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 ABSTRACT 

 In this research work, first, based on the three-dimensional elasticity theory and by means of the 
Generalized Differential Quadrature Method (GDQM), free vibration characteristics of 
functionally graded (FG) rectangular plates resting on Pasternak foundation are focused. The 
two-constituent functionally graded plate consists of ceramic and metal grading through the 
thickness. A three-parameter power-law distribution is considered for the ceramic volume 
fraction. The benefit of using a three-parameter power-law distribution is to illustrate and present 
useful results arising from symmetric, asymmetric and classic profiles. A detailed parametric 
study is carried out to highlight the influences of different profiles of fiber volume fraction, three 
parameters of power-law distribution and two-parameter elastic foundation modulus on the 
vibration characteristics of the FG plates. The main goal of the structural optimization is to 
minimize the weight of structures while satisfying all design requirements imposed. Thus, for the 
second aim of this paper, volume fraction optimization of FG plates with objective of 
minimizing the density to achieve a specified fundamental frequency is presented. The primary 
optimization variables are the three parameters of the volume fraction of ceramic. Since the 
optimization processes is complicated and too much time consuming, a novel meta–heuristic 
called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global 
search strategy and Artificial Neural Networks (ANNs) are applied to obtain the best material 
profile through the thickness. The performance of ICA is evaluated in comparison with other 
nature inspired technique Genetic Algorithm (GA). Comparison shows the success of 
combination of ANN and ICA for design of material profile of FG plates. Finally the optimized 
material profile for the considered optimization problem is presented.  
                                                                                © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

NEW class of materials known as ‘‘functionally graded materials’’ (FGMs) has attracted much attention as 
advanced structural materials in many structural members used in situations where large temperature gradients 

are encountered. FGMs are achieved by gradually changing the composition of the constituent materials along one 
(or more) direction(s), usually in the thickness direction, to obtain smooth variation of material properties and 
optimum response to externally applied loading. FG structures are used in a variety of engineering applications  
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including aircraft, construction and transportation where strong, stiff and light structures are required. The 
advantages of these structures are that it provides high specific stiffness and strength for a low-weight consideration. 

A lot of number of plates resting on elastic foundations with different shapes, size, and thickness variations and 
boundary conditions has been the subject of numerous investigations and those play an important role in aerospace, 
marine, civil, mechanical, electronic and nuclear engineering problems.  For example these types of plate are used in 
various kinds of industrial applications such as the analysis of reinforced concrete pavement of the roads, airport 
runways and foundation of buildings. The static analysis, buckling and free vibration of FGM plates have been 
extensively investigated [1-3]. Malekzadeh [4] studied free vibration analysis of thick FG plates supported on two-
parameter elastic foundations by using DQ method and based on the three-dimensional elasticity theory. Elasticity 
solution for free vibrations analysis of functionally graded fiber reinforced plates on elastic foundation was studied 
by Yas and Sobhani [5] , the results were indicated the advantages of using continuous grading fiber reinforced plate 
with graded fiber volume fraction over traditional discretely laminated plates.  

Various material profiles through the functionally graded plate thickness can be illustrated by using a three-
parameter power-law distribution. Recently, Tornabene [6] has used three-parameter power law distribution to study 
the dynamic behavior of functionally graded parabolic panels of revolution. Yas et al. [7] studied free vibration 
analysis and optimization of three-parameter functionally graded Euler–Bernoulli beams resting on two-parameter 
elastic foundations.  One of the advantages of using three-parameter power-law distribution is the ability of 
controlling the materials volume fraction of FG structures for considered applications. 

