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 ABSTRACT 

 In this paper, free vibration analysis of orthotropic functionally graded material (FGM) 
cylinders was carried out by a Mesh-Free method. In this analysis, moving least squares 
shape functions are used for approximation of displacement field in the weak form of 
equilibrium equation. Essential boundary conditions are imposed by transformation 
method. In this simulation, an axisymmetric model is used. The orthotropic FGM cylinders 
are assumed to be a mixture of two isotropic materials as fiber and matrix. The volume 
fraction of the fiber is changed in the radial direction. Consequently, mechanical properties 
of these cylinders are changed in the radial direction. Free vibration analysis of orthotropic 
FGM cylinders with any arbitrary combination of boundary conditions is possible by the 
proposed model. Natural frequencies obtained from the presented model are in good 
agreement with results of finite element simulation and other results from literature. 
Effects of various types of boundary conditions, geometrical parameters, and mechanical 
properties on the natural frequencies are studied. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials were introduced for the first time by the material scientists as heat 
resistant materials for using in space planes and nuclear reactors [1]. Recently, large amount of researches about 

application of these materials in wide range of industries such as dental and orthopedic implants, energy conversion, 
heat generators and sensors have been carried out. Additional potential applications of FGMs include their using as 
interfacial zones to improve the bonding strength and to reduce residual stresses in bonded dissimilar materials and 
as wearing resistant layers such as gears, cams ball and roller bearings and machine tools [2]. FGMs are 
inhomogeneous composite materials with gradient compositional variation of the constituents (e.g., metal and 
ceramic) from one surface of the material to the other, which results in continuously varying material properties. 
Therefore FGMs have a non uniform microstructure and a continuously variable macrostructure.  

Recently, several researches have been carried out on free vibration analysis of FGM cylinders. Loy et al. [3] 
analyzed free vibration of FGM cylinders by using Love’s first-approximation theory and Ritz method. They studied 
the effects of volume fraction exponent and boundary conditions on the natural frequencies of these cylinders. In a 
similar work Pradhan et al. [4] the effect of material properties on the natural frequencies of FGM cylindrical shells. 
Kadoli and Ganesan [5] simulated thermal buckling and free vibration of FGM cylinders using first-order shear 
deformation theory and Fourier series expansion of displacement field in circumferential direction. Haddadpour et 
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al. [6] analyzed free vibrations of simply supported FGM cylinders with thermal dependent material properties by 
the Galerkin method. Ansari and Darvizeh [7] presented an analytical solution for free vibrations of FGM cylinders 
using first-order shear deformation theory. They studied effects of boundary conditions and volume fraction 
exponent on natural frequencies. Mollarazi et al. [8] analyzed free vibration of FGM cylinders by the Mesh-Free 
method that is used in this paper, but they considered isotropic FGM cylinders while in this paper, orthotropic 
property of FGM cylinders are considered. Also several analyses have been carried out concerning free vibrations of 
isotropic homogeneous cylinders. Among these analyses Leissa and So [9,10] and Hutchinson [11,12] used the 
Rayleigh-Ritz method and Zhou et al. [13] used the Chebyshev-Ritz method in their analyses. 

Also several researches have been carried out about dynamic analysis and stress wave propagation in the FGM 
cylinders. Han et al. [14] analyzed transient waves in FGM cylinders using a hybrid numerical method (HNM). 
Shakeri et al. [15] analyzed radial wave propagation in FGM cylinders with infinite length by FEM and Newmark 
method. They considered the FGM cylinder as a multilayer cylinder with constant material property for each layer. 
Hosseini et al. [16] analyzed the same problem considering variable material property in the layers. Asgari et al. [17] 
carried out analysis of cylinders with variable material property in radial and axial directions (2D FGM) by FEM 
and Newmark method. Hosseini and Abolbashiri [18] presented an analytical solution for FGM cylinders with 
infinite length subjected to an impact load. Shahabian and Hosseini [19] carried out stochastic dynamic analysis 
under the impact load by FEM. Among the few works, about the wave propagation in FGMs by mesh-free methods, 
Zhang and Batra's work [20] can be mentioned. They analyzed wave propagation in a FGM plate by modified 
smoothed particle hydrodynamics (MSPH) method. Static and dynamic analysis and stress wave propagation of 
FGM cylinders under an impact load and also, dynamic analysis of nanocomposite cylinders was carried out by the 
same mesh-free method that is used in this paper [21-23]. Sladek et al. [24] used meshless local Petrov-Galerkin 
(MLPG) method for stress analysis in two-dimensional (2D), anisotropic and linear elastic/viscoelastic solids with 
continuously varying material properties. They adopted moving least squares (MLS) method for approximating the 
physical quantities in the local boundary integral equations (LBIEs). Also several analyses have been carried out 
about free vibration of continuously graded fiber-reinforced cylindrical shells or panels based on the three-
dimensional theory of elasticity, using differential quadrature method [25-27]. Chen et al. [28] studied free vibration 
of simply supported, fluid-filled orthotropic functionally graded cylindrical shells based on the three-dimensional 
fundamental equations of anisotropic elasticity.  

