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 ABSTRACT 

 In this study, based on nonlocal differential constitutive relations of Eringen, the first order shear 
deformation theory of plates (FSDT) is reformulated for vibration of nano-plates considering the 
initial geometric imperfection. The dynamic analog of the von Kármán nonlinear strain-
displacement relations is used to derive equations of motion for the nano-plate. When dealing with 
nonlinearities, in the frame work of nonlocal theory, challenges are presented because of the 
coupling between nonlocal stress resultants and displacement terms. Governing equations are 
solved using differential quadrature method (DQM) and numerical results for free vibration of an 
imperfect single layered graphene sheet are presented. 
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 

 Keywords: Nonlocal Theory; Shear Deformable Nano Plates; Nonlinear Vibration; Geometric 
Imperfection. 

1    INTRODUCTION 

 ANO structures attract more attention in recent years due to their superior mechanical, electronic, and 
chemical characteristics [1]. These properties have lead to widespread applications of these structures in NEMS 

devices. Vibration is the key phenomenon in some NEMS devices including oscillators, mass measuring sensors etc 
[2, 3] and overviewing the literature reveals that Carbon nanotubes (CNTs) and graphene sheets (GSs) have the most 
potential to be used for these devices. Thus, their vibration characteristics have been studied by many researchers [4-
6]. A review concerning the importance and modeling of vibration behavior of various nanostructures has been 
conducted by Gibson’s et al [7]. 

Experimental investigations using nanoscale specimen needs considerable efforts and too much expense. 
Therefore, various continuum models have been proposed for mathematical modeling and analysis of nano-
structures. In this way, for example, a graphene sheet can be considered as a nano-plate and known theories of plates 
like classical (CLPT) and first order shear deformation plate (FSDT) theories can be adopted to model the 
displacements in the structure. Recently, Reddy [8, 9] used nonlocal differential constitutive relations of Eringen and 
von Kármán nonlinear strains to reformulate beam and plate theories for analysis of bending, buckling and vibration 
behavior of these structures.  Pradhan and Phadikar [10] employed nonlocal elasticity theory for vibration analysis 
of single and multi layered nano-plates based on CLPT and FSDT. Navier solutions were obtained for natural 
frequencies with simply supported boundary conditions and effects of nonlocal parameter, length and elastic 
modulus were investigated. However, the effects of nonlinearity were absent in their calculations. Free in-plane 
vibration of nano-plates was studied using nonlocal continuum mechanics by Pradhan and Murmu [11]. Explicit 
statements of natural frequencies were obtained by separation of variables and the importance of including nonlocal 
parameter for in-plane vibration of graphene sheets was shown. Multilayered graphene sheet embedded in an elastic 
medium was modeled and its natural frequencies and mode shapes were obtained by Behfar and Naghdabadi [12]. 
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Liew et al. [13] considered vibration behavior of multilayered graphene sheets embedded in an elastic matrix. They 
used a continuum based plate model for their analysis. 

Previous researches show that initial geometric imperfection has significant effects on nonlinear vibration 
frequencies and shape modes of structures (see [14, 15]). Geometric imperfection refers to globally or locally 
distributed, small and inevitable deviations between the actual shape and intended shape of the structure. To our 
knowledge, the effect of geometric imperfection has not been considered in continuum formulations of nano-scale 
structures with consideration of non-local elasticity despite of the need for highly accurate results in nano-scale 
calculations. 

When dealing with nonlinearities and considering imperfections, in the frame work of nonlocal theory, 
challenges are presented because of the coupling between various nonlocal stress resultants and displacement terms. 
This paper aims to derive the governing equations of motion for large amplitude nonlinear vibrations of nano plates 
with initial geometric imperfections using FSDT and based on nonlocal continuum elasticity. Then, these equations 
are solved for the case of free vibration of a clamped graphene plate while taking into account the effects of 
imperfection and non-local parameter. 

2    THE PLATE MODEL 

Considering a nano-plate of thickness h and dimension a × b (Fig. 1). Displacement field based on first order shear 
deformation plate theory can be written as [14]: 
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where 0 0 0, ,u v w  represent mid-plane displacements in the x, y, and z directions respectively. ,x y 

 
are the rotations 

of the normal to this plane around y and x axes respectively. *w  is the initial geometric imperfection of the plate. 
For nonlinear analysis von Kármán type of strain-displacement relationship is adopted here as [14]: 
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where ( )

,
.

  
represents differentiation with respect to   direction and a dot superscript over a variable indicates 

differentiation with respect to time. 
 