The fiber-reinforced composite material studied in the present work consists of alumina (ceramic) fibers 
embedded in aluminum (metal) matrix with the fiber volume fraction graded according to a three-parameter power-
law distribution through thickness. The frequency parameter of plate is obtained by using numerical technique 
termed the Generalized Differential Quadrature Method (GDQM) based on the DQ technique [8]. The GDQ 
approach was developed by Shu and Coworkers [9, 10]. It approximates the spatial derivative of a function of given 
grid point as a weighted linear sum of all the functional value at all grid point in the whole domain. The computation 
of weighting coefficient by GDQ is based on an analysis of a high order polynomial approximation and the analysis 
of a linear vector space. The weighting coefficients of the first-order derivative are calculated by a simple algebraic 
formulation, and the weighting coefficient of the second-and higher-order derivatives are given by a recurrence 
relationship. The details of the GDQ method can be found in [9, 10]. For the first goal of this study, investigations 
are carried out to study the effects of wave numbers (m, n), various geometrical parameters (a/b, h/b), elastic 
foundation coefficients (Kw, Kg) and ceramic volume fraction on the frequencies. 

As a second goal of this study, weight minimization of three-parameter FG plate with constraint on the natural 
frequency is presented. Optimization is implemented for various objective functions in mechanical problems, such 
as buckling loads [11], weight [12], stiffness [13], fundamental frequencies [11], deflection [12], etc. When the 
search space becomes large, enumeration is soon no longer feasible simply because it would take far too much time. 
In this it’s needed to use a specific technique to find the optimal solution. In the present work, Imperialist 
Competitive Algorithm (ICA) is implemented that has recently been introduced by Atashpaz-Gargary and Lucas 
(2007) for dealing with different applications, such as designing PID controller [14], characterizing materials 
properties [15], error rate beam forming [16], designing vehicle fuzzy controller [17], etc. Imperialist Competitive 
Algorithm is a novel global search heuristic for optimization that uses imperialism an imperialistic competition 
process as a source of inspiration. 

M. Abouhamze et al. [11] optimized stacking sequence of laminated cylindrical panels with respect to the first 
natural frequency and critical buckling load. They used Genetic Algorithm (GA) and Artificial Neural Networks 
(ANNs) for optimization. Artificial Neural Network (ANN) modeling is an equation-free, data-driven modeling 
technique that tries to emulate the learning process in the human brain by using many examples. ANN can be 
defined as a massive parallel-distributed information processing system that has a natural propensity for recognizing 
and modeling complicated input-output systems. The concept of neural networks has been introduced to different 
branches of engineering, analytical procedure of structural design, structural optimization problems and functionally 
graded materials [11, 18-20]. As a simple modeling technique, in this work, ANNs are employed to reproduce the 
behavior of FG plate both in fundamental frequency parameter and density in order to reduce the time of the 
optimization process. The considered ANNs are trained by training data sets obtained from GDQ method.  
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2    FGM PROPERTIES 

Consider a thick FG plate rested on two-parameter elastic foundations as shown in Fig. 1. A Cartesian coordinate 
system (x, y, z) is used to label the material point of the plate in the unstressed reference configuration. The Young’s 
modulus ( ) ,E z Poisson’s ratio ( )z and mass density ( )z of the FG plate can be expressed as a linear combination: 

 
( )

( )

( )
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where , , ,m m m mE V   and , , ,c c c cE V   represent mass density, Young’s modulus, Poisson’s ratio and volume fraction 

of the metal and ceramic constituent materials, respectively. In the present work, cV  is considered as follow [6]: 
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where volume fraction index (0 )  p p  and the parameters b, c dictate the material variation profile through the 

FG beam thickness. It should be noticed that the values of parameters b and c must be chosen so that 0 1 cV . The 

through-thickness variations of the fiber volume fraction for some profiles are illustrated in Fig. 2. 
In Fig. 2 (a) the classical fiber volume fraction profiles are presented as special cases of the general distribution 

laws (2) by setting b=0. In Figs. 2 (b-c) by setting b=1, c=2 and b=1, c=4 symmetric and asymmetric profiles 
respect to the middle of plate / 2

( 0 , )


 
z h

h
   are obtained respectively. Some fiber volume fraction profiles are 

shown in Fig. 2 (d) for b=0.2, c=2. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig.1 
Geometry of the FG rectangular plate resting on elastic 
foundation. 
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Fig.2 
Variation of the ceramic volume fraction through the thickness in the FG plate a : 0b  ,  b :