In the present work a different Mesh-Free method was used for free vibration analysis of orthotropic FGM 
cylinders. The cylinders are assumed to be a mixture of two isotropic materials as fiber and matrix. The volume 
fraction of the fiber is changed in the radial direction. Then mechanical properties of these cylinders are changed in 
the radial direction. In this simulation, an axisymmetric model is applied and MLS shape functions are used for 
approximation of displacement field in the weak form of equilibrium equation, like as Element-Free Galerkin (EFG) 
but the transformation method was used for the imposition of essential boundary conditions. In the transformation 
method, after correction of mesh-free shape functions, essential boundary conditions are imposed as in the FEM. In 
this method, number of degrees of freedom does not increase unlike EFG.Effects of volume fraction exponent, 
geometrical parameters, and boundary conditions on natural frequencies in orthotropic FGM cylinders are 
investigated by the proposed model. 

2    GOVERNING EQUATIONS 

The weak form of equation of motion in the absence of external forces is expressed by the following relation [23]: 
 

u u. ( )dv (r) . dv          (1) 

 
In the above relation, , ,u   and u  are stress, strain, displacement and acceleration vectors respectively. For 

axisymmetric problems stress and strain vectors are as follows: 
 

, , , , , , ,
T T

r z rz r z rz                    (2) 

 
Stress vector is expressed in terms of strain vector by means of Hook's law: 
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D    (3) 
 

Matrix D is defined for an orthotropic cylinder as follows [23]: 
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3    MESH-FREE NUMERICAL ANALYSIS 

In these analyses moving least square shape functions introduced by Lancaster and Salkauskas [29] is used for 
approximation of displacement vector in the weak form of motion equation. Displacement vector u  can be 
approximated by MLS shape functions as follows [23]: 
 

ˆ,
T

r zu u u u             (6) 

 
where û  and   are virtual nodal values vector and shape functions matrix respectively. 
 

1 1
ˆ ˆ ˆ ˆ ˆu ( ) ,( ) ,...........( ) ,( )

T

r z r N z Nu u u u            (7) 

 
and 
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(8) 

 
N is total number of nodes and i  is MLS shape function of node located at   iX , Xr z   and defined as 

follows [21]: 
 

  1T

(1 1)

(X) P (X) H(X) (X X )P(X )i i iw




     
(9) 

 
In the above equation, w  is cubic Spline weight function, P is base vector and H is moment matrix and are 

defined as follows: 
 
P(X) [1, , ]Tr z  (10) 
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(11) 

 
By using Eq.(6) for approximation of displacement vector, strain vector can be expressed in terms of virtual 

nodal values: 
 

ˆBu   (12) 

 
where matrix B is defined as follows [23]: 
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(13) 

 
Substitution of Eqs.(3), (6) and (12) in Eq. (1) leads to: 
 

ˆ ˆ 0Mu Ku   (14) 

 
where 

 

M k B DBT Tdv dv      (15) 

 
For numerical integration, problem domain is discretized to a set of background cells with gauss points inside 

each cell. Then global stiffness matrix k is obtained numerically by sweeping all gauss points.  
Imposition of essential boundary conditions in the system of Eq.(14) is not possible. Because MLS shape 

functions don't satisfy the Kronecker delta property. In this work transformation method is used for imposition of 
essential boundary conditions. For this purpose transformation matrix is formed by establishing relation between 
nodal displacement vector U and virtual displacement vector û . 

