
 

© 2017 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 9, No. 1 (2017) pp. 63-85 

Thermo-Elastic Analysis of Non-Uniform Functionally 
Graded Circular Plate Resting on a Gradient Elastic 
Foundation  

A. Behravan Rad * 

Engineering Department ,Zamyad Company,15Km Karaj Old Road, P.O 1386183741, Tehran, Iran 

Received 20 September 2016; accepted 14 December 2016 

 ABSTRACT 

 Present paper is devoted to stress and deformation analyses of heated variable 

thickness functionally graded (FG) circular plate with clamped supported, 

embedded on a gradient elastic foundation and subjected to non-uniform 

transverse load. The plate is coupled by an elastic medium which is simulated as 

a Winkler- Pasternak foundation with gradient coefficients in the radial and 

circumferential directions during the plate deformation. The temperature 

distribution is assumed to be a function of the thickness direction. The governing 

state equations are derived in terms of displacements and temperature based on 

the 3D theory of thermo-elasticity. These equations are solved using a semi-

analytical method to evaluate the deformation and stress components in the plate. 

Material properties of the plate except the Poisson's ratio are assumed to be 

graded continuously along the thickness direction according to an exponential 

distribution. A parametric study is accomplished to evaluate the effects of 

material heterogeneity indices, foundation parameters, temperature difference 

between the top and bottom surfaces of the plate and thickness to radius ratio on 

displacements and stresses. The results are reported for the first time and the new 

results can be used as a benchmark solution for the future researches. 

                                             © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE functionally graded materials (FGMs) are a novel class of engineering materials, which those thermo-

mechanical properties vary continuously in a specific direction. Based on this characteristic two types of graded 

circular plates are reported in the literature. Some types are transversely graded plates and the other types are 

radially graded plates.  FGMs have received considerable attention by researchers in recent years because those 

novel properties enable them to be widely used in many scientific and engineering disciplines, such as aerospace, 

vehicles, optics, electronics, mechanical, nuclear and biomedical engineering.  

Plate resting on an elastic foundation is a classical topic in engineering. Practical examples of these are airport 

run-ways, foundation of storage tanks and silos, driven plates of a friction clutch, Vehicle brake disk on friction 

pads, Nano-plates embedded in an elastic matrix or resting on an elastomeric substrate and biological organs resting 

on artificial medium.  
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There are two approaches for designing these typical applications: the constant-life and constant-pressure 

approaches. Therefore, the distributed forces exerted by the foundation may not be uniform even for a uniform 

displacement field. Subsequently, as a general case, the stiffness of the foundation may not be uniform. 

Some researchers have investigated thermo-elastic behavior of the FG circular plates, employing the plate 

theories. For example, Reddy et al. [1] reported some closed-form expressions to analyze the bending of transversely 

graded annular and circular plates under the effect of symmetric loading. Najafizadeh and Heydari [2] treated the 

buckling of FGM plates under the effect of thermo-mechanical loads based on the Von-Karma non-linearity and 

Reddy's third order thick plate theory. They assumed that the mechanical properties of FG plates are graded along 

the plate thickness direction according to power low form.  Based on this nonlinear theory Ma and Wang [3] 

investigated the axisymmetric large deflection bending of a FG circular plate under mechanical, thermal and 

combined thermal-mechanical loading, they used the shooting method to numerically solve the problem. 

Khorshidvand et al. [4] studied the thermal buckling of FG circular plates integrated with piezoelectric layers under 

the uniform, linear and nonlinear temperature variation and constant voltage. They applied the energy method with 

the use of calculus of variations based on the classical plate theory to obtain the critical buckling temperature. Kiani 

and Eslami [5] studied analytically the buckling of heated FG annular plates resting on a conventional Pasternak-

type elastic foundation based on the classical plate theory under the effect of various thermal loads. They considered 

distribution of thermo-mechanical properties in the plate thickness according to power law function.  Gaikwad [6] 

studied thermo elastic deformation of a thin hollow circular disk due to the partially distributed and axisymmetric 

heat supply on the upper surface, and analyzed thermo-elastic deformations analytically based on Kirchhoff-Love’s 

hypothesis and introduced an integral transforms method to analyze the temperature field. Golmakani and 

Kadkhodayan [7] investigated the axisymmetric bending and stretching of circular and annular functionally graded 

plates with variable thicknesses under combined thermal-mechanical loading based on the first-order shear 

deformation theory and employing the dynamic relaxation (DR) method to solve the governing equations. Recently, 

Fallah and Noseir [8] presented closed – form solutions for analysis of thermo-mechanical behavior of FG circular 

sector plates based on the first–order shear theory of plates.    

