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ABSTRACT
In this paper, the new version of differential quadrature method (DQM), for calculation of the
buckling coefficient of rectangular plates is considered. At first the differential equations
governing plates have been calculated. Later based on the new version of differential quadrature
method, the existing derivatives in equation are converted to the amounts of function in the grid
points inside the region. Having done that, the equation will be converted to an eigen value
problem and the buckling coefficient is obtained. Solving this problem requires two kinds of
loading: (1) unaxial half-cosine distributed compressive load and (2) uni-axial linearly varied
compressive load. Having considered the answering in this case and the analysis of the effect of
number of grid points on the solution of the problem, the accuracy of answering is considered, and
also the effect of power law index over the buckling coefficient is investigated. Finally, if the case
is an isotropic type, the results will be compared with the existing literature.
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1 INTRODUCTION

URING 1980s, most of the research on buckling has been concentrated upon isotropic materials. The book by

Brush and Almroth [1] in 1975, clearly illustrates the buckling equations of beams, cylinder shells and general
shells from isotropic materials under mechanical loading. The book also discusses the buckling of plates and
cylinders that have longitudinal and transversal reinforcement and also the effect of initial fault up on buckling. The
deployment of composed materials especially in avian and military industries and the importance of recognition of
mechanical behavior attracted the attention of researchers to analysis of buckling of composed plates subjected to
thermal and mechanical loading and different boundary conditions have been preformed recently. In the researches
performed, different methods have been suggested for obtaining critical load or critical thermal of buckling of plate
and also has higher order shear deformation theory of plates for analysis of buckling has been deployed. A review
has been done over recent works on the buckling of layer composed materials by Leissa [2] and Tauchert [3]. A
number of published articles in the field of buckling of layer composed materials under the sort of mechanical and
thermals loading on the base of classical theory of plates [4] have been presented in the reference section.

In recent years, DQ method has been used for consideration of the buckling of rectangular plates. This method
was introduced by Bellman and Casti [6] as a form of simple and effective numerical method for solving linear and
non-linear partial differential equations from boundary value problems for the first time in 1971. The DQ method is
based on approximation and estimating of partial derivatives from one function ratio to a variable in every
separation point. Wang [7] independently proposed a method for applying multiple boundary conditions by
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assigning two degree of freedom to each end point for a fourth-order differential equation in 1996. The method was
called differential quadrature element method (DQEM). Liu and Wu [8] proposed a generalized differential
quadrature rule (GDQR) that was based on the analysis of higher order approximation polynomials. This method can
obtain all buckling loads. All boundary conditions can be easily applied in the DQEM or GDQR and accurate
solution can be obtained. In this article, the buckling coefficient of rectangular plate made of functionally graded
materials has been obtained under in-plane loading by the new version of DQ numerical method. Bert and
Devarakonda [9] presented an analytical solution for in-plane stresses for the case of a half sine load distribution on
two opposite sides. The buckling load is calculated by the use of Galerkin method. Much more accurate buckling
load has been obtained for a rectangular plate simply supported along all edges. There are many methods such as
Rayleigh-Ritz method, finite-element method, finite-difference method and fourier series method. However, the
method we employ here is the DQ method. It was found that solutions were very sensitive to grid spacing [10] when
DQ method is used for solving buckling problems of anisotropic rectangular plates even under uniform edge
loading. With the proposed non-uniform grid spacing [11] and a new way to apply the boundary conditions [12-13]
the difficulty has been removed and some isotropic plate buckling problems have been successfully solved by the
DQ method [14].

A new method was proposed recently for applying the boundary conditions which is called the new version of
DQ [15]. This method is successfully used to obtain the buckling loads for anisotropic plates with uniform in-plane
loading [16]. In this method, instead of solving the second-order partial differential equation in terms of
displacement, the fourth-order partial differential equation (the compatibility equation) in terms of Airy stress
functions is solved by the DQ method and accurate stress distributions were obtained for the case of non-uniform
distributed in-plane loadings. This method has only been successfully used to obtain buckling loads for the cases of
uniform or linearly distributed loadings. In this paper, the new version of differential quadrature method (DQM), for
calculation of the buckling coefficient of rectangular plates is considered and the results are compared with the data
of finite-element and finite-difference [17].