 
1 , 2 b c  ,  c: 1 , 4 b c   

d : 0.2 , 2 b c  

3   ELASTICITY SOLUTION 

The constitutive relations for the k th layer of the FG plate can be written as follows [5]: 
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In the absence of body forces, the governing equations are as follows [5]: 
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Strain-displacement relations are expressed as [5]: 
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where , ,u v w  are displacement components along the x, y and  z axes respectively. Upon substitution Eq. (5) into (3) 

and then into (4), the following equations of motion as matrix form are obtained in term of displacement 
components [5]: 
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For a simply supported rectangular plate, the boundary conditions can be expressed on the x-constant and on the 

y-constant edges as:  
 

, ,0 , 0     x yu v w u v w  (7)
 

Moreover the lower and upper surfaces of the plate are traction free: 
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Using the method of separation of variables, it is possible to seek solutions that are harmonic in time and whose 

frequency is ω. The displacements can be written as follows: 
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 , m and n are wave numbers along x and y directions respectively. 

Inserting these displacement components into the equations of motion (6), one obtains a set of coupled and variable 
coefficients differential equations. 
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A semi – analytical procedure with the aid of DQ technique was recently developed [21]. In this method, the nth 

order of a continuous function ( , )f x z  with respect to x at a given point xi can be approximated as a linear sum of 

weighting values at all of the discrete point in the domain of x , i.e. [9, 10] 

( , )

1

( , ) , 1,2,..., , 1,2, 1



   

 
in x z N

n
ik ikn

k

f
c f x z i N n N

x
 (11)

where N is the number of sampling points, and n
ijc  is the x i dependent weight coefficients.  
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4    NEURAL NETWORK MODELING 

The basic element of an NN is the artificial neuron as shown in Fig. 3 which consists of three main components 
namely as weights, bias, and an activation function. Each neuron receives inputs x1; x2; . . . ; xn, attached with a 
weight wi which shows the connection strength for that input for each connection. Each input is then multiplied by 
the corresponding weight of the neuron connection. A bias bi can be defined as a type of connection weight with a 
constant nonzero value added to the summation of inputs and corresponding weights u, given by 

1

 
H

i i j j i
j

u w x b  (12)

 
The summation iu  is transformed using a scalar-to-scalar function called an ‘‘activation or transfer function’’, 

( )iF u  yielding a value called the unit’s ‘‘activation’’, given by: 

 
( )i iY f u  (13)

 
Activation functions serve to introduce nonlinearity into NNs which makes NNs so powerful. NNs are 

commonly classified by their network topology (i.e. feedback, feed forward) and learning or training algorithms (i.e. 
supervised, unsupervised). There is no well-defined rule or procedure to have optimal network architecture. In this 
work, the feed forward Multi-Layer Perceptron (MLP) network has been applied. MLP networks are one of the most 
popular and successful neural network architectures which are suited to a wide range of applications such as 
prediction and process modeling. The neural network architecture adopted in the present work has two hidden layers 
which has high accuracy and has been used for various applications. Fig.4 illustrates the topology of a simple, fully 
connected four-layer MLP network. 

 
 
 
 
 
 
 
Fig.3 
Basic elements of an artificial neuron. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 
Schematic diagram of ANN model. 

 



Free Vibrations of Three-Parameter Functionally Graded Plates Resting on Pasternak Foundations                   65 

© 2012 IAU, Arak Branch 

5    IMPERIALIST COMPETITIVE ALGORITHM 

Like other evolutionary algorithms, ICA starts with an initial population called countries that are divided in two 
types: imperialists (in optimization terminology, countries with least cost) and colonies (the remained countries). In 
ICA, the more powerful imperialist, have the more colonies. Based on the power of countries (the counterpart of 
fitness value in Genetic Algorithm which is inversely proportional to its cost), all of them are divided among the 
mentioned imperialists. Starting the competition, imperialists attempt to achieve more colonies and colonies in each 
of them start to move toward their relevant imperialist which this movement is shown in Fig. 5. In this movement 

, x  are random numbers with uniform distribution as illustrated in Eq. (14) [22] and d is the distance between 

colony and the imperialist. In Eq. (14),   and   are parameters that modify the area that colonies randomly search 

around the imperialist. Weak empires will lose their power and will be eliminated from the competition (in another 
word, they will be collapsed) and the powerful ones will be improved and remain. At last, only one imperialist will 
remain that in this stage, colonies have the same position and power as the imperialist. 