A number of numerical approaches have been employed to study the thermo-elastic problems of FG circular 

plates, among which  finite element method and differential quadrature rule  based on certain simplified plate 

theories and 2D thermo-elasticity have been used frequently. For instance, Gunes and Reddy [9] studied the 

behavior of geometrically nonlinear FG circular plates under the effect of mechanical and thermal loads by 

employing finite element method. In this study the Green-Lagrange strain tensor with all its terms is considered. 

Prakash and Ganapathi [10] performed an asymmetric study on vibration and thermal buckling of FGM circular 

plates by using finite element method. Gomshei and abbasi [11] developed a finite element formulation for 

analyzing the axisymmetric thermal buckling of variable thickness FG annular plates subjected to arbitrary 

distribution thermal loads along the plate radial direction. Afsar and Go [12] applied the finite element method to 

analyze the thermo elastic field in a thin FG circular disk subjected to thermal load and an inertia force due to 

rotation of the disk. They considered the thermo-mechanical properties of the plate constituents graded in radial 

direction and formulated the governing equation of an axisymmetric problem based on the two dimensional thermo-

elastic theories. Leu and Chien [13] investigated the thermo-elastic behavior of FG rotating disks with variable 

thickness and including a non-uniform heat source by utilizing finite element method.   

 Safaeian et al. [14] applied the differential quadrature (DQ) method to present the effects of thermal 

environment and temperature dependence of the material properties on axisymmetric bending of FG circular and 

annular plates. Based on the first order shear deformation theory and using DQ method, Malekzadeh et al. [15] 

investigated the free vibration problem of FG annular plates supported by two-parameter elastic foundation in 

thermal environment. Sepahi et al. [16] treated the buckling and post buckling behaviors of heated annular FG plates 

by utilizing DQ method. In this analysis, the material properties are assumed to be temperature dependent and 

graded in the radial direction. In other study, Sepahi et al. [17] investigated the effect of three-parameter elastic 

foundations and thermo-mechanical load on the axisymmetric large deflection of a simply-supported annular FG 

plate.   

It is evident that results of the three-dimensional theory of elasticity are exact and more accurate than those of 

the plate theories which are indeed two-dimensional theories whose dependence on the transverse coordinate is 

prescribed. Therefore some researchers reported the static, vibration and thermo-elastic behaviors of FG circular 

plates based on this theory.  According to 3D elasticity theory and assuming the material properties to vary with an 

exponential distribution in transverse direction, Jabbari et al. [18] developed an analytical solution for steady state 

thermo-elastic problem of simply supported FG circular plate under axisymmetric thermal and mechanical loads. 

Nie and Zhong [19] presented a semi-analytical (State space method and one dimensional differential quadrature 

rule) solution for three-dimensional free and forced vibration analyses of functionally graded circular plate with 
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various boundary conditions. By using direct displacement method, Yu Li et al. [20] carried out an analytical 

solution to investigate the axisymmetric thermo-elastic behavior of FG circular plate under thermal load. The author 

[21] discussed the static behavior of unidirectional FG circular plates resting on elastic foundation under the effect 

of axisymmetric transverse load by using semi-analytical method. In addition to this analysis, assuming exponential 

type of property distribution in both transverse and radial directions, Behravan Rad and Alibeigloo [22] investigated 

the static behavior of two directional FG circular plates resting on elastic foundation under the effect of 

axisymmetric transverse load. Recently the author developed the differential equation of interaction between 

foundation-structure to a linear elastic foundation with gradient coefficients, and analyzed the static response of 

variable thickness multidirectional FG circular and annular plates supported by variable elastic foundation (Winkler-

Pasternak type) to compound mechanical loads [23]. 

The foregoing brief review reveals that very limited papers have been published on the thermo-elastic analysis of 

FG circular plates. Three dimensional bending and stress analysis of variable thickness FG circular plate resting on 

gradient elastic foundation under the effects of thermal and mechanical loads has not been performed before. Present 

research is devoted to exact deformation and stress analyses of variable thickness FG circular plate embedded on 

non-uniform two-parameter Winkler-Pasternak elastic foundation. Material properties are assumed to be graded in 

the thickness direction according to an exponential distribution. The formulations are based on the three-dimensional 

theory of thermo-elasticity. A semi-analytical approach, which makes use of the state space method and the one-

dimensional differential quadrature rule, is used to extract the numerical results. 