2 MATERIAL PROPERTIES

Consider a rectangular plate made of a mixture of metal and ceramic as shown in Fig. 1. The material in top surface
and in bottom surface is metal and ceramic, respectively. The modulus of elasticity E, the coefficient of thermal
expansion «, and the Poisson’s ratio v are assumed as [18]

E(Z) = ECVC + E‘m(1 _Vc)>
a(D)=aV, +a,(1-V,), (1)

v(z) =,

Subscripts m and ¢ denote the properties of metal and ceramic, respectively. The relation between volume fraction of
ceramic v, and metal v,, by the power law is represented as follows:

p
vo[ZY oy iy )
2h

where z (—h/2<z<h/2) is the thickness coordinate variable and, where h is the thickness of plate and p is the
power law index that takes values greater than or equal to zero. The material properties of the FGM plate with
attention to the equations proposed by Reddy is as follow.
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Fig. 1
hd ) Configuration and coordinate system of a rectangular plate.
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Zz+hjp
2h
2z +hj” (3)
2h )

E(Z) = Eﬂ'L + EL'IT[(

a(z)=a,, + acm[

v(z) =0,

That

E.  =E.—-E

cm c m>

h/2 5
(El,Ez,E3):J.h/2(1,z,z VE(2)dz

Aoy =0 — Ay

4)

3 STABLE EQUATIONS

Consider a rectangular plate of FGM material with length @ and width b and thickness #, that are subjected to
mechanical loading. According to the classical theory of plates, the components of normal strain, £,,&, and shear

strain Exy in every point of the thickness of plate with distance z from mid-plane, are presented as follow [1].

Ex=¢&, +7k,

gy =€y+Zky (5)

Exy =&y +22k,,

That ¢,,¢, and &,, are normal strains and shear strain respectively in mid plane. The kx, ky and kxy are the

indications of curvature and torsion respectively. The Kinematic equations of mid-plane that is known as Sander’ s
nonlinear equations is defined as:

L 2 1 2
Ey =U, +Eﬂx,8y =V, +Eﬁy

8xy = (u,y + V,x)+ ﬂxﬂy

kx = ﬂx,x’ ky = ﬂy,y (6)
1
kxy = E(ﬂx,y + ﬁy,x)

ﬂx :_W,,\w /By :_qu

As that w,v,u denote the displacement of plane in z,y,x directions, respectively. The subscript (,) is the sign
of partial derivatives. The stress relations without the effective of thermal for above plate are defined as:

O'XII_VZ[é‘x-l-Vé‘y]
oy = - [y +vex] (7)
— E —_
Oxy = _€x
T 2(0+v) ¢
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So E and v are assumed as the modulus of elasticity and Poisson’s ratio for FGM material, respectively. That

was represented by Eq. (3), where o ,0, and oy are the normal and shear stresses in every point of plate

thickness with distance z from mid-plane. The forces and moments per unit length of the plate are expressed in terms
of the stress components (through the thickness):

h/2 — h/2 —
Nij:.[ ojdz, M;= zojj dz, 1] =%,5,%y ®)
—h/2 —h/2

The constitutive equation of FGM plate can be obtained by substituting Egs. (3), (5) and (7) into Eq. (8).