~ (0 , ) , ~ ( , ) x U d U     (14)
 
In imperialistic competition which is shown in Fig. 6, all empires try to take possession of colonies of other 

empires and control them. Based on the total power of empires which is observed in Eq. (15) [22], the more 
powerful an empire, the more likely it will possess the colonies. Imperialistic competition can be modeled as Fig. 6. 
 

. . ( ) { ( )} n n nT C Cost imperialist mean Cost colonoes of impire  (15)
 
The main steps in the ICA are summarized as follows: 
 Select some random points on the function and initialize the empires.  
 Move the colonies toward their relevant imperialist (Assimilating). 
 If there is a colony in an empire which has lower cost than that of imperialist, exchange the - positions of 
that colony and the imperialist. 
 Compute the total cost of all empires (related to the power of both imperialist and its colonies).  
 Pick the weakest colony (colonies) from the weakest empire and give it (them) to the empire that has the 
most likelihood to possess it (imperialistic competition). 
 Eliminate the powerless empires. 
 If there is just one empire, stop, if not go to 2. 

Also, the flowchart of the ICA is shown in Fig. 7. More details about the proposed algorithm are found in [22]. 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.5 
Motion of colonies toward their relevant imperialist. 
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Fig.6 
Imperialistic competition. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 
Flowchart of the Imperialistic competitive algorithm. 
 

 

6    RESULTS AND DISCUSSION   
6.1 Free vibration analysis  

To validate the analysis, first, numerical results for a FGM rectangular plate without elastic foundation are compared 
with similar ones in the literature and listed in Table 1. The comparison shows that the present results agree well 
with those in the literatures. As noticed, fast rate of convergence of the GDQM is evident and it is founded that only 
13 DQ grid in the thickness direction can yield accurate results. Further validation of the present results is shown for 
isotropic plate on elastic foundation in Table 2. These comparisons show that the results from the present method are 
in good agreement with the existing results, thus verifying the reliability and accuracy of the present method. 

In this section, we characterize the response of FG rectangular plate rested on Pasternak foundation. In this 
study, ceramic and metal are particle mixed to form the functionally graded material. The relevant material 
properties for the constituent materials are shown in Table 3. [24]. The non-dimensional frequency parameter of FG 
plate and foundations stiffness used in the present work are defined by: 

 
2 4 3 2

1 1/ , / , / , / 12(1 )     c c c c c c ch E Kg kg L D Kw kw L D D E h  
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Table 1 
Convergence behavior and accuracy of the first four non-dimensional natural frequencies of a simply supported FG plate against 
the number of DQ grid points (h/b=0.5). 

                                                                          Mode (n, m)    

P  (1,0) (1,1) (2,0) (1,2) 

0.5 N=7 0.483544 0.823838 1.335584 1.54482 

 N=9 0.483166 0.823 1.333849 1.542636 

 N=13 0.482935 0.822527 1.332923 1.541478 

 N=20 0.482849 0.822358 1.332605 1.541085 

 [3] 0.4835 0.8233 1.3339 1.5425 

4 N=7 0.358102 0.599857 0.959461 1.104807 

 N=9 0.357663 0.59935 0.958488 1.103291 

 N=13 0.357754 0.599487 0.958751 1.103656 

 N=20 0.357758 0.599494 0.958764 1.103674 

 [3] 0.3579 0.5997 0.9591 1.104 
 
 

Table 2 
Comparison of the first three non-dimensional natural frequencies of an isotropic plate on the elastic foundation  
(N=13, Kg=10) . 