The novelties of the present study can be outlined as follows:  

1. Presenting a semi-analytical solution for thermo-elastic analysis of variable thickness FG circular plate with 

complicated boundary conditions. 

2. Demonstrating the thermo-elastic behavior of non-uniform FG circular plate under the effect of general 

tractions (asymmetric transverse load and variable plate-foundation interaction), for the first time.  

3. Extracting new differential equation for the gradient elastic foundation. 

4. Illustrating the effect of foundation parameters and foundation gradient indices on thermo-elastic behavior 

of variable thickness FG circular plate, for the first time. 

5. Presenting quite new and interesting stress and deformation results for the FG circular plate. 

2    MATHEMATICAL FORMULATION   

2.1 Basic equations  

Fig.1 illustrates a functionally graded circular plate with variable
 
thickness ( )h r  and outer radius a, embedded on a 

gradient elastic foundation. The plate is clamped supported at circumferential edge and subjected to non-uniform 

transverse load ( , , )p r z  and uniform temperatures 1 2,T T over the bottom and top surfaces of the plate, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 

Geometry of the problem and coordinate system. 

 

The FG plate is transversely isotropic with constant Poisson's ratio (v) and the other material properties with the 

exponential distribution along the thickness direction are as follows: 
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where 0 0 0, ,E K  are the Young’s module, thermal expansion and thermal conductivity of the plate material at the 

bottom surface, respectively. 1 2 3, ,n n n  are the parameters indicating the trends of the plate material properties 

gradient. 

The thickness profile of the plate is assumed to vary in radius direction according to: 
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where 0h  is the thickness at the center of the plate and 1 2,   are the plate geometry variation coefficients. The 

external load on the top surface of the plate is assumed to vary in radial and circumferential directions according to: 
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where 0p denotes the value of external load at the center of the plate, 1p and 2p denote the load variation coefficients. 

The equilibrium equations in the absence of body forces are 
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where , , , , ,r z z rz r         are the stress components and the comma denotes differentiation with respect to the 

indicated variable. 

The mechanical displacements and stresses are assumed in the following form: 
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1 1( , , , ) ( , , )sin( )z zr z n r z n      (7h) 

 

1 1( , , , ) ( , , )sin( )r rr z n r z n      (7i) 

 

where u,v,w  are displacement components in the ,r   and z directions. 

The kinematic equations are: 
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where , , , , ,r z z rz r         are the strain components. 

The constitutive relations from 3-D theory of uncoupled thermo-elasticity are: 
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The governing equation for the steady state one-dimensional heat conduction equation, in the absence of heat 

source is 
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The thermo-mechanical edge and boundary conditions are 
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      Regularity conditions on the center of the plate:   
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 where , ( , , )fp p r z  are the plate–foundation interaction and external mechanical load, respectively. 

In order to simplify calculations and transform from physical domain to a normalized computational domain, the 

following non-dimensional quantities are introduced: 
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where 1Y Gpa . 

By considering the Eqs.(1),(2),(6),(9) and (15a), the normalized form of the governing equations in terms of 

displacements and temperature in the bottom surface of the plate can be obtained as: 
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2.2 The plate-foundation interaction 

It is assumed that, the two parameter elastic foundation is perfect, frictionless, attached to the plate, non-uniform, 

asymmetric, and isotropic, that is, pr p pk k k  . In the referred coordinate system the interface pressure 

( , , )fp r z between the structure and a non-uniform foundation may be expressed mathematically as follows: 

1 2

, ,

( , , ) ( , , ) ( , , ) ( , , )b b
f w b p p

r

w w
p r z k r z w r rk r z r k r z

r

     
     

    

   


 
 

(17) 

 

where ( , , )fp r z denotes the foundation reaction per unit area and bw is the deflection of the bottom surface of the 

plate.  w r, ,zk  ,  p r, ,zk  are the coordinate dependent Winkler-Pasternak coefficients and can be expressed as:  

 

   2 2
1 2 1 2( , , ) 1 ( ) ( ) cos( ), ( , , ) 1 ( ) ( ) cos( )w wbo p pbok r z k f r a f r a k r z k f r a f r a          

 

(18) 

 

where 
3( ), ( )wbo pbok N m k N m  are the elastic coefficients of Winkler-Pasternak foundation at the center of bottom 

surface of the plate. 

