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ABSTRACT

In this paper the propagation of harmonic plane waves in a homogeneous anisotropic
magneto-piezothermoelastic diffusive body with fractional order derivative is studied.
The governing equations for a homogeneous transversely isotropic body in the context
of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are
considered as a special case. It is found that three types of waves propagate in one
dimension anisotropic magneto-piezothermoelastic diffusive body, namely quasi-
longitudinal wave (QP), quasi-thermal wave (QT) and quasi-diffusion wave (QD). The
different characteristics of waves like phase velocity, attenuation coefficient, specific
heat loss and penetration depth are computed numerically and presented graphically for
Cadmium Selenide (CdSe) material. The effect of fractional order parameter on phase
velocity, attenuation coefficient, specific heat loss and penetration depth has been
studied. © 2017 IAU, Arak Branch.All rights reserved.

Keywords : Piezothermoelastic, Magneto; Harmonic plane wave; Phase velocity;
Attenuation coefficient.

1 INTRODUCTION

N the recent years it has been seen an ever-growing interest in the investigation of models of an elastic body that
take into account the influence of various physical fields such as thermal, electric, magnetic and other fields. An
impetus for such studies was the creation of many new materials possessing properties that are not characteristic of
usual elastic bodies. Among these materials are piezoelectric bodies that form the core of modern structures and
instruments. A stressed state of a piezoelectric body is produced mainly by its deformation, as well as by thermal,
magnetic and electric fields present in the body. Therefore a mathematical model magneto-piezothermoelastic quite
adequately reflects the properties of such bodies.
The theory of thermopiezoelectric material was first proposed by Mindlin [3] and derived governing equations of
a thermopiezoelectric plate. The physical laws for the thermopiezoelectric material have been explored by Nowacki
[4,5]. Chandrasekharaiah [6] used generalised Mindlin’s theory of thermopiezoelectricity to account for the finite
speed of propagation of thermal disturbances.
Sharma [7] discussed the propagation of inhomogeneous waves in anisotropic piezothermoelastic media. Sharma
& Kumar [8] discussed the plane harmonic waves in piezothermoelastic material. Sharma & Walia [9] investigated
Rayleigh waves in transversely isotropic piezothermoelastic materials. Sharma et al. [10] studied the propagation
characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. Fatimah [11] presented the
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mathematical model for studying the influence of the initial stresses who relaxation waves in piezothermoelastic
half-space.

Sherief et al. [1] developed the generalized theory of thermoelastic diffusion with one relaxation time, which
allows finite speeds of propagation of waves. Singh [12,13] discussed the reflection phenomenon of waves from free
surface of an elastic solid with generalized thermodiffusion. Aouadi [14-18] investigated different types of problems
in thermoelastic diffusion. Sharma [19-21] discussed plane harmonic generalized thermoelastic diffusive waves and
elasto-thermodiffusive surface waves in heat-conducting solids. Kumar and Kansal [22] analysed the plane wave
propagation in an anisotropic thermoelastic diffusive body.

With the development of active material systems, there is significant interest in coupling effects between elastic,
electric, magnetic and thermal fields, for their applications in sensing and actuation. Although natural materials
rarely show full coupling between elastic, electric, magnetic and thermal fields, some artificial materials do. Van
Run et al. [23] reported the fabrication of BaTiO;-CoFe,O, composite which had the magnetoelectric effect not
existing in either the constituent. Li and Dunn [24] quantitatively explained the magnetoelectric coupling created
through the interaction between piezoelectric and piezomagnetic phases. Oatao and Ishihara [25] analysed the
laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic material. Pang and Li
[26] studied the SH interfacial waves between piezoelectric/piezomagnetic half-spaces with magneto-electro-elastic
imperfect bonding. The effects of piezoelectric and piezomagnetic on the surface wave velocity of magneto-electro-
elastic solids are studied by Li and Wei [27]. Abd-alla, Alshaikh, Giorgio, and Corte [28] studied the influence of
the initial stress on propagation of longitudinal waves in a hollow infinite circular cylinder in the presence of an
axial initial magnetic field.