 
 

Table 3 
 Material properties [24]: 

Material properties  

cE  (Gpa) 380 

mE (Gpa) 70 

c
3( / )kg m  3800 

m
3( / )kg m  2707 

 
The influence of the parameters b, c, p on the fundamental frequency parameter and density of a FG plate is 

shown in Figs. 8-9. The new and interesting result is that by using the three-parameter volume fraction, we can 
control the profile of ceramic volume fraction. In other words, there are different values of density for a constant 
frequency and on the other hand, for a constant density, we can have different values for frequency parameter. The 
first normalized frequencies of different types of FG plates are compared with each other in Table 4. for different 
values of h/L1 ratio and volume fraction index p. In this table, the volume fraction profiles through thickness are 
classical for b=0, symmetric for b=1, c=2 and asymmetric for b=1, c=4. It can be concluded from Table 4. that the 
normalized frequencies of symmetric profile are larger than that of other types of FG plates for different values of p 
and h/L1 ratio. Also, it can be found that for various values of h/L1 ratio, normalized frequencies of classic profile are 
smaller than that of other types of FG plates.  
 

                                                                             1/ 0.2h L                                                                              1/ 0.5h L 

 wK          11        12          13  11  12  13  

Present 10 1.657742 2.687861 3.827391 2.253924 4.415035 7.248745 

[4]  1.6577 2.6879 3.8274 2.2539 4.415 7.2488 

[23]  1.6577 2.6879 3.8274 2.2539 4.415 7.2488 

Present 100 1.743700 2.70962 3.832129 2.429988 4.498601 7.29475 

[4]  1.7437 2.7096 3.8321 2.43 4.4986 7.2948 

[23]  1.7437 2.7096 3.8321 2.43 4.4986 7.2948 
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Table 4 
 Comparison of fundamental normalized frequencies of different types of FG plates for different values of h/L1 ratio 
 (

1 2/ 1, 100, 10 , 1, 1    L L Kw Kg n m ). 

1/h L  Type of FG 
p

0 1 2 5 10 50 
          
0.2 Classic 0.2903 0.2636 0.2562 0.2542 0.2552 0.2541 0.2519 
 Symmetric 0.2903 0.2897 0.2887 0.2844 0.2773 0.2607 0.2519 
 Asymmetric 0.2903 0.2879 0.2843 0.2743 0.2667 0.2566 0.2519 
         
0.4 Classic 0.9545 0.7785 0.7070 0.6610 0.6371 0.5806 0.5605 
 Symmetric 0.9545 0.9438 0.9310 0.8830 0.7601 0.6029 0.5605 
 Asymmetric 0.9545 0.9211 0.8800 0.7679 0.6757 0.5881 0.5605 
         
0.5 Classic 1.3020 0.9976 0.8855 0.8075 0.7876 0.7248 0.7006 
 Symmetric 1.3020 1.2737 1.2417 1.1024 0.9472 0.7527 0.7006 
 Asymmetric 1.3020 1.2225 1.1358 0.9493 0.8397 0.7344 0.7006 
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Fig.8 
Variation of the first non-dimensional natural frequency and density of FG plate vs. the power-law exponent p for various values 
of the parameter b 

1( 1 0 , 1, / 0.4 , 1000, 10 )      b c h L Kw Kg  
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Fig.9 
Variation of the first non-dimensional natural frequency and density of FG plate vs. the power-law exponent p for various values  
of the parameter c 

1( 1,1 4 , 1, / 0.4 , 1000, 10 )      b c c h L Kw Kg  

 
The numerical results are tabulated in Table 5. for symmetric FG plates and different values of foundation 

stiffness parameters. The effects of the elastic foundation coefficients on the first three non-dimensional natural 
frequencies for different values of h/L1 ratio of a square FG plate are also shown in Table 6. It is observed from 
these tables that both Winkler and shearing layer elastic coefficients have significant effects on the non-dimensional 
frequencies of FG plate. Results show that as the shearing layer elastic coefficient increases the effect of Winkler 
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coefficients on natural frequency parameter decreases and so on with increasing Winkler coefficients, the effect of 
shearing layer elastic coefficient on natural frequency decreases.  