3    SOLUTION TECHNIQUE  

This study only considers the uncoupled thermo-elastic problem for a functionally graded circular plate. Therefore, 

the steady state heat conduction equation shown in Eq. (10) can be solved individually by direct integrating. The 

temperature distribution across the plate thickness can be obtained as [3,7].  

 

2
1 1 2

2 2

( ) ( )
( ) ( )

h

h h

d d
T T T T

k k 

    
  


 

 

 

(19) 

 

To solve the governing differential equations appeared in Eq. (16) a semi-analytical approach is employed. This 

method gives an analytical solution along the thickness direction (z-direction) by using the state space method 

(SSM) and a numerical solution in the radial direction of the plate by applying one dimensional differential 

quadrature (DQ) rule to approximate the stress and deformation components. By using this method the governing 

differential equations is transformed from physical domain to a normalized computational domain and the special 

derivatives are discretized by applying the one dimensional differential quadrature rule as an efficient and accurate 

numerical tool. The obtained linear eigenvalue system in terms of the displacements and temperature is solved and 

the thermo-elastic behavior of the plate under described boundary conditions is analyzed. 

3.1 DQM procedure and its application 

The DQ method is a numerical technique which divides the continuous domain in to a set of discrete points and 

replaces the derivative of an arbitrary unknown function with the weighted summation of the functions values in the 

discretized points. Therefor, the principle of DQ rule can be stated as follow: for a continuous function ( )g r  defined 

in an interval [0,1]r , its nth-order derivative with respect to argument r at an arbitrary given point ir  can be 

approximated by a linear sum of the weighted function values of ( )g r  in the whole domain [24]. The mathematical 

presentation of the method is 
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( )
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1

( )
( ) 1,2,..., 1,2,..., 1

n N
ni

jijn
j

g r
A g r i N and n N

r 


   


  

 

(20) 

    

where ( )n
ijA  is the weighting coefficients matrix of the nth-derivative determined by the coordinates of the sample 

points ir and N is the number of the grid points in the radial direction. There are different ways for calculating the 

weighting coefficient matrix, because different functions may be considered as test functions. In this study a set of 

Lagrange polynomials are employed as test functions, and to achieve more accuracy the non-uniform grid spacing is 

considered. Explicit expressions of the first and second derivatives of the weighted coefficients matrices and also 

criterion to adopt non-uniformly spaced grid points are [25]: 

The first order derivative of the weighting coefficients matrix  
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(21) 

 

The second-order derivative of the weighting coefficients matrix  
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(22) 

 

The Richard-Shu criterion  
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(23) 

 

The partial derivatives of the unknown displacements U,V,W with respect to  appeared in Eq. (16) after 

applying the DQ rule at an arbitrary sample point i  can be expressed as:  
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(2)
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The associated edge conditions in discretized points can be written as follows: 

 

0, 0, 0, 0, 1N N N NU V W T at      (25) 

 

Regularity conditions on the center of the plate: 
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(26) 

 

The discretized forms of the boundary conditions at the lower and upper surfaces of the plate, Eqs.(13) and (14) 

can be written as: 
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1 ( 1,2,3,..., )iT T i N   (27d) 
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2 ( 1,2,3,..., ) iT T i N  (28d) 

3.2 The state space method 

Assembling of governing equations appeared in Eq. (16) in a state space notation at all discrete points gives the 

global state equation in a matrix form as: 

 

       
,

( ) ( ) ( ) i i i i iD B t


      (29) 

 

Here, , , , 1 ,( ) , ( ) 0 0 0 0       

T T

i i i i i i i i i iU V W U V W t T T       are the 

global state and temperature vectors along the plate thickness at the level of  , respectively. ,i iD B  are the 

coefficient matrices at sample points. The elements of these matrices are expressed in Appendix 1. 

By considering all edge conditions the Eq. (29) can be denoted as follows: 

 

       
,

( ) ( ) ( ) ei ei ei ei eiD B t


      (30) 

 

where the subscript ‘e’ denotes the modified  matrix or unknown vector taking account of the edge conditions. 