Fractional Calculus is a field of mathematic study that grows out of the traditional definitions of the calculus
integral and derivative operators in much the same way fractional exponents is an outgrowth of exponents with
integer value. Studied over the intervening three hundred years have proven at least half right. It is clear, that within
the 20" century, especially numerous applications have been found. However these applications and mathematical
background surrounding fractional calculus are far from paradoxical. While the physical meaning is difficult to
grasp, the definitions are no more rigorous than integer order counterpart. Kumar and Gupta [29] studied the plane
wave propagation in an anisotropic thermoelastic body with fractional order derivative and void. Bassiory and Sabry
[30] discussed fractional order two temperature thermo-elastic behaviour of piezoelectric materials. Attenuated
fractional wave equations in anisotropic media are studied by Meerschaert and McGough [31]. Kumar and Gupta
[32] analysed the plane wave propagation and domain of influence in fractional order thermoelastic materials with
three phase lag heat transfer. Meral and Royston [33] investigated the response of the fractional order on viscoelastic
half space to surface and subsurface sources. Meral et al. [34] discussed the Rayleigh-Lamb wave propagation on a
fractional order viscoelastic plate.

In this article, propagation of plane waves in an anisotropic magneto-piezothermoelastic diffusive body with
fractional order derivative in one dimensional model has been investigated. The phase velocity and attenuation
coefficient, specific heat loss and penetration depth of plane waves has been computed and presented graphically for
different values of frequency. The analytical results have also been computed numerically and represented
graphically for illustration of various physical phenomena occurring in such solids.

2 BASIC EQUATIONS

Following Sherief [1,2], Li [35], and Kuang [36], the basic equations for a homogeneous anisotropic magneto-
piezothermoelastic diffusive body with fractional order derivative in the absence of body forces, free charge density,
heat and mass diffusive sources are:

Constitutive equations:

Oy =Cyjpa €n —eijkEk - aijT_qiijk —bl.jC, -4, =pTOS, pSzal.jgij +0,E, +rT+aC+m,H,,
=1, =C, y:bC—bijgij -b.D,; +aS—d.B;, D, :AijEj ey +z’iT+finj +b,C, (1)
Bi:fijEj+ql].kgjk+/ile.+miT+diC, Ei:—qﬁ’i, H,=-y,, @i, j,k,1=1,2,3)

Equations of motion:
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Oiij —,Dii,- =0, )
Gauss equations:

D, =0, 3)
B, =0, (4)

Equation of heat conduction:
o+l X . .
KyTy=|1+7g — pwen 71)( gt =T, +rT—my ; +aC ), %)

Equation of chemical potential:

% anrl .
_ 0
o ( bu l/ﬂ+b¢w+a7:ﬁ+dit//,m+bC,j[)—{1+r P C, (6)

where ¢y, are elastic parameters, [, f;,m;,q, b, d; blj,a are tensors of magneto-piezothermal and
diffusion moduli respectively. p,C, are, respectively , the density and specific heat at constant strain. a,r,b are,
respectively, coefficients describing the measure of thermal and mass diffusion effects, g; and 7, are the components
of heat and mass diffusion flux vectors ¢ and 77 respectively, S, yzare entropy and chemical potential per unit mass

respectively, 4.

75 €jjk» T; AIC the piezoelectric coefficients , C is the mass concentration of the diffusion material in the

elastic body, T is the absolute temperature of the body, 7; is the reference temperature, 7, is the thermal relaxation

time, and z° is the diffusion relaxation time, which will ensure that the heat conduction equation will predict finite
speeds of heat propagation of matter from one body to other. u, are the components of displacement vector u,

1
O'ij(= O'jl.)are the components of the stress tensor, &;= (u,-, ]-+u]-’,-) are the components of the strain

tensor, K; i (= ji) are the components of thermal conductivity, E,is the electric field intensity, D, is the electric

displacement, H,is the magnetic field intensity, B, is the magnetic displacement, « is the fractional order such that
0<a<1,¢and v, are the electric and magnetic potentials. The symbols “,” and “.” corresponds to partial and time
derivatives, respectively.

