvectors to estimate
nonlinear terms of Egs. (A.1-A.2).

2. Adding nonlinear matrices to linear matrices and calculating eigenvalues and eigenvectors of the updated
eigenvalues problem.

>

_ [Mbb] [0] [Mbd]z[O] @+ [Dbb]=[0] [Dbd]z[O] i)+ [Kbb] [Kbd] d, _
L M) [M] } { D] D] }( : {[Kd,,] m} {d} ’
[v] (0] (K]
[M]=[M, +M,,|,[D]=[D, +D,, | .[K]=[K, +K,, ]-

Natural frequency of nonlinear equations will obtain like Egs. (34) to (35) in prior section.
3. Repeat step (2) until the response converges to a prescribed error tolerance

Error = \/Z(mgl) - )2 /Z(wg‘gl))z < ,flof3 orl0™

4 NUMERICAL RESULTS AND DISCUSSION

In this study, nonlinear vibration of coupled CNTs system conveying fluid linked by visco-Pasternak medium is
carried out. In following figures the effects of parameters such small scale, elastic medium, Knudsen number, visco-
elastic structural damping coefficient and magnetic field on frequency versus fluid velocity (U f) of the clamp-
clamp coupled CNTs are discussed in detail. It is noted that Re(w) represents the resonance frequencies of the
coupled CNTs while Im(w@) denotes the damping which resulting from the moving fluid to the CNTs. Mechanical
and geometrical properties of the CNTs are considered as [44, 10]:

E=1TPa K, =107 2 B =582 Y
m® m
r; =3.54nm n=0635x10"3 25
m
h=034nm py =23 52
cm
[ =35.4nm 209108 2
m

In order to validate the accuracy of this study, Tables 1-3. show comparison the DQ result of this study with
Galerkin method [43] for different boundary conditions. A simplified case of the analysis is carried out by
considering CNTs conveying fluid and neglecting viscoelastic characteristics, Knudsen number, surface effect and
magnetic field effects. The dimensionless natural and damping frequencies versus the dimensionless flow velocity

(u,) for different vibration mode are depicted in Figs. 2(a) and 2(b), respectively. Generally, the system is stable

when the imaginary part of the frequency remains zero and it is unstable when the imaginary and real parts of the
frequency become positive and zero, respectively. It can be seen that Re(w) decreases with increasing u;.As the
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dimensionless flow velocity increases at the vicinity of 0.229, both Im(w) and Re(w) are equal to zero for the first
mode. In this region, the coupled system becomes unstable and susceptible to buckling due to the divergence via a
pitchfork bifurcation. The corresponding fluid velocity is called the critical flow velocity. For
0.229<u,;<0.326 and ejya=0 nm the real part of first mode is exactly zero while the imaginary part becomes

nonzero. When the flow velocity increases beyond 0.336, the coupled system undergoes a flutter. As the flow
velocity reaches about 0.326, the CNTs system regains stability in the first mode. By increasing the flow velocity
the sequence of the divergence, flutter and stable behaviors is occurred again. The same behavior can also be
observed for other vibration modes. Fig. 3 shows the difference between linear and nonlinear solutions for clamped
ends boundary condition. It is visible in this figure that the nonlinear geometric terms play stabilizer role for the
structure. This effect will grow when the dimensionless fluid flow velocity go over of u; =0.087 the effects of
nonlinear geometrics terms become undeniable. Fig. 4 shows real part of dimensionless frequency versus flow
velocity for different values of dimensionless small scale parameter. Also in this figure demonstrates the nonlinear
frequency for eja =1.2nm . It is obvious that nonlocal parameter is a significant parameter in vibration of coupled
system. As can be seen increasing the nonlocal parameter decreases the frequency and critical flow velocity. This
decrease can be attributed to the distributed transverse force due to the curvature change in the nano structure and
the interaction between the atom at reference point and all other atoms. It is need to point out that, the zero value for
nonlocal parameter (i.e.e,a=0) denotes the result obtained by the classical EBB model which has the highest

frequency and critical fluid velocity.

The effects of foundation stiffness on natural frequency are shown in Fig. 5. This figure demonstrates that the
visco-Pasternak foundation has lowest stability where critical flow velocity is 0.171 and Pasternak foundation has
largest stability. The effect of visco-elastic structural damping coefficient on dimensionless nonlinear natural

frequency is shown in Fig. 6. It can be concluded that elastic CNTs (g* =0) has the most value of critical fluid

velocity and located at the top of other curves. Moreovere, increasing the visco-elastic structural damping
coefficient, shifts the curves to the lower frequency zone.