According to the rules of matrix operation, the general solution to Eq. (30) is: 

 

( ) exp( ) (0) ei ei eiD H     (31) 

 

where the term H  is the thermal loading vector defined by  

 

 
0

exp ( ) ( ) ( )e eH D B t d


        
(32) 

 

The recent integral is implemented via numerical quadrature in the present study.  Eq. (31) establishes the 

transfer relations from the state vector on the bottom surface to that at an arbitrary plane   of the plate by the 

exponential matrix of exp( )eiD . Setting 1  in Eq. (32) gives  
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1(1) exp( ) (0) ei ei eiD H   (33) 

 

where exp( )eiD is the global transfer matrix and 1H is obtained by setting the upper bound of integration to unity in 

Eq. (32). (1), (0)ei ei   are the values of the state variables at the upper and lower planes of the plate, respectively. 

By substituting the boundary conditions presented in Eqs. (27), (28) in to Eq. (33), the following algebraic 

equations for thermo-elastic analysis can be obtained 

 

MX Q  (34) 

 

where M is a 6( 2) 6( 2)  N N matrix, Q is a traction vector (mechanical and thermal tractions) and  

 

 (0) (0) (0) (1) (1) (1) , ( 2,3,..., 1)  
T

i i i i i iX U V W U V W i N  
(35) 

 

By solving Eq. (34), all the state parameters at 0, 1    are obtained. Eqs. (30) and (9) may be used to 

calculate the displacement and the stress components of the FG circular plate. 

4    THE NUMERICAL RESULTS AND DISCUSSIONS  

The first example of the present section is devoted for verification proposes, the next example is performed for 

temperature field analysis, and the other examples contain new results. The material properties are assumed to vary 

in the thickness direction of the plate according to Eqs. (1)- (3). The FG plate considered in the examples is assumed 

to be composed of Aluminum as bottom metal surface and Alumina as top ceramic surface. The material properties 

of the FGM constituents are taken from [5] and summarized in Table1. 

 
Table1 

Mechanical and thermal properties of FG circular plate. 

Materials 
Young’s modulus 

E(GPa)  
Poisson’s ratio v   

Thermal expansion 

coefficient
 
1/ c  

Conductivity 

/ W m c  

Aluminum 70 0.3 623 10  204 

Alumina  380 0.3   67.14 10  10.4 

  

The boundary conditions of the bottom and top surfaces of the plate are: 

 

10, ( , , ), 0, 100 0    rz z f zp r z T c at      (36a) 

 

20, 1 , 0, 500 1     rz z zGPa T c at     (36b) 

  

The values of geometric and other parameters are:  

 

1 2 1 2 1 2 1 21.0 , 0.04, 0.1, 0.01, 0.1, 0.1         a m s f f k k p p    (37) 

 

Example 1: As a verification example, a uniform clamped supported FG circular plate carrying an asymmetric 

distributed transverse load considered previously by Nie and Zhong [19] is reexamined. For ease of comparison with 

this reference the same problem is considered and the same parameters ( 0 1380 , 0.3, 0.1, 1   E GPa v h a n and 

1 z GPa ) are adopted. 

Comparison of the present and Nie's results are shown in Tables 2. and 3 for the circumferential displacement V 

and transverse shear stress   at a location 0.5  and 45 .  Excellent agreement between the present results 

and those are given by Nie and Zhong can be seen in these tables. 
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Table2 

Validity of the circumferential displacement V for uniform FG circular plate under asymmetric transverse load. 

   

0.0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0 

(Nie & hong)  0.049 0.042 0.035 0.034 0.014 0.007 0.000 -0.002 -0.014 -0.021 

present 0.048 0.041 0.034 0.035 0.013 0.008 0.000 -0.001 -0.015 -0.022 

 
Table3 

Validity of the transverse shear stress   for uniform FG circular plate under asymmetric transverse load. 

   

0.0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0 

(Nie & Zhong)  0.000 0.302 0.565 0.771 1.033 1.062 1.023 0.812 0.471 0.000 

present 0.000 0.301 0.5649 0.770 1.033 1.062 1.023 0.812 0.471 0.000 

 