N, = E12(€x+l)6‘)+ E, 5 (ky +0.ky)
1-v°

o o

N. =

E,

1

y 5 (e, +0.6,)+—5(k, +v.k,)
1-v,°

1-v, 2
E E

N, = L +—2 &
Y24 0) Y 140, ¥

)

M, = Ezz(gx+ug)+1 (k +0.ky)

o

E2
y 5 (&, +0.6,)+—=(k, +v.k,)
1-v, 1-v,
E, E;
= &, + k.,
Y204 0) Y 140, ¥

That N ,N Vo N N are the normal and shear forces in plane and M ., M v M o M y are torsion and bending
momentums, also from Egs. (3) and (4) will have

Eh+ECﬁlh
p+1
E, =E,h* L1 (10)
p+1 2p+2
3
E3:E’”h +E, b’ 1 + !
12 p+3 p+2 4(p+))

Finally the nonlinear equations of equilibrium according to Von Karman’s theory are given by:
N,,+N,, =0

Ny,,+N,,=0

Mx,)o( + My,yy + 2Mxy,xy - Nxﬂx,x - Nyﬂy,y - 2nyﬂx,y + Pn =0

(11)

When Eq. (9) are substituted into Eq .(11), the equations of equilibrium in terms of displacements are as follow:

E E E
1-v P (u,xx +Uov,yx)_ 1—[2) 2 (W,xxx +Uow,yyx)+ 2(1 +1U )(u,yy +v,xy)_ 1+i W,xyy =0 (123)
E E E
—1_11)2( )~ 1_52(w,yyy+Uow’m,)+_2(1+lu )_(u,yx+v,m)—l+2v Woe =0 (12b)
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E, E,

5 (U ey F OV ) = T (W xx FUW ) + 5V yyy + Ul )
1-v, 1-v, 1-v,
E; E, 2E, (13)
- 1_ 1)02 (W»y)'yy + U"W»XX.W) + (1 + Uo) (u,yxy + V,Xxy) - 1+ v, s XYXY
+N W o +Nyow ,, + 2N ow =0

With deriving from Eq. (12a) ratio the variable of x and Eq. (12b) ratio y and after pulsing them will have:

E, E, E,
5 (U g FOY ) — 5 W e FOW )+ ——5 (v + 01 )
1-v, 1-v, 1-v, "
Ey (w +OW )+ L +v ) 2E, w =0 o
[op, 2y e I gy y e T R ST,

Next multiply E, in Eq. (14) and then substituting it in Eqs. (13) after simplification followed equation

obtained:
E; E3 2E2
—— (W tOW )+ W FOW ) ——— W
El(l _Uoz) ( 5 XXXX ,)Y)cx) El(l —Uoz) ( > YYYYy ,Axyy) El(l N Uo) L XYXY
E\Ey E\E, 2E\E, (15)
——(w +vw ) ————— (W oW ) ———— W
E(-v* B -0 W B (l+v,) Y

+N W o+ Nyw  +2Now =0
With the using of definition of delfour the above equation will be as follow:

E22 — E1E3

4
E0_0)) V'w+ N, w  +N,.w, +2N, . w, =0 (16)
1 °

According to definition

4. _
Viw= W oonx + W vy + Zw,xxyy

which is related to the classical theory of plates, the displacement field (#,v,w) are assumed in coordinate

(u,,v,,w,). The arbitrarily small increment of displacement performed as (u;,v,,w;). The displacement
components in neighboring of equilibrium state is

u=u,+u
v=y,+V 17
w=w, +Ww,

With substituting Egs. (17) into Egs.(16), the stability equation of FGM rectangular plate according to the classical
theory obtained as follow

E‘Z2 - E1E3

Vi, +N w,  +N w  +2N _w . =0 18
El (I—VOZ) 1 1, ) Lyy Y Lxy ( )
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Where N refer to the pre-buckling force resultants.

o

N,..N,,

x054tV yos

4 THE NEW VERSION OF DQ METHOD

Qik is the kth-order derivative of the solution function at grid point i in ordinary DQ method [19],
0 =Y ¢, i=12,m (19)
j=1

Q; is the solution values at grid point j and N is the total number of grid points in the entire domain including the
end points and the solution values at grid point j. C i(jk) are called the weighting coefficients of kth-order derivative.