 
ˆU Tu  (16) 

 
T is the transformation matrix and is defined [23]: 
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(17) 

 
By using Eq. (16) system of linear Eq. (14) can be rearranged to: 
 

ˆ ˆ 0MU KU   (18) 
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where 
 

1 1ˆ ˆ, . .T TM T MT K T K T      (19) 

 
Now the essential B. Cs. can be enforced to the modified equations system (18) easily like the finite element 

method. Solving this eigenvalue problem, natural frequencies and mode shapes of the cylinder are determined. 

4    MATERIAL PROPERTIES IN ORTHOTROPIC FGM CYLINDERS  

Consider an orthotropic cylinder with inner radius ri, outer radius ro, and length L. This cylinder is assumed a 
mixture of fiber that is embedded in matrix. With changing fiber density in the radial direction, the cylinder will be 
orthotropic and FGM. The effective mechanical properties of the orthotropic cylinders are obtained based on a 
micromechanical model as follows [30-31]: 
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where f

iiE , f
ijG , f  and f  are elasticity modulus, shear modulus, Poisson’s ratio and density, of the fiber, and m

iiE , 

m
ijG , m  and m  are corresponding properties for the matrix constituent. fV  and mV are the fiber and matrix volume 

fractions. The profile of the variation of the fiber volume fraction has important effects on the cylinder behavior. 
Several models have been proposed for the variation of material properties. In this paper, to show the flexibility of 
the proposed Mesh-Free model, two profiles for the variation of volume fraction of fiber are considered.  

4.1 Simple power model 

In this model, variation of volume fraction of fiber, Vf, along the cylinder radius is presented by a simple power 
function as follows [8]: 
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(25) 

 
where Vfi and Vfo are the volume fraction of the fiber on the inner and outer surfaces, respectively.  

4.2 Volume fraction model 

In this model, volume fraction of fiber, Vf , vary along the radial direction as follows [8]:  
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where n is a real number except zero. Fig.1 shows variation of volume fraction of the fiber along the radius 
according to volume fraction model for various values of n. 
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Fig. 1  
Variation of volume fraction of the fiber from zero to 0.75 
along the radius according to volume fraction model. 

5    RESULTS AND DISCUSSIONS    

In this work for all finite element (FE) simulations, rectangular four-node axisymmetric elements are used. Grid 
arrangements in FE simulations are similar to those of Mesh-Free simulations. So, the number of elements in FE 
simulations is equal to the number of integral cells in similar Mesh-Free simulations. To compare the results of 
Mesh-Free analyses and FE analyses, the same grid arrangements were used in these two types of analyses. For this 
reason, regular grid arrangements were used in all simulations although irregular grid arrangements can be used for 
Mesh-Free simulations easily. Fig.2 shows Schematic sketch of the Clamped-Clamped axisymmetric cylinder with 
background cells, gauss points and nodes arrangements. 

 

 

 
 
 
 
 
 
 
 

Fig. 2  
Schematic sketch of the Clamped-Clamped axisymmetric 
cylinder. 
 

 
 
For validation of the proposed model, a homogeneous solid cylinder with 4oL r   and 0.3   is considered. 

The two ends of the cylinder are assumed to be free. Table 1. shows the first five frequency parameters obtained 
from the proposed Mesh-Free method and FEM for three different grid arrangements and compared with results of 
references [9], [13] and [11,12]. In Table 1, the frequency parameters are defined by [13]: 

 

or G     (27) 

 
In this definition,  ,  , and G  are natural frequency, density, and shear modulus, respectively. It is obvious 

from Table1. that results from both Mesh-Free method and FEM have very good accuracy. In addition, the proposed 
model is a little more accurate than the FEM, especially for higher frequencies.  
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Table 1 
First five frequency parameters for a isotropic free–free solid cylinder, (L / r0 = 4) 
Grid 
Arrangement 