Example 2: Consider clamped supported non-uniform FG circular plate whose material properties and boundary 

conditions are mentioned in Eqs.(1)-(3) and (37). In this example, it is intended to investigate the temperature 

distribution along the thickness direction and the effect of thermal conductivity gradient index on temperature 

distribution. The top and bottom surfaces of the plate are ceramic and metal-rich, respectively. The temperature 

distribution simultaneous in radial and thickness directions is plotted in Fig. 2. It is seen from this Figure that the 

temperature distribution is nonlinear and its gradient at the bottom and top surfaces of the plate is considerably 

different. Fig. 3 shows the effect of thermal conductivity gradient index on temperature distribution along the 

transverse direction. It can be found from Fig. 3 that, the temperature in the thickness direction increases as the 

thermal conductivity gradient index increases. In addition the temperature curves converge to linear distribution 

when the index 3n  tends to zero, and 3 0n , corresponding to a homogeneous material.  
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Fig.2 

Distribution of temperature versus the dimensionless radial 

and thickness directions. 
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Fig.3 

Distribution of temperature through the dimensionless 

thickness for different values of material constant 3.n  

 

Example 3: In order to assess the convergence of the proposed DQ formulation, a non-uniform FG clamped 

circular plate resting on variable elastic foundations and placed in a uniform thermal field is considered. The 

boundary conditions and geometric parameters are the same as those in Example 2. Effect of the number of the 
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selected sample points on the convergence of the dimensionless transverse deflection bW  of the mid-radius point at 

60 versus the number of the sample points N is presented in Table 4. for three types of loadings (e.g., 

mechanical, thermal and thermo-mechanical). From Table 4., it can be seen that the dimensionless transverse 

deflection of the mid-radius point of the plate approaches asymptotically to a specific value as the number of the 

discretization points increases beyond 10. Hence, present formulation converges with a high rate. In the present 

research, seventeen non-uniformly spaced discretization points are adopted. 

 
Table4 

Convergence of the dimensionless transverse deflection bW  against the number of DQ grid points for clamped supported FG 

circular plate.  

Loading type N 

3 5 7 9 11 13 15 17 19 

Mechanical  -0.045 -0.052 -0.054 -0.055 -0.056 -0.056 -0.056 -0.056 -0.056 

Thermal   0.0046   0.0060   0.0068     0.0065   0.0065   0.0065   0.0065   0.0065   0.0065 

Thermo-mechanical -0.0068  -0.0098 -0.0099 -0.0097 -0.0096 -0.0096 -0.0096 -0.0096  -0.0096 

 

Example 4: In the present example, a parametric study is performed to evaluate the thermo-elastic behavior of 

non-uniform FG clamped circular plate resting on variable elastic foundations and placed in a uniform thermal field. 

The geometric parameters and boundary conditions are the same as those in Example 2. The results for the 

Influences of different parameters (e.g., material properties graded indices, temperature difference between the 

lower and upper faces of the plate and trends of foundation stiffness variations) on displacements and stresses are 

plotted in Figs. 4 to 9. Moreover, the effect of thickness-to-radius ratio on the thermo-elastic response of the plate 

with various foundation patterns is shown in Table 5. 

 
Table5 

Magnitude of the transverse normal stress zb  in bottom surface of the plate at a point located at mid-radius of the plate and 

45 .  

Foundation type 
S 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Uniform 1 2
0 f f    -0.489   -0.318  -0.222   -0.246  -0.299 -0.34  -8.332 -630.3 

Linear 
1 2

0.1, 0  f f  -0.483 -0.302 -0.202 -0.23  -0.287 -0.33  -8.219 -635.3 

1 2
0.1, 0 f f  -0.495 -0.332 -0.239 -0.26 -0.31  -0.349  -8.437 -625.6 

Quadratic 

 

1 2
0.1 f f  -0.478 -0.289 -0.186  -0.217  -0.277  -0.323  -8.154 -641.7 

1 2
0.1 f f  -0.498 -0.342 -0.251 -0.27 -0.317  -0.355  -8.489 -620.2 

 

Influence of elastic gradient index on the displacements and stresses distribution along the thickness direction of 

a non-uniform solid circular FG plate at a location 0.5, 45   with gradient indices 1 0.25, 0.5,0.75,1n  

and 2 3 1 n n  is depicted in Fig.4. Gradient index Increases cause to increase , ,V W   and   across the 

thickness of the plate. Fig. 4(c) shows that the distributions of transverse displacement change gradually from linear 

to the nonlinear form as 1n  increases.  As the Figs.4 (b),(d) and (e) show, distribution of circumferential 

displacement, in-plane radial and tangential stresses ( , , V   ) along the thickness are more affected by the 

change of material gradient index. As the Fig. 4(f) shows, the transverse normal stress  at one point is 