O c O

i Ci Gy ,Ci(j4) (=1,2,...,n; j=1,2,...,n) the weighting coefficients of the first-,second-,third- and fourth order

derivatives for the ordinary DQ method. In the new version of DQ Q](l),QS) the first-order derivatives of Q at two
end points are introduced as additional independent variables.

{M}T = {Q13Q2 90y anl’Qn’Ql(l)’Qfll)} (20)

where A.,B.

ij> =ij >

Cij , Dij (i=12,...,n;j=12,...,n+2) are the weighting coefficients of first-, second-, third- and

fourth- order derivatives in the new version of DQ method [19], therefore

— W
A; =Cyl(i,j=12,..,n)

| . (21a)
Aij = O(Z = 172’---311;] =n+ l’n + 2)
— D¢ ;=
B, =CP (i, j=12,.,n) (21b)
B, =0(i=12...nj=n+1n+2)
The weighting coefficient of third- and fourth- orders are calculated differently:
n_ n-l n+2
07 =YY ccho, +col ol =3 Bjuti=1n
j=1 k=2 =l 22
n+2 n+2 ( )
0 =3 CPu;= Bjuj,  (i=23..n-1)
j=1 J=1
n n+2 n+2
3) _ M T
Q" = Zcik ZBkjuj = ZCU”;
k=l j=1 J=1
(23)

n+2 n+2

0" = Zn: i’ Z sz”j = Z Dyu,
k=1 j=l j=l

For obtaining the weighting coefficient C;, D;;, the value of B;- is defined as:

ij>
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B,=C{
B,.=0;B;,,,=0 (24a)
(i=23,.,n-1
(j=12,..,n)
-3y
k=2
Bi*,n+1 = Ai,l;Bi*,n+2 =A, (24b)
(i=1Ln)
(j=12,...,n)
Consequently :

Cyj=D CYBy(i=12,..n;j=12,..n+2)

k=l (25)

D;=Y CYBy(i=12,..mj=12,.,n+2)
k=1

With substituting the new version of DQ weighting coefficient in equations, we can change those to new DQ
form.

5 BUCKLING OF FGM RECTANGULAR PLATE TO THE NEW VERSION OF DQ

Consider first the problem of in-plane elasticity, anisotropic FGM thin rectangular plate with length a and width b
subjected to a uniaxial non-uniform distributed in-plane edge load. When all boundary conditions are stress
boundary conditions, methods based on stress function are most convenient to be used. The Airy stress function is
used for solving the problems of plate reactionary theory. These functions without body forces are defined as

_o0 0 _ 00
Oy =770, =F5:Ty =
Oy ox Ox0y

(26)

b2

‘I]—‘ o,

o X

-

A

al2

Y bi2
=
o x
b2
| % Fig. 2

af2 a2 . .
() I Rectangular plate under unaxial edge compressions.

al2

© 2009 TAU, Arak Branch



Kazemi Mehrabadi and Mirzaeian / Journal of Solid Mechanics 1 (2009) 58-72 65

Airy stress function satisfied the governing differential equations and should satisfy the following compatibility
differential equation.

4 4 4
012 8050
X X 0y 'y

When Q is obtained, Eq. (27) calculated the in-plane stresses o, OysTyy in Eq. (26).

6 BOUNDARY CONDITIONS

simply supported (SS)
xz—%,%—wv:MX:O
b b (28)
y:——’——)W:M’:()
2°2 !
clamped (C)
a a
x:—E,E——n\/:wx:O
b b (29)
=——,——w=w,=0
YT y
free (F)
x=—§,%—>Mx=O
b b (30)
=——,——M =0
YT s

7 EQUATIONS IN TERMS OF NEW VERSION OF DQ

Let n,,n, be the total number of grid points in the x and y directions shown in Fig. 3. As it can be seen, both Eq.