solutions 1  2  3  4  5  

5*15 Mesh-Free 1.24700664 2.92043586 3.02841227 3.82432182 4.18564068 
 FEM 1.24937244 2.89736006 2.99489762 3.84032298 4.19555697 
10*30 Mesh-Free 1.24699705 2.92029741 3.02823280 3.82398949 4.18480418 
 FEM 1.24758825 2.91703138 3.01924495 3.82910988 4.19017043 
20*60 Mesh-Free 1.24699467 2.92028254 3.02820750 3.82394895 4.18471717 
 FEM 1.24714245 2.91959585 3.02595877 3.82529721 4.18620930 
References [13] 1.24699388 2.92027959 3.02820195 3.82393930 4.18469813 
 [11,12] 1.24699388 2.92018985 3.02820178 3.82393928 4.18469780 
 [9] 1.24699      2.92028      3.02820      3.82394      4.18470     
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Fig. 3  
Convergence of first natural frequency of the FGM cylinder in 
plane strain state for different number of node arrangement. 
 

 
 

At second step of validation, an FGM cylinder in plane strain state is considered like as Hosseini et.al [16] and 
the convergence rate of the proposed model is examined. Fig.3 shows a comparison between numerical results of 
proposed method with different number of node arrangements and results that reported by Hosseini et.al [16]. This 
figure shows a good convergence rate for the proposed Mesh-Free method. After the validation of the proposed 
model, various models of orthotropic FGM cylinders are analyzed. In these cylinders silicon carbide (SiC) is 
considered as the fiber and stainless steel (SUS304) is considered as the matrix. Mechanical properties of these 
materials are summarized in Table 2. Parameter frequency of these analyses is defined by: 

 

o m mr G     (28) 

 

In this definition, m  and mG  are density and shear modulus of matrix (SUS304), respectively. In the first 

model of analysis, volume fraction of the fiber increases along the radius according to volume fraction model from 
zero to 75%, also end conditions of FGM cylinders are assumed to be clamped–free. This analysis is done for 
isotropic cylinders (pure SiC and SUS304), continuous orthotropic cylinder with 75% fiber and 25% matrix and 
orthotropic FGM cylinders that volume fraction of the fiber is changed from zero in the inner radius to 75% in outer 
according to volume fraction model. Results obtained from this analysis are summarized in Table 3. 

In this table, the effect of volume fraction exponent (n) on natural frequencies is investigated. Table 3 reveals 
that the more n have the lower natural frequencies, because increasing n leads to decrease the fiber volume fraction 
(see Fig.1). So, natural frequency can be controlled by the choice of proper volume fraction exponent (n). Natural 
frequencies of the orthotropic FGM and orthotropic homogeneous cylinders lie between the natural frequencies of 
the similar isotropic SiC cylinder and those of the similar isotropic stainless steel cylinder, as expected.  

Table 2 
Mechanical properties of silicon carbide (SiC) and stainless steel (SUS304) [8] 
Material Properties 
 E(GPa) V    (kg/m3) 
Silicon carbide (SiC) 427 0.17 3210 
Stainless steel (SUS304) 207.78 0.3177 8166 
 



R. Moradi-Dastjerdi and M. Foroutan                   77 

© 2014 IAU, Arak Branch 

Table 3 
First five frequency parameters for free–clamped orthotropic FGM cylinder with variation of volume fraction of the fiber from 
zero to 75% along the radius according to volume fraction model (ro / ri = 2, L / ro = 3) 

 solutions SiC 
SUS (25%)/ 
SiC (75%) 

n = -10 n = -2.5 n = 1 n = 2.5 n = 10 SUS304 

1   Mesh-Free 1.9482 1.5460 1.4670 1.3162 1.1814 1.1268 0.9757 0.8576 

 FEM 1.9482 1.5460 1.4675 1.3163 1.1813 1.1266 0.9753 0.8575 

2  Mesh-Free 4.9842 3.8112 3.5300 3.0837 2.7439 2.6180 2.3086 2.1216 

 FEM 4.9833 3.8105 3.5318 3.0833 2.7431 2.6171 2.3075 2.1214 

3  Mesh-Free 5.0281 3.8613 3.5577 3.1488 2.8306 2.7117 2.4150 2.2209 

 FEM 5.0246 3.8586 3.5576 3.1475 2.8289 2.7098 2.4126 2.2191 

4  Mesh-Free 5.5486 4.2781 3.9289 3.4543 3.1031 2.9756 2.6711 2.4890 

 FEM 5.5460 4.2761 3.9304 3.4537 3.1020 2.9743 2.6693 2.4880 

5  Mesh-Free 6.0932 4.8470 4.6054 4.1125 3.6888 3.5282 3.1225 2.8166 

 FEM 6.0937 4.8475 4.6083 4.1142 3.6896 3.5286 3.1216 2.8164 

 
 