 
Table 5 
Variation of the normalized natural frequencies of symmetric FG plate on elastic foundation 1 2( / 1, 1, 2 , 1, 1)    L L b c n m   

1/h L  Kw , Kg 
p

0 1 2 5 10 50 
          
0.2 10, 1 0.2213 0.2165 0.2115 0.1972 0.1793 0.1471 0.1311 
 100, 10 0.2903 0.2897 0.2887 0.2844 0.2773 0.2607 0.2519 
 1000, 100 0.5511 0.5250 0.5010 0.4422 0.3817 0.3019 0.2802 
         
0.4 10, 1 0.7153 0.6938 0.6727 0.6158 0.5537 0.4733 0.4342 
 100, 10 0.9545 0.9438 0.9310 0.8830 0.7601 0.6029 0.5605 
 1000, 100 1.1021 1.0499 1.0017 0.8830 0.7601 0.6029 0.5605 
         
0.5 10, 1 1.0055 0.9729 0.9413 0.8575 0.7675 0.6585 0.6076 
 100, 10 1.3020 1.2737 1.2417 1.1024 0.9472 0.7527 0.7006 
 1000, 100 1.3777 1.3123 1.2518 1.1024 0.9472 0.7527 0.7006 
         

 
 
Table 6 
The first three non-dimensional natural frequency of a FG plate on the elastic foundation 1 2( / 1, 1, 2)  L L b c  

1/h L  wK  0gK   10gK   100gK  

  
11  22  

33   
11  22  

33   
11  22  

33  

0.2 0  0.1846 0.5571 0.9684  0.2558 0.6491 1.0777  0.4422 0.8830 1.3120 
 10  0.1889 0.5584 0.9692  0.2588 0.6501 1.0782  0.4422 0.8830 1.3120 
 210  0.2238 0.5704 0.9761  0.2844 0.6590 1.0824  0.4422 0.8830 1.3124 
 310  0.4262 0.6695 1.0362  0.4422 0.7347 1.1204  0.4422 0.8830 1.3158 
             

0.4 0  0.5571 1.3856 2.2244  0.8830 1.6719 2.3756  0.8830 1.6719 2.3756 
 10  0.5781 1.3943 2.2302  0.8830 1.6719 2.3756  0.8830 1.6719 2.3756 
 210  0.7204 1.4577 2.2706  0.8830 1.6720 2.3757  0.8830 1.6720 2.3757 
 310  0.8830 1.6218 2.3538  0.8830 1.6728 2.3757  0.8830 1.6728 2.3757 
             

0.5 0  0.7612 1.8041 2.8607  1.0869 1.9927 2.9603  1.1024 2.0106 2.9631 
 10  0.7974 1.8203 2.8717  1.0932 1.9930 2.9603  1.1024 2.0106 2.9631 
 210  0.9940 1.9076 2.9219  1.1024 1.9949 2.9605  1.1024 2.0106 2.9631 
 310  1.1024 1.9968 2.9580  1.1024 2.0036 2.9614  1.1024 2.0108 2.9631 
             

 
 
Fig. 10 shows the effect of Winkler elastic coefficient on the first non-dimensional natural frequency of plate for 