 

 
Fig. 1 
Geometric representation of a continuum model of a nano-plate. 
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3    NONLOCAL CONTINUUM MECHANICS  

3.1 Differential constitutive relations 

Classical stress tensor at a reference point is a function of the configuration of the strain at that point only. However, 
when dealing with nonlocal stress tensor, it is related to the strain field at every point in the continuum. Considering 
a reference point X, the nonlocal stress tensor can be expressed as [16]: 
 

( , ) ( )dnl

V
Y X Y Y   = -ò  (3)

 

 
where nl  represents nonlocal stress tensor, Y  is an arbitrary point in the medium and   stands for classical stress 
tensor which is related to the strain tensor through Hook’s law for a linearly elastic material. It can be shown (see 
Eringen [16]) that the integral constitutive relation can be equivalently represented by the following form: 
 

   2( ) , 1nlL L= = -   (4)
 

 
where 2

0
2
0ae  is called the nonlocal parameter, 0a  is an internal characteristic length and 0e  is a constant. 2  is 

the 2D Laplacian operator which is equal to     yyxx ,, .. 
 
in the Cartesian coordinate system. 

3.2 Nonlocal stress resultants 

Employing Hook’s law, Eq. (4) can be rewritten as: 
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where ijQ are the reduced stiffness coefficients for plane state of stress defined by [8]: 
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By substituting strain-displacement relations from Eq. (2) into nonlocal Eq. (5) and integrating along plate 

thickness, the following relations for the plate stress resultants will be obtained: 
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where nonlocal stress and moment resultants are defined as [10]: 
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and the classical local stress resultants are [8]: 
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The parameter sK  is the shear correction factor which usually is set to 5/6 [8]. Aij and Dij represent the 

extensional and bending stiffnesses of the plate and are defined below [8]: 
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3.3 Governing equations 

By using the virtual work principle, the governing equations for motion of a plate can be written as [8]: 
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fx, fy are in-plane external forces and q is the transverse distributed load. I0 and I2 are mass moments of inertia and 
are defined as: 
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In which,   is the density of the constituent material. In order to rewrite the governing equations in terms of 

displacement field, the operator L  is applied to Eqs. (13-17), which yields: 
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As it can be seen, the above equation will contain terms including nonlocal stress resultants and thus it cannot be 

readily reduced to a relation in terms of displacement field variables. To overcome this issue, Reddy [8] proposed to 
linearize the expression of nlN  as: 
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Now, by substitution from Eqs. (7-9) and Eq. (27) into Eqs. (20-24), the following governing equations in terms 

of displacement components will be obtained: 
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These governing equations consist of five nonlinear coupled partial differential equations which takes into 
account the effects of initial geometric imperfection and nonlocal parameter, which should be solved simultaneously 
by considering appropriate boundary conditions. Classical governing equations could be obtained from the above 
relations by letting the nonlocal parameter   be equal to zero. Also, the effects of geometric imperfection can be 

eliminated from the equations by taking * 0.w =  

4    SOLUTION PROCEDURE  

4.1 Differential quadrature method 

Differential quadrature method (DQM) is adopted here to discretize the governing equations and associated 
boundary conditions. Application of this method is suggested by many researchers for solving partial differential 
Eqs. (17) and (18). It is actually based on polynomial approximation of a function at any location in the domain. 
Then, partial derivatives of that function with respect to a domain coordinate are approximated by weighted 
summing of its values at all selected discrete points in the direction of that coordinate. Here, the method is briefly 
described for two-dimensional rectangular domain case [18]. Let ( )nf  be the n th derivative of a function ( , )f x y  

with respect to   direction, where   may be x or y. According to DQ method: 
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Similarly, weighting coefficients for the second and higher derivatives are obtained as follows [18]: 
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At any location in the domain, ( , )f x y  can be computed from 
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If the computational domain is normalized to 0 1,  0 1X Y£ £ £ £ , then a Gauss-Lobatto-Chebyshev mesh 

generation might be taken for creating sampling grid points [18]: 
 

1 1
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2 1i
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Y j M
M


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4.2 Derivation of Natural Frequencies 

The following periodic solution is considered for field variables ( , , , , )x yu v w   : 
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Applying DQM which was described in previous section, Eqs. (28-32) can be written as: 

{ } { }2
5 15 5 5 5

( ) 0
NMNM NM NM NM

K M X
´´ ´

é ù é ù- =ë û ë û  (52)
 

 
where Ké ùë û  and Mé ùë û  are called stiffness and mass matrices respectively and   is the natural angular frequency. The 

nodal displacement vector { }X  is defined as: 

 

{ } { } { } { }1 2
T

N MX X X X ´
é ù= ê úë û  (53)

 

 
In which,{ }lX  is the displacement components vector of the lth node. Eq. (52) is a standard eigenvalue problem 

from which, after applying appropriate boundary conditions, the eigenvalues and eigenvectors of the mathematical 
problem, corresponding to natural frequencies and mode shapes of the physical structure, could be extracted. 