The second model is a cylinder similar to the first model, except that the volume fraction of the fiber decreases 

along the radius from 75% to zero. Results obtained from this analysis are summarized in Table 4.  
In this table, the effect of volume fraction exponent (n) on natural frequencies is investigated too. Table 4. 

reveals that the more n have the higher natural frequencies, because increasing of n increases SiC volume fraction. 
Also, natural frequencies of the orthotropic FGM and only orthotropic cylinder lie between the natural frequencies 
of the similar isotropic SiC cylinder and those of the similar isotropic stainless steel cylinder too. It is obvious from 
Tables 3. and 4 that the natural frequencies of the orthotropic FGM cylinders are close to those of an isotropic 
cylinder with dominant component material. 

The third model is a cylinder similar to the first model, except that this cylinder is longer than the first model, so 
that 6oL r  . Results obtained from this analysis are summarized in Table 5., Fig. 4 shows first frequency 

parameters for continuous orthotropic cylinder with 75% fiber and also for orthotropic FGM cylinders that volume 
fraction of the fiber is changed from zero in the inner radius to 75% in outer according to Eq. (26) with different 
values of the exponents, 10,1,10n   , versus different values of the ratios of length to outer radius, / oL r . In the 

mentioned cylinders the ratios of radii is equal to, 2o ir r  . In Fig. 4 and by comparing Tables 3. and 5 reveals that 

increasing of the cylinder length decreases natural frequencies of the orthotropic FGM cylinder because the stiffness 
of system is reduced, as homogeneous cylinders. This trend is observed for the isotropic cylinders too. 

  

Table 4 
First five frequency parameters for free–clamped orthotropic FGM cylinder with variation of volume fraction of the fiber from 
75% to zero along the radius according to volume fraction (ro / ri = 2, L / ro = 3) 

 solutions SUS304 n = -10 n = -2.5 n = 1 n = 2.5 n = 10 
SUS (25%)/ 
SiC (75%) 

SiC 

1  Mesh-Free 0.8576 0.9023 1.0015 1.1133 1.1669 1.3508 1.5460 1.9482 

 FEM 0.8575 0.9018 1.0013 1.1133 1.1670 1.3513 1.5460 1.9482 

2  Mesh-Free 2.1216 2.2725 2.5255 2.7943 2.9225 3.3613 3.8112 4.9842 

 FEM 2.1214 2.2703 2.5245 2.7936 2.9219 3.3614 3.8105 4.9833 

3  Mesh-Free 2.2209 2.3853 2.6527 2.9284 3.0570 3.4762 3.8613 5.0281 

 FEM 2.2191 2.3809 2.6501 2.9265 3.0552 3.4753 3.8586 5.0246 

4  Mesh-Free 2.4890 2.6766 2.9612 3.2541 3.3913 3.8431 4.2781 5.5486 

 FEM 2.4880 2.6727 2.9590 3.2523 3.3897 3.8424 4.2761 5.5460 

5  Mesh-Free 2.8166 2.9644 3.2226 3.5195 3.6668 4.2000 4.8470 6.0932 

 FEM 2.8164 2.9625 3.2222 3.5200 3.6676 4.2028 4.8475 6.0937 
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Table 5 
First five frequency parameters for free–clamped orthotropic FGM cylinder with variation of volume fraction of the fiber from 
zero to 75% along the radius according to volume fraction model (ro / ri = 2, L / ro = 6) 
 

solutions SiC 
SUS (25%)/ 
SiC (75%) 