3 FORMULATION AND SOLUTION OF THE PROBLEM

We consider a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative
initially at the uniform temperature 7;. The governing equations in magneto-piezothermoelastic diffusive body with

fractional order derivative are

CijraUieyj + eijk¢,kj T4 i _aijT:j _bijC,j —pii; =0, iU ki _Aij¢,ji _fij‘//,ji +7.7; +biC,i =0,
a+l
ity pi = Sy ji = By ji + miT; + d,C; =0, Ky Ty :[1 *7o ata_ﬂ] To (“u“z j T —my aC), )
" 0 80{+1 .
& (=byty jy + b,y +aT +dy j +bC )=| 147 ot | @k =123)
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For plane harmonic waves, we assume the wave solution as:
(.9, T.C) =(it. 4, 7.7.C)exp[ i(n,x, —at) |, k=123 (®)

where @ is the angular frequency and & is the complex wave number. ﬁk,gz,t/?,l_’ and Care the undetermined
amplitude vectors that are independent of time ¢ and coordinates x;,x, and x;. Upon using Eq. (8) in system of
Egs. (7) with the aid of system of Egs. (1), yields

(ciik,nlnjfz - pa* )L_tk +ey»knknj§2¢7+qy-knknj§2l/7+ialy-n‘i§f+ibﬁnj§5 =0,
—eijknknifzﬁj +Ayninj§2¢7+fljninj§2y7+ifiniéf+ibini§C_' =0,
—qijknknifzb_tj +. ijninj§2¢7+,Bijnl.njgzlﬁ+imini§Z_"+idini§5 =0,

iryoyn;Su; —irlrinifa—irlminiél/7+(rlr —Kijninjf2 )f+rlaC_' =0,

iaij*ninjby-njf%_ti —iaﬁ*ninjbinif@ —iaij*ninjdini<§3l/7 —aii*ninja§27_" +(Z’2 —otl-j*ninjbf2 )5 =0, (i, /,k,01=1,2,3)
where

7, = ia)(l — 7y (iw)*"! )7]) , Ty = ia)(l —7%(iw)*™! )

We introduce the Christoffel’s notation as follows:

.
Vi = Cypalhy» € =€yl , &y =agn, | = fumn,, f=pfinn, , A=Ann;, v =70, ,

* *
a =aq; nn; b.=b.n

N
q; =qpnny, m=mn K, =K;nn, ,d=dn;, b =bn, ;s by =byn;,

it ittty o it it

Then field equations in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional
order derivative in one dimension are

(118" - p0? it + .80 + 4,87 + iy T +ib EC =0,

—e, &%, + AE2 P + fERT +iT ET +ib EC =0,

—q, &% + [E2 P + PEY +iméT +idEC =0, ©)
inaéu, —irlr*éa—irlm;‘lﬁ+(Tlr—K1§2)7_“+rlaC_’ =0,

i’ b & —ia b Ef —ic d,E - alT +(12 —a'bE? )5 =0,

Eq. (9) represents a linear system of five homogeneous equations in five unknowns 171,5, v, T and C which

G i . .
possesses non- trivial solution if the determinant of the coefficients [’/‘1 ,0,w,T,C J vanishes i.e.

(71152_/0(02) elfz ‘1152 i & ib &
—e &’ 4¢? & iT’& ib"&
-4,&° 1& BE? imé idé -0 (10)
ity & firlz'*f —itym& (Tler1§2) T,a
ia" b & —id'bE —iatdE —aal? (72 - a*bgz)

© 2017 IAU, Arak Branch



90 Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic...