5    NUMERICAL RESULTS AND DISCUSSION  

In the following, free vibration results of clamped rectangular imperfect plates based on nonlocal elasticity theory 
are presented. Effects of non-local theory and imperfection parameter on the values of first natural frequency are 
indicated.  

5.1 Verification of results 

For the purpose of verification, free vibration analysis of a perfect plate without considering nonlocal effects is 
performed and the results are compared with those given by Leissa [19] in Table 1. A mesh size of 13 13   is used 

to derive the first five non-dimensional natural frequencies 2
11( / )a h D  =  of the plate for various side length 

ratios. Note that Leissa’s results are given from the Rayleigh-Ritz. It can be observed from Table 1 that the results of 
current model agree very well with the data of Leissa.  
 
 
Table 1 
Comparison of non-dimensional natural frequencies of a perfect rectangular plate (local theory) 
Mode 
Number 

References 
a/b 
0.4 2/3 1.0 1.5 2.5 

1 
[19] 23.648 27.010   35.992   60.772 147.80 
Present  23.642 27.004   35.984   60.760 147.77 

2 
[19] 27.817 41.716   73.413   93.860 173.85 
Present  27.805 41.702   73.392   93.831 173.79 

3 
[19] 35.446 66.143   73.413 148.82     221.54 
Present  35.414 66.121   73.392 148.78     221.35 

4 
[19] 46.702 66.552 108.27      149.74     291.89 
Present  46.678 66.519 108.21     149.67     291.76 

5 
[19] 61.554 79.850 131.64     179.66     384.71 
Present  61.516 79.800 131.58      179.56     384.51 
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Table 2 
Mechanical properties of graphene sheet [20] 
Young’s Modulus 1.02 TPa
Poisson Ratio 0.16
Density 2250 kg/m3

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 2 
Variation of non-dimensional frequency of a square grapheme 
sheet with a/h for different non-local parameter. 

   

Fig. 3 
Variation of non-dimensional frequency of a square grapheme 

sheet with /W h*  for different non-local parameter. 
 
 
 
Discrepancies are observed because of differences of two theories adopted, i.e. first order shear deformation 

plate theory (FSDT) for current work and classical plate theory (CPT) for the work of Leissa. As it can be observed 
FSDT results in lower frequency parameters in comparison with CPT as expected. 

5.2 Free Vibration of an imperfect graphene sheet  

In this section, free vibration analysis of an imperfect square single layered graphene sheet is performed using the 
proposed DQ method. Geometric imperfection is taken as a sinusoidal wave of the following form [14]: 
 

* * sin( / )sin( / )w W x a y b =  (54)
 

 
Table 2 presents mechanical properties of graphene material. Thickness of the sheet is taken as 0.34 nmh =  [20]. 

Variation of non-dimensional first natural frequency, ,  versus length to height ratio, a/h, for various values of non-
local parameter is shown in Fig. 2. It may be seen that for a specified value of a/h, frequency parameter, ,  decreases 
with increasing non-local parameter, ,  although this reduction in   value becomes negligible for larger length to 

height ratios and the frequency parameter converges to the value for 0. =  This trend shows that non-local effects 
attenuate by increasing the characteristic geometric length of the structure. Furthermore, increasing length to thickness 
ratio results in increasing frequency parameter for all values of  . This is mainly due to decrease in shear effects for 
greater values of a/h. Fig. 3 shows the effect of imperfection on frequency parameter of a grapheme sheet for various 
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values of non-local parameter. It can be seen that as the amplitude of imperfection is increased, the frequency 
parameter,   increases. The reason is that imperfection increases resistance of the plate against vibration. Besides, for 

a specified value of / ,W h*  with increasing non-local parameter, ,  frequency parameter decreases. 

6    CONCLUSION 

Equations of motion based on nonlocal differential constitutive equations of Eringen and the von Kármán nonlinear 
strain-displacement relationship were obtained for the shear deformable nano-plates with initial geometric 
imperfections. Difficulties arising from nonlinear terms due to employment of nonlocal theory were removed by an 
approximation made to the nonlinear terms. With this simplification five coupled nonlinear partial differential 
equations in terms of displacement components were obtained. The governing equations are solved using differential 
quadrature method (DQM) and numerical results for free vibration of an imperfect single layered grapheme sheet 
are presented which show a significant effect of nonlocal and imperfection parameters on the natural frequency of 
the grapheme sheets. 
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