Tablel
Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for clamped-
clamped boundary condition

Linear DQ Method  Galerkin Method Nonlinear DQ Compare NL and

(C-O) (C-O) Method (C-C) LDQ’s results

Vg = 0.1 =0.9845 ©=0.9845 ©=0.9908 0.64%

Ky, =0.0769 Vi =015 ©=0.8126 ©=0.8126 ©=0.8216 1.1%

Vﬂuid =02 ®=05313 ©=0.5313 ®=0.5448 2.54%

(@=0)V piaccry 0.238 0.238 0.241 1.26%

Vg =0.15 ©=0.8326 ©=0.8326 ©=0.8413 0.87%

K, =01538 Vpuia =02 ©=0.5577 ©=0.5577 ©=0.5702 1.25%

Vuia =0.22 ©=0.3933 ©=03933 w=04121 1.88%

(©=0)V iaccr) 0.242 0.242 0.244 0.2%

Vg =0.18 ©=0.7065 ©=0.7065 ©=0.7155 0.9%

K,,=0.2307 V g = 0.2 ©=0.5829 ©=0.5829 ©=0.5946 1.17%
V puia = 024 ©=0.1775 ©=0.1775 ©=02175 4%

(©=0)V iaccry 0.245 0.245 0.247 0.81%
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Table2
Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for clamped-
simply boundary condition

Linear DQ Method  Galerkin Method Nonlinear DQ Compare NL and

(C-S5) (C-5) Method(C-S) LDQ’s results
V uia =0.01 w=0.5222 ©=0.5222 ©=0.4623 12.95%
K,, =0.0769 V thia =0.05 w=0.4792 ®=0.4792 ©=0.425 12.75%
Vuia =0.1 ©=0.3208 ®=03208 ©=0288 11.38%
(©=0)V accry 0.13 0.13 0.13 0%
V fia = 0-05 w=0.5167 ®=05167 ©=0.469 10.17%
K, =0.1538 Vg =0.1 w=03717 ®=03717 ©=0.3464 7.31%
Vi =013 w=0.1775 ©=0.1775 ®=0.1868 5.23%
(©=0)V iaccny 0.139 0.139 0.142 2.15%
V fia = 0.01 =0.8266 »=0.8266 ©=0.7796 6.02%
Viia =0.05 ©=0.7924 ©=0.7924 ©=0.7411 6.92%
K, =0.2307 V i =014 ©=0.5145 ®=0.5145 ©=0.3705 38.86%
(0=0)V piaccry 0.186 0.186 0.165 12.72%

Table3
Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for simply-
simply boundary condition.

Linear DQ Method  Galerkin Method Nonlinear DQ Compare NL and L

(S-S) (S-S) Method(S-S) DQ’s results
V puia =0.01 ®=0.5222 ©=0.5222 ©=0.4623 12.95%
K,, =0.0769 V puia = 0.05 ®=0.4792 ©=04792 =0.425 12.75%
Vg =0.1 =03208 ©=03208 =0.288 11.38%
(©=0)V paaccy 0.13 0.13 0.13 0%
V i = 0.05 ®=05167 ©=05167 ®=0.469 10.17%
K,, =0.1538 Via =0.1 0=03717 ©=03717 =03464 7.31%
Via =0.13 =0.1775 ©=0.1775 ©=0.1868 5.23%
(©=0)V paaccy 0.139 0.139 0.142 2.15%
V juia = 0.01 ®=0.5905 ©=0.5905 ©=05423 8.88%
V uia = 0.05 ®=05517 ©=05517 ®=0.509 8.54%
K,, =0.2307 V puia =0.14 =0.159 =0.1596 ©=0.199%4 19.9%
0.147 0.147 0.151 2.72%

(@=0)V piaccr)
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Fig. 2
a) Dimensionless natural frequencies versus dimensionless fluid velocity for clamped end boundary condition. b) Dimensionless
damping frequencies versus dimensionless fluid velocity for clamped end boundary condition.
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Fig. 3
Dimensionless natural frequencies versus dimensionless
fluid velocity for linear and nonlinear solutions.

Fig. 4
Effect of small scale parameter on dimension natural
frequency versus dimension flow velocity.

Fig. 5
Effect of the elastic foundation on the dimension natural
frequency versus dimension flow velocity.
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Y:0.4371
. z:0.9235

' ' Fig. 6
! :>0 Effect of the viscoelastic structural damping of CNTs on

the dimensionless natural frequency.