The Eq. (10) yields to the following polynomial characteristic equation in & as:

Pll*’f6 +P12§4 +P13§2 +p, =0, 54 =0. (11)

The coefficients p,,,p;5, P13, P14 are given in the appendix A. Solving Eq. (11) , we obtain three roots of &, in

which we are interested to those roots whose imaginary parts are positive because only those roots give the negative
roots of the decay coefficient Im(&). Corresponding to these roots, there exist three waves corresponding to

descending order of their velocities, namely quasi-longitudinal wave (QP), quasi-thermal wave (QT) and quasi-
diffusion wave (QD). We denote the values of & associated with these modes by &,&, and & respectively. The

offer phase velocity, attenuation coefficient, specific heat loss and penetration depth of these types of waves:
(i) Phase velocity: The phase velocity is given by

@ .
v, R i=1,23 (12)

where V|,V,and Vjare the velocities of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) and quasi-

diffusion wave (QD) modes respectively.
(i1) Attenuation coefficient: The attenuation coefficient is defined as:

0, =Im(&), i=12,3 (13)

where O,,0, and (O, are the attenuation coefficients of the quasi-longitudinal wave (QP), quasi-thermal wave (QT)

and quasi-diffusion wave (QD) modes respectively.
(iii) Specific heat loss: The specific heat loss is given by

Img(&))
Re(fi)

SP, =4r

‘, i=1,2,3 (14)

where SP,,SP,and SP, are the specific heat loss of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) and

quasi-diffusion wave (QD) modes respectively.
(iv) Penetration depth: The penetration depth is defined as:

1 -
PD. @ i=1,2,3 (15)

where PD,,PD,and PD;are the penetration depth of the quasi-longitudinal wave (QP), quasi-thermal wave (QT)
and quasi-diffusion wave (QD) modes respectively.

4 TRANSVERSELY ISOTROPIC MEDIA

Following Slaughter [37], applying transformation in Eqgs. (2)- (6), the basic governing equations for a homogeneous

transversely isotropic, magneto-piezothermoelastic diffusive body with fractional order derivative in one dimension
can be written as:

© 2017 IAU, Arak Branch



R.Kumar and P.Sharma 91

ey tendy +quy Ty —bCy = puy,
*
ey —Apdy — v +ol;+b Cp =0,

g —dn —Puvn +mI, +d,C, =0, (16)

a+1

K17:11 :(1+z’0 a—JTO (alau —Tl¢',1 _m1‘/),1 +rT+aC'),

ta+1

« % allH»l .
0
a (_b1”1,111+b1 ¢1,111+d1‘//1,111+aT,11+bC,11>= I+77 —|C,
ot

where
a =c,, b =ca,,

Here, , ,c, are the coefficients of thermal and diffusion expansion. In Egs. (16) we have used the contracting

subscript notations 1 — 11 to relate ¢;;; — ¢,; and so on.
Using Eq. (8) in Egs. (16), we obtain the following characteristics equation

1711*56 +l712*§4 +P13*§2 +P14* =0, 54 =0. (17)

The coefficients pn*, plZ*’ pl;, )2 4* are given in appendix B. In the coefficients p, i*, i=12,3,4, we have used
the following dimensionless quantities:

(xl Ly '):ﬂ(xl,ul) , (t',ro ' 70 '):a)l (t,z'o,ro), r=2r , @' = @end = 4y

> 18
G pei aaly aaTy (18)
where
2l
G =, 19
o (19)
pCci L Ty - o
Here, o, = Te is the characteristic frequency of the body, ¢, = —1L s the longitudinal wave velocity in the
1 P
body.

If =1, we obtain the characteristic polynomial equation which is similar to that if we solve the problem
directly without fractional order derivative.

If we neglect the magnetic effect ie. ¢, =0,/ =0,=0,m=0,d=0, then we obtain the characteristic
polynomial equation for a piezothermoelastic diffusive body with fractional order.