independent from variation of material gradient index. It transforms from tensile to compressive at the upper planes 

of the plate. It is easily seen from curves that shear stresses ( ,   ) satisfy fully the given mechanical boundary 

conditions, and the pick value of the stress   increases as 1n  increases. The stress  transforms from tensile to 

compressive at the overall thickness of the plate. Furthermore, the pick values of these stresses at compressive 

region enhance as grading index increases. Fig. 4(i) shows that the distributions of shear stresses   through the 
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thickness gradually change from linear to the nonlinear form as 1n  increases. An increase of transverse 

displacement through the thickness of the plate due to upward foundation pressure and temperature gradient in the 

same direction enhances the skin buckling of the plate. 
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Fig.4 

Effect of the material heterogeneity index on physical quantities across the plate thickness for a clamped circular plate at a 

location of radius midpoint and 45 .   

 

Fig.5 presents the effect of thermal expansion gradient index on thermo-elastic behavior of mentioned plate with 

various gradient indices 2 0.25,0.5,0.75,1n and 1 3 1n n   at 45   and radius midpoint. A quick glance at 

Fig. 5 reveals that the circumferential displacement and in-plane stress components ( , ,    )  are strongly 



                                                                                Thermo-Elastic Analysis of Non-Uniform Functionally Graded…                  77 

 

© 2017 IAU, Arak Branch 

affected by the change of 2n . Fig. 5(f) shows that the transverse normal stress component decreases along the 

thickness gradually and yields to the magnitude of thermo-mechanical tractions at top surface.  Furthermore, this 

stress component at one point is independent from variation of thermal expansion gradient index. As discussed 

earlier, the distribution of transverse shear stresses ( ,   ) through the thickness of the plate shown in Figs.5 (g) 

and (h) satisfy the boundary conditions and transform from tensile to compressive throughout the thickness and 

moreover, the pick value of these stresses at compressive region enhances by the 2n  increases. 
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Fig.5 

Effect of thermal expansion index on variation of mechanical entities across the plate thickness for a clamped circular plate at a 

location of radius midpoint and 45 .   

 

Effect of the thermal conductivity gradient index on variation of mechanical entities across the plate thickness 

with 3 0.25,0.5,0.75,1n  and 1 2 1n n   at 0.5   and 45  is plotted in Fig.6. A quick glance at Fig. 6 
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demonstrates that the all displacement and stress components vary nonlinearly through the thickness of the plate. As 

the Figs. 6(d),(e) and (i) indicate, the in-plane stresses ( , ,    ) through the thickness direction is more affected 

by the thermal conductivity gradient index variations at both surfaces specially at the upper surface. It is observable 

from Figs. 6(g) and (h) that the pick value of transverse shear stresses ( ,   ) decreases as the gradient index 3n  

increases.  
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Fig.6 

Effect of thermal conductivity index on variation of mechanical entities across the plate thickness for a clamped circular plate at 

a location of 0.5  and 45 .     

 

Figs.7 (a) to (i) depict through-thickness distributions of the dimensionless stress and displacement components 

with various surfaces temperature conditions at 30  and radius midpoint. Material properties gradient indices are 
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considered as 1 0 2 01 ( ), 1 ( )h hn n E E n n     and 3 01 ( )hn n k k .  As the figures display, all of mechanical 

quantities decreases when the surfaces temperature difference increases ( 2 1T T T    and 1 100T c ). As the Fig. 

7(e) shows, distribution of in-plain tangential normal stress ( ) along the thickness is remarkably affected by the 

plate faces temperature difference at both surfaces especially at the upper surface. As similar Figs. 4(f), 5(f) and 6(f) 

the transverse normal stress ( ) transform from tensile to compressive at the upper planes of the plate.  It can be 

observed from Fig. 7(g) that the maximum value of transverse normal stress (  ) shifts from the mid surface 

toward the upper surface. As the Fig. 7(h) shows, the transverse shear stress (  ) at one point is independent from 

variations of .T     
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Fig.7 

Effect of temperature difference on variation of mechanical entities across the plate thickness for a clamped circular plate at a 

location of 0.5, 30 c   and 1 100 .T c  
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Fig.8 presents the effect of foundation stiffness on thermo-elastic behavior of mentioned plate with 

indices 1 0 2 0 3 01 ( ), 1 ( ), 1 ( )h h hn n E E n n n n k k    at location 0.5  and 30 c  . It is evident from Figs.8 

(a), (b) and (c) that the foundation coefficients increase causes to decrease U,V and W through the thickness of the 

plate. The normal pressure that exerted on the bottom surface of the plate has pressed the layers in the 

circumferential direction and caused a bending in the layers. For this reason, sing of the V component has changed. 