n = -10 n = -2.5 n = 1 n = 2.5 n = 10 SUS304 

1   Mesh-Free 0.9734 0.7724 0.7335 0.6590 0.5918 0.5645 0.4882 0.4277 

 FEM 0.9734 0.7724 0.7338 0.6590 0.5917 0.5644 0.4879 0.4276 

2  Mesh-Free 2.9019 2.2952 2.1708 1.9378 1.7326 1.6504 1.4262 1.2564 

 FEM 2.9028 2.2958 2.1723 1.9385 1.7329 1.6506 1.4259 1.2566 

3  Mesh-Free 4.6011 3.5541 3.2823 2.8635 2.5379 2.4156 2.1079 1.9118 

 FEM 4.6021 3.5541 3.2835 2.8627 2.5367 2.4144 2.1068 1.9119 

4  Mesh-Free 4.9859 3.8160 3.5403 3.1171 2.7804 2.6548 2.3475 2.1660 

 FEM 4.9771 3.8098 3.5380 3.1149 2.7780 2.6524 2.3450 2.1642 

5  Mesh-Free 5.1258 3.9325 3.6144 3.1757 2.8480 2.7265 2.4249 2.2333 

 FEM 5.1177 3.9262 3.6106 3.1703 2.8429 2.7215 2.4197 2.2283 
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Fig. 4 
First frequency parameters versus different values of 0L r  

for free–clamped continuous and FGM orthotropic 
cylinders with 0 2ir r  . 

 
 
The fourth model is a cylinder similar to that of the first model, except that this one is thinner with, 1.5o ir r  . 

Results obtained from free vibration analysis of this cylinder are shown in Table 6., Fig. 5 shows first frequency 
parameters for continuous orthotropic cylinder with 75% fiber and also for orthotropic FGM cylinders that volume 
fraction of the fiber is changed from zero to 75% in along the radial direction according to Eq. (26) with different 
values of the exponents, 10,1,10n   , versus different values of the ratios of radii, o ir r , for the ratios of length to 

outer radius of, 3oL r  . 
 
 
Table 6 
First five frequency parameters for free–clamped orthotropic FGM cylinder with variation of volume fraction of the fiber from 
zero to 75% along the radius according to volume fraction model (ro / ri = 1.5, L / ro = 3) 
 

solutions SiC 
SUS (25%)/ 
SiC (75%) 

n = -10 n = -2.5 n = 1 n = 2.5 n = 10 SUS304 

1  Mesh-Free 1.9462 1.5438 1.3810 1.2451 1.1650 1.1321 1.0102 0.8544 
FEM 1.9462 1.5438 1.3813 1.2452 1.1649 1.1320 1.0099 0.8543 

2  Mesh-Free 4.4596 3.4036 2.9740 2.6567 2.4831 2.4145 2.1763 1.9207 
FEM 4.4588 3.4030 2.9746 2.6566 2.4827 2.4140 2.1755 1.9205 

3  Mesh-Free 4.5147 3.4594 3.0081 2.6983 2.5300 2.4637 2.2334 1.9851 
FEM 4.5119 3.4572 3.0069 2.6966 2.5283 2.4619 2.2314 1.9835 

4  Mesh-Free 4.8493 3.7290 3.2232 2.8885 2.7100 2.6404 2.4032 2.1578 
FEM 4.8460 3.7267 3.2227 2.8874 2.7087 2.6390 2.4016 2.1568 

5  Mesh-Free 5.7351 4.4330 3.8244 3.4220 3.2060 3.1214 2.8318 2.5069 
FEM 5.7359 4.4338 3.8270 3.4233 3.2067 3.1220 2.8316 2.5070 
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In Fig. 5 and by comparing Tables 3 and 6 reveals that in the negative values of the volume fraction exponents, 
increasing of the thickness of orthotropic FGM cylinders decreases the first frequencies parameters, while in the 
positive values is inversely. It also reveals that second and more frequencies parameters increase by increasing the 
wall thickness of orthotropic FGM cylinder. 

Finally, for investigation of boundary conditions effect on the natural frequencies, a different orthotropic FGM 
cylinder is considered. In this cylinder volume fraction of the fiber increases along the radius from 10% to 75% 
according to the simple power model Eq. (25).  

Natural frequencies of this cylinder, are calculated by the proposed model under three different types of 
boundary conditions. Results obtained from these analyses are shown in Table 7. As seen in this table, for the 
clamped–clamped boundary condition, natural frequencies have the highest values in comparison with two other 
cases of boundary conditions. In addition, it is obvious from this table that the difference between three cases is 
reduced at higher frequencies. 
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Fig. 5 
First frequency parameters versus different values of 0 ir r  

for free–clamped continuous and FGM orthotropic 

cylinders with 0 3L r  . 