different values of shearing layer elastic coefficients. The most effective range of Winkler foundation stiffness in 
increasing the non-dimensional natural frequency is from 1 to 1000. It is also observed for the large values of 
Winkler elastic coefficient, the shearing layer elastic coefficient has less effect and the results become independent 
of it. In other words, the non-dimensional natural frequencies converge with increasing Winkler foundation stiffness. 
The influence of shearing layer elastic coefficient on the first non-dimensional natural frequency is shown in Fig. 11. 
The most effective range of shearing layer foundation stiffness in increasing the non-dimensional natural frequency 
is from 1 to 100. It results the variations of Winkler elastic coefficient has no effect on the non-dimensional natural 
frequency for Kg 100.   
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The effect of length to width ratio of the FG plate on the first non-dimensional natural frequency is shown in Fig. 
12. It results that the non-dimensional natural frequency decreases with increasing the L1/L2 ratio and then remain 
almost unaltered for L1/L2 greater than 5 at different values of Winkler and shearing layer elastic coefficients.  
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Fig.10 
Variation of the first non-dimensional natural frequency of 
FG plate resting on elastic foundation vs. Winkler elastic 
coefficient for different shearing layer elastic coefficients 
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Fig.11 
Variation of the first non-dimensional natural frequency of 
FG plate resting on elastic foundation vs. shearing layer 
elastic coefficients for different Winkler elastic coefficient 
(

11 , 2 , 5 , / 0.4   b c p h L ) 
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Fig.12 
The effect of length to width ratio of the CGFR plate 
(L1/L2) on the non-dimensional natural frequency  
(

11 , 2 , 5 , / 0.4   b c p h L ) 

6.2 Optimization procedure 

The objective of optimization in this paper is to find the best values of the parameters b, c, p in the three-parameter 
power law distribution for minimizing the density of FG plate to achieve a specified fundamental frequency 
parameter. The h/L1 ratio is considered to be 0.4. There is an important point that considered parameters must be 
obtained so that the ceramic volume fraction is between zero and one ( 0 1 cV ). The parameters are considered in 

the following ranges: 0 1 , 1 20 , 0 40     b c p  
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Therefore, the constrained optimization problem is defined as: 
 

( , , )

0.75

0 1

0 1 , 0 20 , 0 40



 
  
      

c

Minimize f b c p

Subject to V

b c p


 

If GDQ method is applied for frequency parameters, the optimization process becomes so complicated and time 
consuming. For example even if the increment of the parameters (b, c, p) is assumed 0.05, the formed discrete space 
contains more than 6,400,000 design choices to be searched for an optimum point. Also, if it is assumed that the 
process of one search takes 0.2 second in average, the optimization process takes more than 350 hours. Thus in the 
present work, two ANNs (NN_dens for prediction of density and NN_vibr for prediction of frequency of FG plate) 
and ICA are implemented for increasing the speed of optimization. The MLP networks have been used having two 
hidden layers. A program was developed in MATLAB which handles the trial and error process automatically. The 
program tries varying number of hidden layers neurons is tested from two up to twenty for a 500 epochs for 5 times 
for different back propagation training algorithms and activation that the results are tabulated in Table 7. The ability 
of trained networks to reproduce the fundamental frequency parameter and density of plate is shown in Fig. 13 for 
36 test points which selected far from the training point randomly. In this figure comparison is made between the 
ANN results for natural frequency and density with similar ones obtained from numerical method, namely GDQM. 
As noticed the results are so close for all 36 test points. The accuracy of the trained ANNs is also shown in Tables 8 
and 9 for several test points. Since the neural networks have been accurately designed, they can be implemented in 
ICA by simulating fundamental frequency parameter and density. 

 
Table 7 
Architecture of the trained neural networks for free vibration and density . 

Name 
 First layer  Second layer   Output layer 

 Neuron function  Neuron function   Neuron function 

Net_dens  11 
Tangent 
sigmoid 

 8 
Tangent 
sigmoid 

  1 linear 

Net_vibr  10 
Tangent 
sigmoid 

 9 
Tangent 
sigmoid 

  1 linear 

 
Table 8 
Comparison of various predicted values of density of FG plate versus numerical data . 