Real part of naturalfrequancy

Nonlinear variation of natural frequency with respect to fluid velocity for different values of Knudsen number is
illustrated in Fig. 7. As already was mentioned, Knudsen number is defined based on various flow regimes where
the slip flow regime is considered. As shown in these figures, continuum fluid (Kn=0) predicts the highest
frequency zone. Considering fluid with higher Knudsen number results in shifting the curves to the lower frequency
region. Therefore critical flow velocity of coupled system decreases with increasing Knudsen number.

The effect of longitudinal magnetic field on nonlinear dimensionless frequency of coupled CNTs is shown in Fig. 8.
As already was mentioned applying magnetic field in axial direction generate the force in radial direction which is called
Lorentz force. It is concluded that frequency and critical flow velocity increase with increasing longitudinal magnetic
intensity. This is due to the coupling effect of the vibrating double CNT and the longitudinal magnetic field. Regarding
Lorentz force effect, it is evident that the longitudinal magnetic field is fundamentally an effective factor on increasing
resonance frequency leading to stability of system. Figs. 9 and 10 depict the effect of surface stress effect on
dimensionless frequency of coupled system. It is evident that surface stress plays an important role on natural frequency.

The residual surface tension is(ts:0.9108N/m), Young’s modules multiply thickness of both surface layers is

(Ests=5.1882N/m) and aspect ratio is (I/R =20) . The nonlinear frequency values and stability of the system in this

out

study are higher than those obtained by Wang [10] with the lack of surface stress effect. It is found that by increasing
bending rigidity and surface residual stress, CNT’s stability will increase. Figs. 11 and 12 show the first and second
flutter displacements where modes 1 and 2 and modes 2 and 3 are combined, respectively for pined- pined boundary
condition.

* K70

A K =001

e K=0.02

» K, =0.03(NL)
< K,=0.03(L)

0.8

(@ -@) | @ )100=32.3%
0.6
0.25

0.4 Y:0.1687

0.2 0.1

Fig. 7
, , , ] Effect of Knudsen number on dimensionless natural
o} 0.05 0.1 uf 0.15 0. 0.25 frequency.

Real part of natural frequancy Real@)

Fig. 8
Effect of longitudinal magnetic field on dimensionless
e frequency of double CNTs.

0.6

Dimensionless Frequency Real(s)
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Without surface effect
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T
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Surface effect on dimensionless natural frequency.
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Fig. 10
Surface effect on dimensionless natural frequency.
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Fig. 11
The transverse displacement of the combination of
modes 1 and 2 versus varieties of time.

Fig. 12
The transverse displacement of the combination of
modes 2 and 3 versus varieties of time.

5 CONCLUSIONS

In this work, nonlinear vibration of double bonded visco-CNTs conveying viscous fluid embedded in a visco-
Pasternak medium was investigated. Coupled visco-elastic nano system is placed in a uniform longitudinal magnetic
field and the surface stress effect was considered. The higher order governing equations of motion are solved by DQ
approach in which Hamilton’s principle was used to obtain fundamental governing equations. The results presented
in this work can be useful for the study and design of the next generation of nano/micro structures that make use of
the nonlocal vibration properties of visco CNTs embedded in visco-Pasternak medium. The following conclusions
may be made from the results:
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1. Regarding fluid flow effects, it has been concluded that the fluid flow is basically an effective factor on
decreasing natural frequency leading to instability of the coupled nano system.

2. The stability of the coupled visco CNTs is strongly dependent on the imposed longitudinal magnetic field so
that increasing the imposed longitudinal magnetic field significantly increases the stability of the system. In this case
the stability of the system can be controlled by imposing longitudinal magnetic field and the coupled CNTs can
behave as an actuator.

3. Increasing the small scale parameter decreases the real and real parts of frequency and critical fluid velocity.

4. Increase of damping constant of medium and visco-elastic parameter of CNTs caused to decrease of stability
of visco coupled system.

5. The results of this study are validated as far as possible by another numerical analysis method (Galerkin
method) at Table 1-3.

The result of this study can be used in design and optimization of nano-devices such as drug delivery systems
and sensitive applications.
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APPENDIX A

Nonlinear equations of CNT’s motion respect to longitudinal direction can be simplified as below: SU(m)=O =

2 2 2
~(£4 +EStSAS)—a ) +(E4 +EStSAS)a Yo Mo, s g 2w 2, 7 o) o)
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2
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Nonlinear equations of CNT’s motion respect to transverse direction can be simplified as below: 6W(m)=0 =
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After using dimensionless parameters the dimensional equations of motion can be converted to simple algebraic

equation by applying DQ method. Egs. (A. 3) and (A. 4) are algebraic equations of motion. sul™ =0 =

S 2y LS 2y m) 232 m)
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and the transverse equations can be written as: BW(‘“) =0 =
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