 

Table 7 
First five frequency parameters for orthotropic FGM cylinder with variation of volume fraction of the fiber from 10% to 75% 
along the radius according to the simple power model for different boundary conditions (ro / ri = 2, L / ro = 3) 

boundary condition solutions 1  2  3  4  5  

Clamped–Clamped Mesh-Free 2.2892 2.8962 3.2312 3.6562 4.5679 
 FEM 2.2889 2.8954 3.2301 3.6577 4.5770 
Clamped-Free Mesh-Free 1.1617 2.7187 2.8001 3.0801 3.6529 
 FEM 1.1615 2.7178 2.7981 3.0787 3.6532 
Free-Free Mesh-Free 2.1531 2.7548 2.8044 2.9878 3.0959 
 FEM 2.1530 2.7540 2.8022 2.9843 3.0950 

6    CONCLUSIONS 

In this study, the free vibrations of orthotropic FGM cylinders is analyzed with a Mesh-Free and finite element 
method. The cylinders are assumed to be combination of two isotropic materials. The volume fraction of the fiber is 
changed in the radial direction. In this simulation, an axisymmetric model is used. Proposed Mesh-Free method is 
based on MLS shape functions and the weak form equation of motion. Essential boundary conditions are imposed 
by transfer function method. In this study, effect of geometric dimensions, type of boundary condition and volume 
fraction exponent on natural frequencies were investigated and following results were obtained. 

 Both Mesh-Free and the finite element method have good accuracy in solving this problem. 
 Mesh-Free method in comparison with FEM has more accuracy in solving this problem, especially for higher        

frequencies. 
 In orthotropic FGM cylinders, frequency values are close to the frequencies of isotropic cylinder made of 

dominant material. 
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 Increasing of the cylinder thickness of orthotropic FGM cylinders has different effects on first frequency 
parameter, but lead to increasing on the values of second or more frequency parameter. 

 Type of boundary conditions has considerable effect on the frequency values. 
 Natural frequency of orthotropic FGM cylinders can be controlled by the choice of proper volume fraction 

exponent, n. 

REFERENCES 

[1] Koizumi M., 1993, The concept of FGM, Ceramic Transactions Functionally Graded Materials 34:3-10. 
[2] Kashtalyan M., 2004, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, 

European Journal of Mechanics A–Solid 23:853-864. 
[3] Loy C.T., Lam K.Y., Reddy J.N., 1999, Vibration of functionally graded cylindrical shells, International Journal of 

Mechanical Sciences 41:309-324. 
[4] Pradhan S.C., Loy C.T., Reddy J.N., 2000, Vibration characteristics of functionally graded cylindrical shells under 

various boundary conditions, Applied Acoustics 61:111-129. 
[5] Kadoli R., Ganesan K., 2006, Buckling and free vibration analysis of functionally graded cylindrical shells subjected to 

a temperature-speciefied boundary condition, Journal of Sound and Vibrations 289:450-480. 
[6] Haddadpour H., Mahmoudkhani S., Navazi H.M., 2007, Free vibration analysis of functionally graded cylindrical 

shells including thermal effects, Thin-walled structures 45:591-599. 
[7] Ansari R., Darvizeh M., 2008, Prediction of dynamic behavior of FGM shells under arbitrary boundary conditions, 

Composite Structures 85:284-292. 
[8] Mollarazi H.R., Foroutan M., Moradi-Dastjerdi R., 2011, Analysis of free vibration of functionally graded material 

(FGM) cylinders by a meshless method, Journal of Composite Materials 46:507-515. 
[9] Leissa A.W., So J., 1995, Accurate vibration frequencies of circular cylinders from three dimensional analysis, Journal 

of the Acoustical Society of America 98:2136-2141. 
[10] Leissa A.W., So J., 1995, Comparisons of vibration frequencies for rods and beams from 1D and 3D analysis, Journal 

of the Acoustical Society of America 98:2122-2135. 
[11] Hutchinson J.R., 1996, Accurate vibration frequencies of circular cylinders from three-dimensional analysis, Journal of 

the Acoustical Society of America 98:2136-2141.  
[12] Hutchinson J.R., 1995, Accurate vibration frequencies of circular cylinders from three-dimensional analysis, Journal of 

the Acoustical Society of America 100:1894-1895. 
[13] Zhou D., Cheung Y.K., Lo S.H., Au F.T.K., 2003, 3D vibration analysis of solid and hollow circular cylinders via 