(18) and Eq. (27) are fourth-order partial differential equations. The new version of DQ method is to be used to
solve both equations. Each corner grid point has three degree of freedom, namely Q ,Q,,0, (or w,w ,w ), where

Yy

al2 a/2
n
Y
<P (@] o D (@] o q
o o ol o o @ b/2
(@] O o (e, x
b o© o o o o d b/2
o o o o o ¢ Fig. 3
& Sketch of a rectangular plate with grid points.
1 n
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o0 00
2 oy ox
(€29)
ow ow
Wy =_,Wx =
0y ox

The remaining boundary points have two degrees of freedom each, either Q ,Q, (or w,w, ) for points at edges
parallel to the y — axis or Q ,Qy (or w,w,) for points at edges parallel to the x-axis. Each inner grid point has only

one degree of freedom Q (orw).
In terms of the new version of DQ method, the governing differential equation of Eq. (27) at inner grid point is
expressed as:

ny Ny

ZDthkl +ZZZBUBZ)]; Jk +lekQ1k +Dz(nx+1)(Q )ll +D,(;1X+2)(Q )nxl +
=1 k=1 (32)
Dy, @)+ Dify 1(Q)in, =0, (i=230m, —1, 1=23,n, —1)

And the governing differential equation of Eq(18) at inner grid points is expressed as:

Ny y
z Djwy + 22 Z BiBjwy + Z Dijwie + Dt ety W)y + D12y (W)
k=1

j=1 k=1
o.h o & ,
1(,1 +1)(W )11 +D1(n +2)( )my = 5 X{szkwkl(a )zl+zzzAlel)k jk(a‘c\)ll (33)
j=1 k=1
y
+ > Biwg(a,)ihs (i=230n, =1, [=23,0n, ~1)
k=1

where A; ,Ay are the weighting coefficients of the first-order derivatives, B; ,By are the weighting coefficients of

the second-order derivatives and D; ,Dy are the weighting coefficients of the fourth-order derivatives with respect
to the variables of x and y, Qij and w; are values of stress function and deflection at grid point ij, and

o, Ty o,
X —__M —__J

ax =—, axy =—, ay = — (34)
o o, o

As it is pointed out the Eq. (32) cannot directly be applied to obtain stress function. First solving Eq. (32) when

obtaining the values of Q;; , the in-plane stresses can be computed by

ij >

ny

(@)= ZBz'iQik

k=1
ny My
(rxv)ll - ZZA Ale/k (35)
j=1 k=1
(@,)a = BiOu (=12, [=12,..n))
k=1

© 2009 TAU, Arak Branch



Kazemi Mehrabadi and Mirzaeian / Journal of Solid Mechanics 1 (2009) 58-72 67

At each boundary point except for the corner points, i.e., at il (=1 or n,, [ =2,3,...,n, —1) on edges parallel to y-

axis (x=-a/2 or a/2) , the momentums can be expressed as

(Mx)il ==

E Nx . ny !
- (Z Bywy +VZ Biwy) (36)
l-v,™ T k=1

Similarly at each boundary point except for the corner points, i.e., at il (/=1 or n,, i =2,3,...,n, —1) on edges

y b
parallel to x-axis (y=-b/2 or b/2) , the momentums can be expressed as

E ny ) ny
(M,); = 71 li 2 (VZBikaz +ZB§(WH¢) (37)
- = P

o

The buckling coefficient, (k) is defined as

_ o’

k
z°D

(3%)

where o h/D is the eigen value of Eq. (33), this value is calculated by the computer programs of Maple and
Matlab that are used in tables. To achieve convergence, set n, =n, =n and used the following non-uniform grid

spacing for results presented in the next section

(i-Drx

(i-DHrx
n—1

1/2

X; = —acos|
(39)

v, =—bcos[ 1/2, i=12,..,n

8 PROPERTIES OF SAMPLE FGM PLATE

A FGM (Aluminum-Alumina) rectangular plate is taken into consideration. The properties of plate [20] are defined
as:

Alumina (Ceramic Constituent) E.=380Gpa
Aluminum (Metal Constituent) E,, =70Gpa

9 RESULTS AND DISCUSSION

For obtaining buckling coefficient, first we obtained the Airy stress function after calculation of Eq. (32) and then
with obtaining the stresses from Eq. (35) and substitute them in to Eq. (33), as the egen value o,h/D has

calculated, for obtaining buckling coefficient. A computer program was written by Maple and Matlab software, the
above equations were solved and finally the buckling coefficient has been calculated. The buckling coefficient was
calculated for different grid points under two kinds of loading when all edges are simply supported and clamped.
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y
—load
—e- DQ
(2]
[%2]
o .
»
TEG Fig. 4
5 Normal stress distributions at
2-1.2 x =%xa/2forn=11.
y
—load
— DQ
7))
%)
g-
®
= Fig. 5
€ Normal stress distributions at
2_1_2 x =za /2 for n=15.
%)
n
g
% 0.08 "
a - N=
% 0.06 A —-—n=11
0.04 —n=13
0.02 ~—n=15
0 y
-0.02
-0.04
Fig. 6
-0.06 Shear stress distributions at
0.08 y=1b/2.

When power law index is equaled to zero, the FGM material is changed to uniform material and obtaining results
were compared with principle reference. After getting to essential accuracy, the buckling coefficient was calculated
for different value of power law index for sample FGM material and finally results were presented to table and
figures. In the tables and figures, (n) is total number of grid points, (p) is power law index, (SS) and (C) are simply
supported and clamped boundary conditions respectively and (K) is the buckling coefficient.

Two non-uniform distributed loading cases are studied, at first the rectangular plate is under uni-axial linearly
varying compressive load
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Table 1
Buckling coefficient for sample FGM plate, under uni-axial linearly varying compressive load, o, =20, /3(1-y /b) and

different aspect ratios, all edges are (ss) for different value of power law index (n=11)

a/b Present Wanng[17] FEM Bert[9] Benoy[22] Van Der Neut[21]

0.5 7.421 7.452 7.409 7.841 7.08 4.68

1.0 5.408 5.419 5.383 5.146 4.59 4.68

3.0 5.847 5.849 5.818 5.748 4.53 4.68
Table 2

Convergence for buckling coefficient of rectangular plate with three different aspect ratios, under uniaxial half-cosine
compressive load, X =-ogcos(ry /b), all edges are simply supported (n=15).

P n=9 n=11 n=13 n=15
2 36.15 36.17 36.15 36.14
4 41.55 41.55 41.57 41.57
6 43.71 43.70 43.71 43.74
8 45.39 45.37 45.40 45.40
10 46.93 46.91 46.91 46.93
12 48.37 48.37 48.34 48.36
14 49.70 49.69 49.72 49.71

Table 3
Buckling coefficient for sample FGM plate, under uniaxial half-cosine compressive load, X =-ocos(zy /b) and a/b=1, all

edges are (C) for different value of power law index

alb 0.4 0.6 0.75 0.8 1.0
p=1 24.56 15.25 12.94 12.54 11.96
p=3 34.58 21.47 18.22 17.66 16.84
p=5 37.21 23.11 19.61 19.00 18.12
p=1 38.70 24.03 20.39 19.76 18.86
p=9 40.20 24.96 21.18 20.53 19.57
p=l11 41.49 25.76 21.86 21.19 20.20
p=13 42.70 26.51 22.50 21.80 20.79
p=15 43.81 27.20 23.09 22.37 21.33