If we neglect the piezoelectric effect i.e. ¢ =0,/ =0,4=0, 7 =0,b" =0, then we obtain the characteristic
polynomial equation for a magneto-thermoelastic diffusive body with fractional order.

5 NUMERICAL RESULTS AND DISCUSSIONS

For the purpose of numerical calculation, we consider the case of an anisotropic media. We can solve Eq. (17) with
the help of the software Matlab 7.8 & using the formulas given by Egs. (18), (19), we can compute the phase
velocity, attenuation coefficient, specific heat loss and penetration depth for intermediate values of angular
frequency (). Following Vashishth and Sukhija [13] and Kumar and Kansal [22], the numerical values have been
taken as follows:
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711 =741x10"° Nm ™2, p =5500Kgm™>, m=2.1x10"2 KgC'K's™, o =1.05x10Kgm s

o, =0.621x10° NK 'm™ | T, = 298K ,7, = 0.02s, ¢, =4.5x10> N4 "'m™" ,b" =4.7x10Kg"'Cm,
T =294x10° CK 'm 2, a=82x10" K 'm*s ™, 8 =6.7x10" NC2s*,b=23x107>m’°Kg 's 2,
f=58x102NV'C"s, 4=826x107" Fm™', C, =260JKg"' K" , K, =9WK 'm™,

b, =2.14x107* NKg 'm,e, =5x102Cm ™2, 7, =0.02s, 7° =0.03s,d =5.3x102 4 'ms™2.

In all the graphs, notations == ALP 0.25,..-. ALP0.75, - - - ALPI denote the curves of phase velocities,
attenuation coefficients, specific heat loss and penetration depth of waves corresponding to the different values of
fractional order parameter i.e. & =0.25,0.75 and a =1, respectively.

Figs. 1, 2,3 show the variations of the phase velocities V},V, and V; of waves with respect to w. Figs. 4,5,6 show
the variations of the attenuation coefficients Q,,0, and Q, of waves respectively. Figs. 7, 8, 9 show the variations
of the specific heat loss SA,SP, and SP; of waves respectively. Figs. 10,11,12 show the variations of the
penetration depth PD,,PD, and PD;of waves respectively.

5.1 Phase velocity

It is clear from Fig. 1, that phase velocity ¥, of QP wave monotonically increases and then tends to decrease with
increase in angular frequency (@) for different values of o i.e. & =0.25,0.75,1. But for o =0.25,V/, is maximum
i.e. least value of @ corresponds to the highest value of phase velocity.

For 1<@w<4, V, increases strictly and shows a quick downfall. Among the different values of «,V, , possesses

highest magnitude value for o =0.25.
Fig. 3 shows that for 1 <@<4, V; increases then it shows a sudden change in slope but behaviour remains the

same.

0.18 o
0.16 o
0.14 4

0.12

Phase Velocity
)

0.10 4

0.08 o

Fig.1
%7 Variation of phase velocity w.r.t angular frequency (quasi-
0 2 4 6 8 10 longitudinal wave).
Angular Frequency(o )
0.85 4
0.80
é 0.75 4
S
L 0704
32
g 0.65 o
a
0.60
0.55 Fig.2
050 ' ' ' ' ' Variation of phase velocity w.r.t angular frequency (quasi-
0 2 4 6 8 10 thermal wave).

Angular Frequency(o )
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3.04
254

2.04

Phase Velocity
vy
tn
L

1.0

0.5+

Fig.3

0.0 T ; T T y Variation of phase velocity w.r.t angular frequency (quasi-
diffusion wave).

Angular Frequency(o )

5.2 Attenuation coefficient

It is clear from Fig. 4 that the attenuation coefficient O, of quasi-longitudinal (QP) wave strictly increases with
difference in magnitude values for different values of « with increase in angular frequency. Fora =0.25, it
possesses least magnitude value.