On the other hand, directions of the bending moments resulted from the foundation coupling and normal traction is 

not identical. Hence, the radial and hoop stresses have converted to compressive stresses and the transverse 

displacement distribution tends to a uniform distribution. Fig. 8(g) reveals that in the presence of thermal 

environment the influence of foundation coefficients on transverse shear stress is more pronounced in comparison 

with that of the normal traction. Therefore, enhance of the foundation-structure coupling interaction converts the 

parabolic distribution of the transverse shear stress at distinct regions to a somewhat linear one. Fig. 8(i) illustrates 

that the in-plane shear stress (   ) at lower planes of the plate is independent from stiffness variations and strongly 

decreases with foundation coefficients increase at upper surfaces of the structure. 
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Fig.8 

The effect of foundation coefficients on variation of mechanical entities across the plate thickness for a clamped circular plate at 

a location of 0.5   and 30 .   
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Fig.9 displays the effect of foundation gradient indices on thermo-elastic behavior of clamped circular plate with 

nearly mentioned conditions and 1 2 0.01,0.1,0.2,0.3f f  .  A quick glance at Fig. 9 reveals that the displacements 

(U,V,W) stresses ( , ,    )  and the pick values of stresses ( , ,      ) increase through the plate thickness 

when the foundation gradient indices increases. It is observable from Figs. 9(c), (d) and (f) that the increases of 

foundation non-uniformity indices cause to additional bending moment due from foundation-structure coupling. 

Hence, the nature of displacement (W) and stresses ( ,   ) have changed.  

As a final stage, effect of the plate aspect ratio on thermo-elastic response of the plate is investigated and the 

resulted transverse normal stresses at the mid-radius point of the bottom surface of the plate are shown in Table 5. 

for various aspect ratios and different patterns of the elastic foundation. As it may be expected, when the aspect ratio 

increases, the plate stiffness increases and the edge reactions become more pronounced in comparison with the 

foundation reaction. 
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Fig.9 

The effect of foundation graded indices on variation of mechanical entities across the plate thickness, for a clamped circular 

plate at a location of 0.5  and 30 .   
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5   CONCLUSIONS 

In the present study, uncoupled thermo-elastic theory is adopted to evaluate the three-dimensional deformations and 

stresses of functionally graded circular plate with variable thickness and resting on gradient elastic foundations 

subjected to thermo-mechanical loads. This means that the mechanical load has no contribution to the variation of 

the temperature. The thermo-elastic constants are assumed to be independent and vary exponentially through the 

thickness direction. The analysis is carried out by employing the state space method to express exactly the plate 

behavior along the graded direction and the one dimensional differential quadrature technique to approximate the 

radial variations of the parameters. The numerical results reveal that the material in homogeneities, the plate faces 

temperature difference and foundations parameters have an important effect on the distribution of the elastic field. 

On the other hand, the temperature gradient and the elastic medium (foundation) coupling effect may alter the nature 

of the stresses of the transversely loaded circular plate. 

 Some of the innovations incorporated in the present research are: 

1. The proposed coupled method is especially useful to analyze the uncoupled thermo-elastic behavior of 

heterogeneous plate with more complicated geometry and boundary conditions. 

2. Effects of the non-uniform elastic foundation parameters and thermal environment are considered in 

conjunction with the material heterogeneity to illustrate the elastic field components. 

3. The proposed formulation and the presented results are comprehensive and cover many practical 

applications. 

4. In contrast to the very limited works presented for the uncoupled thermo-elastic analysis of the variable 

thickness FG circular plates so far, the three dimensional stresses and deformations distribution through-

the-thickness of the loaded plate are investigated. Furthermore, the mechanical loads may vary in an 

arbitrary pattern in the radial and circumferential directions. 

5. The three dimensional theory presents an accurate prediction of three-axes Von-Misses stress, and as a 

result, it can accurately estimate the structure strength. 

6. Results obtained in this paper may be considered as a more general case that include the combined effect of 

thermal load and multi mechanical tractions.  
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APPENDIX 1 

The elements of state matrix at discretized points are 
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The elements of temperature coefficient matrix at sample points are 
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