Table 4
Buckling coefficient for sample FGM plate, under uniaxial half-cosine compressive load, X =-ogcos(zry /b) and a/b=1, all

edges are (SS) for different value of power law index

P n=9 n=11 n=13 n=15
1 10.87 10.86 10.89 10.85
2 13.93 13.93 1391 13.94
3 15.31 15.32 15.30 15.31
4 16.01 16.01 16.01 16.03
5 16.48 16.47 16.47 16.42
6 16.85 16.85 16.81 16.84
7 17.13 17.12 17.12 17.14
8 17.50 17.50 17.52 17.50
9 17.80 17.81 17.83 17.83
10 18.09 18.07 18.05 18.07
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(k)
50
45 - ——a/b=0.4
40 4 ——a/b=0.6
35 ——a/b=0.75
22 ) ~—a/b=1.5

o N

10 A Buckling coefficient for
5 1 o, =204 /3(1-y /b), all edges are
0 ®) (SS), (n=11).
1 2 3 45 6 7 8 9101112131415
(k)
60
o N=9
50 1 - n=11
a n=13
40 7 —n=15
30 ~
20 7 Fig. 8
10 4 Buckling coefficient for
X =-oycos(ry /b) and a/b=1, all
O T T T T T T T T T T T T T T (p) edges are (C)-

1 2 3 4 5 6 7 8 9 101112 13 14 15

(k)

45
40 e
35 4 —— p:2
30 1 - p=3
25 —-p=8
20 1
15 1 Fig. 9
10 o Buckling coeftficient for

5 - o, =—204/3(1—y /b), all edges are

0 T T T T T (a_/b) (SS) (n=l 1)

0.4 0.6 0.75 0.8 1 1.5
X=-20,/3(1-y/b) (40a)

This load is presented in Fig. (2a), so we will have
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=20,/3(1-y/b)

o, =
(40b)
o,=7,=0
Two boundary conditions are considered for buckling analysis: 1) All edges are simply supported. 2) All edges
are clamped. It can be seen that DQ results are very close to the FE data that one may conclude that the numbers
listed in the manual are not accurate enough for this loading case. Consider next a rectangular plate under non-
uniformly distributed compressive load (Fig. 1b).

X =—0,cos(ny/b) (41)

It was found that solutions to in-plane elasticity problem by DQ method are sensitive to grid spacing. The normal
stresses in x and y directions are equal to zero, but shear stress is 7,, # 0. As presented in Fig. (6) 7,, # 0 along

edges of y=1b/2. The shear stress along these two edges are opposite in sign. Ty = 0 can be approximately

achieved with the increase of number of grid points. In Figs. 4 and 5, the calculated o, along x =+a/2 by DQ
method for n=11, n=15 as can be seen that symbols are close to the solid line (the applied load,
X =-0,cos(ny/b) ), and the answers are very close together. It was found that the new version of DQ is

comfortable for these problems. Table (1) shows the DQ results with n=11 for three different aspect ratios. It is
found that differences are observed between the data obtained by DQ method and results cited from literature [21],
but are close to the FE data, this shows the manual method is not accurate. In table (2) the buckling coefficient (k)
obtained for a sample FGM plate. It can be seen with increasing aspect ratio, buckling coefficient decrease and with
increasing the power law index it increases. And also in tables 3 and 4, the buckling coefficient obtained, it is found
that the buckling coefficient is similar for different value of grid points numbers and increase with increasing the
power law index. Figs (7-9) show the resultant of tables (2-4) alike curvature.

10 CONCLUSION

In this paper, the new version of differential quadrature method (DQM), for calculation of the buckling coefficient
of rectangular plates is considered. At first the governing differential equation for plate has been calculated and then
according to the new version of differential quadrature method the existence derivatives in equation are converted to
the amounts of function in the grid points inside of the region is solved. Calculation performed and observed show
that if the number of grid point was low then the results will be not convergence, therefore the manual are not
accurate enough. It is also found that DQ solutions are sensitive to grid spacing, thus non-uniform grid spacing
should be used to ensure the solution accuracy. The results of the new version of DQ are close to FE data. This
indicates this method can be employed for obtaining buckling loads of plates under non—uniform distributed loading
for all boundary conditions.
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