Fig. 5, 6 show the behaviour of O, and Q;opposite to each other. From Fig. 5, it is clear that O, for
2<@w<4-5 shows a downfall in values and then tends to increase so that it gains highest value forax =1. Fig. 6
shows the trend of Q; justrevertto O, .

90
80
70 A
60
50

40

Attenuation Coefficient
Q)

30

20 4

Fig.4
7 . . . . . Variation of attenuation coefficient w.r.t angular frequency
° z ¢ ° ® 10 (quasi-longitudinal wave).
Angular Frequency (o )

1.5
k=
2
2
=
5
S~ 104
c O
=Bae
g
g
g
=z 0.5 -

Fig.5
0.0 r . . . . .. . .
o 2 3 6 s 10 Variation of attenuation coefficient w.r.t angular frequency
Angular Frequency (o ) (quasi-thermal) wave).
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0.0 4

-0.54

-1.04

Attenuation Coefficient
Q)

-1.54

Fig.6
Variation of attenuation coefficient w.r.t angular frequency
(quasi-diffusion wave).

Angular Frequency (o )

5.3 Specific heat loss

Fig. 7 depicts that the specific heat loss SP, of quasi-longitudinal wave decreases more with decrease in « and
increase in angular frequency.
It is clear from Fig. 8 that SP, shows a decreasing trend for 4 <@w<4-5 and then tends to increase as angular

frequency increases and it is least for least value of & .
Fig. 9 shows that initially decreases for 1 <@ <4-5 and possesses similar magnitudes values for different values
of a , following a stationary behaviour as angular frequency increases.

12.5
12.0 H
1154

— 11.0

(SP

10.5

Specific Heat Loss

10.0

9.5

Fig.7
, r ; T T Variation of specific heat w.r.t angular frequency (quasi-
longitudinal wave).
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0.4 Fig.8

02 Variation of specific heat w.r.t angular frequency (quasi-
0.0 T T T T T

0 2 P! 6 8 10 thermal wave).
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(SP)

Angular Frequency (o )
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10 A

8 ——ALP0.25
————— ALP0.75
ALP1

Specific Heat Loss
(SP)

Fig.9
. . . . . Variation of specific heat w.r.t angular frequency (quasi-
© 2 4 e 8 10 diffusion wave).

Angular Frequency (o )

5.4 Penetration depth

We noticed that the Fig. 10 show that the penetration depth PD, of the quasi-longitudinal wave monotonically
decreases with increase in @ . For least value of & PD, is maximum.

It is clear from Fig. 11 that the penetration depth PD, of quasi-thermal wave and its peak value is obtained
@ =5 and further it decreases. For least value of o PD, is maximum.

For 1<@<4-5 penetration depth PD; of quasi diffusion wave is constant for all values of « and then tends to

decrease as angular frequency increases but fora =1, it gains in its numerical value in comparison to the other
values of fractional order derivative.

0.07 4
0.06 4
0.05

0.04

Penetration Depth
(PD)

0.03

0.02 4

0.01 4 R Fig.10
: T ; T T Variation of specific heat w.r.t angular frequency (quasi-
longitudinal wave).

Angular Frequency (o )

Penetration Depth
(PD)

Fig.11
Variation of specific heat w.r.t angular frequency (quasi-

0 2 4 6 8 10 thermal wave).
Angular Frequency (o )
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——ALP0.25

-10 -

-15

Penetration Depth
(PD,)

-20

25

Fig.12
Variation of specific heat w.r.t angular frequency (quasi-
Angular Frequency (o ) diffusion wave).