Number of test 
Value of parameters 

 

3( / )kg m  Related Error 
 

b  c  p  GDQ NN_dens 

1 0.51 4.2 5.8  2783.0 2783.2 0.007% 
2 0.12 2.2 1.3  3216.7 3217.4 0.022% 
3 0.77 9.0 15.8  2772.2 2772.1 0.004% 
4 0.95 5.5 14  2788.7 2788.7 0.000% 
5 0.25 7.0 4.5  2906.5 2906.3 0.007% 

 

Table 9 
Comparison of various predicted values of fundamental frequency parameter of FG plate versus numerical data  

Number of 
test 

Value of parameters 
 

11  
Related Error 

 
b  c  p  GDQ NN_vibr 

1 6.25 6.60 7.00  0.6567 0.6565 0.031% 
2 0.85 4.00 14.20  0.6221 0.6222 0.016% 
3 0.66 5.28 8.93  0.6453 0.6453 0.000% 
4 0.90 8.00 14.39  0.6208 0.6210 0.032% 
5 0.72 3.90 10.40  0.6373 0.6374 0.016% 
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Fig.13 
Comparison of various predicted values of density and fundamental frequency parameter versus numerical data. 

 

Here, optimization is investigated for the FG plate. Table 10. shows the parameters of ICA used to find the 
optimal solution. As shown in this figure ICA has reached to the optimal values of [b=0.82, c=1.7, p=7.2] which 
leads the 2976.0 for value of the objective function. The performance of ICA is compared with other nature inspired 
technique Genetic Algorithm (GA). Comparison shows that ICA performs better than GA. This fact is shown in 
Table 11. It should be mentioned that the process of optimization in ICA took less than 2 minutes. It means CPU 
time is reduced by a considerable amount. Fig. 14 shows the optimized material profile for the considered 
optimization problem obtained by combination of ICA and ANN. 

 
Table 10 
Parameters of ICA approach  

Parameters Value 
Number of initial countries 70 

Number of initial imperialists 5 
Number of decades 80 

Revolution rate 0.4 
  2 
  0.5 
  0.06 

 
Table 11 
Comparison between the Imperialist competitive Algorithm and genetic algorithm 

Algorithm 
Optimum parameters 3( / )kg m  

b  c p

ICA 0.82 1.70 7.20 2976.3 
     

GA 0.69 2.98 4.05 2988.9 
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Fig.14 
Optimized material profile for the FG plate obtained by 
ICA . 
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7    CONCLUSIONS 

In this paper, free vibration of three-parameter FG rectangular plate rested on Pasternak was studied. Free vibration 
of FG plate was analyzed based on the three-dimensional elasticity theory and by means of GDQ method. The effect 
of the power-law exponent, power-law distribution choice and elastic foundation modulus on the natural frequencies 
of FG plates was investigated in this research work. In the next step, volume fraction optimization of three-
parameter FG rectangular plate with respect to the density with constraint on the frequency parameter was studied. 
Imperialist Competitive Algorithm and Artificial Neural Networks were performed to obtain the best material 
profile through the thickness to find the optimal solution. From this study, some conclusions can be made:  

 It has been found that the convergence of the GDQ results is very fast. The numerical results obtained by 
using only seven grid points agree very well with those in the literature. 

 Results show that normalized frequencies of symmetric and classic profiles are larger and smaller than that 
of other types of FG plates respectively for different values of p and h/L1 ratio. 

 The most effective ranges of shearing layer elastic coefficient and Winkler foundation stiffness in 
increasing the non-dimensional natural frequencies is from 1 to 100 and 1 to 1000 respectively.  

 It is observed that for the large values of Winkler elastic coefficient, the shearing layer elastic coefficient 
has less effect on the normalized frequency and the results become independent of it. 

 It results the non-dimensional natural frequency decreases with increasing the L1/L2 ratio and then remain 
almost unaltered for L1/L2 greater than 5 at different values of Winkler and shearing layer elastic 
coefficients. 

 By using three-parameter power law distribution, it is possible to control the materials volume fraction of 
FG structures for considered applications. 

 ICA can be applied for engineering optimization problems especially for those related to the FG structures.  
 Combination of NN and ICA reduces the CPU time by a considerable amount with losing negligible 

accuracy. 
 The performance of ICA is better than other nature inspired technique Genetic Algorithm. In other word, 

the results obtained by ICA are more optimized than GA.  
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