Chebyshev–Ritz method, Computer Methods in Applied Mechanics and Engineering 192:1575-1589. 
[14] Han X., Liu G.R., Xi Z.C., Lam K.Y., 2001, Transient waves in a functionally graded cylinder, International Journal of 

Solids and Structures 38:3021-3037.  
[15] Shakeri M., Akhlaghi M., Hoseini S.M., 2006, Vibration and radial wave propagation velocity in functionally graded 

thick hollow cylinder, Composite Structures 76:174-181. 
[16] Hosseini S.M., Akhlaghi M., Shakeri M., 2007, Dynamic response and radial wave propagation velocity in thick 

hollow cylinder made of functionally graded materials, International Journal for Computer-Aided Engineering and 
Software 24:288-303. 

[17] Asgari M., Akhlaghi M., Hosseini S.M., 2009, Dynamic analysis of two-dimensional functionally graded thick hollow 
cylinder with finite length under impact loading, Acta Mechanica 208:163-180. 

[18] Hosseini S.M., Abolbashari M.H., 2010, General analytical solution for elastic radial wave propagation and dynamic 
analysis of functionally graded thick hollow cylinders subjected to impact loading, Acta Mechanica 212:1-19. 

[19] Shahabian F., Hosseini S.M., 2010, Stochastic dynamic analysis of a functionally graded thick hollow cylinder with 
uncertain material properties subjected to shock loading, Material & Design 31:894-901. 

[20] Zhang G.M., Batra R.C., 2007, Wave propagation in functionally graded materials by modified smoothed particle 
hydrodynamics (MSPH) method, Journal of Computational Physics 222:374-390. 

[21] Foroutan M., Moradi-Dastjerdi R., 2011, Dynamic analysis of functionally graded material cylinders under an impact 
load by a mesh-free method, Acta Mechanica 219:281-290. 

[22] Foroutan M., Moradi-Dastjerdi R., Sotoodeh-Bahreini R., 2012, Static analysis of FGM cylinders by a mesh-free 
method, Steel and Composite Structures 12:1-11. 

[23] Moradi-Dastjerdi R., Foroutan M., Pourasghar A., 2013, Dynamic analysis of functionally graded nanocomposite 
cylinders reinforced by carbon nanotube by a mesh-free method, Material & Design 44:256-266. 

[24] Sladek J., Sladek V., Zhang Ch., 2005, Stress analysis in anisotropic functionally graded materials by the MLPG 
method, Engineering Analysis with Boundary Elements 29:597-609. 

[25] Yas M.H., Garmsiri K., 2010, Three-dimensional free vibration analysis of cylindrical shells with continuous grading 
reinforcement, Steel and Composite Structures 10:349-360. 

[26] Sobhani Aragh B., Yas M.H., 2010, Static and free vibration analyses of continuously graded fiber-reinforced 
cylindrical shells using generalized power-law distribution, Acta Mechanica 215:155-173. 



R. Moradi-Dastjerdi and M. Foroutan                   81 

© 2014 IAU, Arak Branch 

[27] Sobhani Aragh B., Yas M.H., 2010, Three-dimensional free vibration of functionally graded fiber orientation and 
volume fraction cylindrical panels, Material & Design 31:4543-4552. 

[28] Chen W.Q., Bian Z.G., Ding H.J., 2004, Three-dimensional vibration analysis of fluid-filled orthotropic FGM 
cylindrical shells, International Journal of Mechanical Sciences 46:159-171. 

[29] Lancaster P., Salkauskas K., 1981, Surface generated by moving least squares methods, Mathematics of Computation 
37:141-158. 

[30] Shen H.S., 2009, A comparison of buckling and post buckling behavior of FGM plates with piezoelectric fiber 
reinforced composite actuators, Composite Structures 91:375-384. 

[31] Vasiliev V.V., Morozov E.V., 2001, Mechanics and Analysis of Composite Materials, Elsevier Science Ltd, First 
Edition. 