6 CONCLUSIONS

Analysis of plane wave propagation is a significant problem of continuum mechanics. The propagation of plane
harmonic waves in a homogeneous, anisotropic magneto-piezothermoelastic diffusive body with fractional order
derivative has been studied. The anisotropic variations of phase velocities, attenuation coefficients, specific heat loss
and penetration depth depending upon the fractional order derivative are observed in the context of theory of
thermoelasticity with diffusion given by Sherief et al. [1,2]. All the field quantities are found to be sensitive towards
the fractional order parameter.
1. A predominant effect of fractional order on quasi-longitudinal wave (QP), quasi-thermal wave (QT) and
quasi-diffusion wave (QD is observed for the values of thermal and diffusion relaxation times.
2. It is observed that the phase velocities of QP and QT waves show an alternating behaviour but phase
velocity of QD wave strictly increases. For a=0.25 the phase velocities V] and ¥, possess the highest

magnitude value whereas the attenuation coefficients O, and O, least magnitude value in comparison to
the other values of « .
3. For a=0.25 minimum specific heat loss is observed for all the waves.

4. Behaviour and trend of values of penetration depth of the waves is similar for all considered values of
a with difference in their magnitude values.

APPENDIX A

Pi1 =81 1815 T8+ 823> P12 =812 T 8190 7821 T 824> P13 =813 817 T 80 T 8225 P14 = 81a»

& =71di1s & =i — iy, &3 = Vndis —andyy, &y =—aydys, &s =—edyy, &g =—e€ds,

817 =—€d15.815s =41417,810 = 4115820 = 4,119,821 = Qa5 Zry =0 dy 1,83 =—D1d,y, 85, =—bid,s,

d,, = ABb,, —db A+ f°b,, — fdby, — b by, +b" fb,s, d,, = ABb, —dAb,, + Amb,, + b, + finb,,...
—fdb,, — 7 dby, + b mb,, +7 by —7 fbyg+b fb, —b Pb,,, d\y = fAb, —mAb — f7by;...

+mfbyy +7 fb, +1 Bbyy, d,, =—e fby, +edbs+ fq,b,, + fdb,s —b"q,bs — b Bb,s,

d,s = e fb, —e;mb,g + fq,by, — finb,, + fdby, +7 q,bys +7 Bbyy —b fby, —b mby, +17 by, —b'qby,...
+e,db,,,d,, =—e, b,y +e,mb,, + fq,b,; — fnby, — T q\b,, + T fb,,,d,, =—e fb,, +edbs + Aqb,, ...
+Adb,s —b'q,b,s — b fbys, dig = —e, fb,, —e,mb,g + Aq b, — Amb,; + Adb,, + T qbyg +T fbyy —b" fb...
~b mbyy + 7 dbyy — b q,byy +e,db,y, d,y =—e, fbys +e;mb,y + Aq b,y — Amb,, — 7 q,byy + 7" fb,,,

d,y =—e, fb,; —e,Bby — e,dby, + Aq,b,; + Afb,; + Adb,, — fq,byg — b,y —dfby, —b q,byy + b fb, + ...
b*ﬁbam dy = e fby; —e by — Aq,b,; + APbyy, + fq,by4 _.f2b24>d22 =—e,fbs —e,fbyy + Aq b5 + APBb,s...
~fq,byy — by, dyy =—e, by, + e fbyy —e,mby, + Aq,b,, + APBby, + Amb,, — fq,b, — [*by, —mfby ...
+r*q1b31 - Z'*fb27 + r*ﬁbm,
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by =K,a,,, by, =—a,5a, — K7, + ai5a59, by = a,57,, by = a0y + 415049, bs =K a9, big = ay,a5, + a,4a,4,
by; = a7y, by = a3ay, — ayayg, by = ay37,, by =K,ay5,0y) = a13050 — ay5a,5, byy =—a,3a,9 — a4,

byy = 1,0y — ay6ay7, byy = a7, bys = Ky5,b, = —ay5a1; — 1,05, byy = 414017 — a130,9,b5 = a130,, + a6,
by = aj3a,0 + a5a,5, b3 = —a1,a15 + 413017, by = —a;a19 + a140,5, b5, =—a1,05, — a5a,5,

_ 2 _ _ * _ _ _ _b * _b* * _d * _ * _b *
ay =pPw-, a4, =00, A3 =0T , A, =T,M, A)5 =77, 01, =114,0;; =0,X , Ay =b & ,4)y=d& ,4),=ad ,a,, =ba ,

where
7, =il — (i) 7 )T, , 7, = i1 — (i)' 7°).
APPENDIX B

pll* =811+ 815 T &g+ 8 Plz* =812 T 819 7821 + 824> P13* =813t 817 &0 T &> P14* =814>

gn=—d\, &, = w2d12 —aydyy, g3 =—d)3 +a)2d12 > 814 = w2d13, 815 = aydyy, 816 = ayd;s,

817 = adiss &1y = ~a11d17, 819 = —andig, 80 = ~11d19,821 = =105 82 = =11, €23 = 35 €24 = a3,

dyy = apayeby —ayghisay, +“132[711 —aj3a1byy — ay6ay5byg + a15ay3bys, dyy = apai6b, —aygagbyy +a132b12 e
ay3817byg — a13a18Dy) — ay4013D,) + 1501705y + A4y 6Dy — ay4a13D1g + ay5a13Dy — A1516D,,, dy3 = G161 Dy
—ay7a1,by4 _a132b13 +a170130y9 + 14013017 + a14a,6Dyg, diy =—a16Dyy +a13Dys + ay3by + ay3a,5D05 —ayshys ..
—ay5ay6bys,dys = —aygby —aygbig + ay3biy —ay3a17003 + azaigbag + a4y + ay4a16b03 — aysaygbyg — ay5a17D,5
+a4a13by7 — a1sbyy + aygbyy, dig = —a16by3 + a17017 + @353 — ay3ay7Dy4 — a14Dy7 + a14a,6D04,

dy7 = —aysbyy +aygbys +ay, by +aya18hys — aysbys — aysay3bys, dig = —ay3b1, —ay;byg +aybyy —agyap5bos.
+ay,a1gbye + ay4bag + a14813053 — a1513D06 — 15G17D3g + a14018D3g — ayshyg + ayghag,

dig = —ay3by3 + ay7big + ayyby3 — apa17004 — ayubyg + a14a13by4,dyg = —ay3by6 + a16by5 — aysbsy + ayyby + a1ya16Ds5 ..
+ay,0,3b,7 — a3 _a132b23 —a13a,3b50 —ay5byg +ay5a13b57 + a5,

dyy = =307 — a16byg — a1y by + apya16b4 + ay3byg —a132b24,d22 =—eay3bis —eai6byy + a4, bys ...

+ay,a16bys —a139,by —a132b25, dyy = —€a;3byy +e€ay6byg — €751 +a15G, by + a1, 416D35 + 15817057 — a13G,Dyg ...
—a132b32 —ay70,3b50 + ayybyy —ay,a13a57 + ay,a6by,

by =ag, by = ayasg _71t — G330y, b3 = _aszflta by =—a3;0a5) — a3, 036, bys = —asq, bjg = —a3a33 —A33036,

by; = ‘0381'{’ big = —asyayg + a33a55, byg = _asoflts by = a35,by = —a30a35 + 35033, by, = a30a36 + a3,

byy = asgay) —az3azy, by = _a2911ta bys = —a34,by5 = Aygl37 — A3y 834, byg = Ar936 + 031034, byg = —a30A35 — 330535,
byy = _a3071tsb30 = —ly9035 — U303y, b3y = a30036 —a31035, b3, = a1y037 —azay7,

yg = awT(t)s a3y = azof(t)san = azlf(t)s a3 = a227<t): a3z = az3f(t)sa34 = _“240‘1*"135 = _a25al*’

* * *
A36 =~y , 037 = —0y70 ,A33 = —dyg
where

b =—ie(1 - (iw)* ' 7)), 7! =—iex(1 —(iw)* ' 7°).
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