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ABSTRACT 
In this paper, the new version of differential quadrature method (DQM), for calculation of the 
buckling coefficient of rectangular plates is considered. At first the differential equations 
governing plates have been calculated. Later based on the new version of differential quadrature 
method, the existing derivatives in equation are converted to the amounts of function in the grid 
points inside the region. Having done that, the equation will be converted to an eigen value 
problem and the buckling coefficient is obtained. Solving this problem requires two kinds of 
loading: (1) unaxial half-cosine distributed compressive load and (2) uni-axial linearly varied 
compressive load. Having considered the answering in this case and the analysis of the effect of 
number of grid points on the solution of the problem, the accuracy of answering is considered, and 
also the effect of power law index over the buckling coefficient is investigated. Finally, if the case 
is an isotropic type, the results will be compared with the existing literature. 
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1    INTRODUCTION 

URING  1980s, most of the research on buckling has been concentrated upon isotropic materials. The book by 
Brush and Almroth [1] in 1975, clearly illustrates the buckling equations of beams, cylinder shells and general 

shells from isotropic materials under mechanical loading. The book also discusses the buckling of plates and 
cylinders that have longitudinal and transversal reinforcement and also the effect of initial fault up on buckling. The 
deployment of composed materials especially in avian and military industries and the importance of recognition of 
mechanical behavior attracted the attention of researchers to analysis of buckling of composed plates subjected to 
thermal and mechanical loading and different boundary conditions have been preformed recently. In the researches 
performed, different methods have been suggested for obtaining critical load or critical thermal of buckling of plate 
and also has higher order shear deformation theory of plates for analysis of buckling has been deployed. A review 
has been done over recent works on the buckling of layer composed materials by Leissa [2] and Tauchert [3]. A 
number of published articles in the field of buckling of layer composed materials under the sort of mechanical and 
thermals loading on the base of classical theory of plates [4] have been presented in the reference section.  

In recent years, DQ method has been used for consideration of the buckling of rectangular plates. This method 
was introduced by Bellman and Casti [6] as a form of simple and effective numerical method for solving linear and 
non-linear partial differential equations from boundary value problems for the first time in 1971. The DQ method is 
based on approximation and estimating of partial derivatives from one function ratio to a variable in every 
separation point. Wang [7] independently proposed a method for applying multiple boundary conditions by 
‒‒‒‒‒‒ 
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assigning two degree of freedom to each end point for a fourth-order differential equation in 1996. The method was 
called differential quadrature element method (DQEM). Liu and Wu [8] proposed a generalized differential 
quadrature rule (GDQR) that was based on the analysis of higher order approximation polynomials. This method can 
obtain all buckling loads. All boundary conditions can be easily applied in the DQEM or GDQR and accurate 
solution can be obtained. In this article, the buckling coefficient of rectangular plate made of functionally graded 
materials has been obtained under in-plane loading by the new version of DQ numerical method. Bert and 
Devarakonda [9] presented an analytical solution for in-plane stresses for the case of a half sine load distribution on 
two opposite sides. The buckling load is calculated by the use of Galerkin method. Much more accurate buckling 
load has been obtained for a rectangular plate simply supported along all edges. There are many methods such as 
Rayleigh-Ritz method, finite-element method, finite-difference method and fourier series method. However, the 
method we employ here is the DQ method. It was found that solutions were very sensitive to grid spacing [10] when 
DQ method is used for solving buckling problems of anisotropic rectangular plates even under uniform edge 
loading. With the proposed non-uniform grid spacing [11] and a new way to apply the boundary conditions [12-13] 
the difficulty has been removed and some isotropic plate buckling problems have been successfully solved by the 
DQ method [14].  

A new method was proposed recently for applying the boundary conditions which is called the new version of 
DQ [15]. This method is successfully used to obtain the buckling loads for anisotropic plates with uniform in-plane 
loading [16]. In this method, instead of solving the second-order partial differential equation in terms of 
displacement, the fourth-order partial differential equation (the compatibility equation) in terms of Airy stress 
functions is solved by the DQ method and accurate stress distributions were obtained for the case of non-uniform 
distributed in-plane loadings. This method has only been successfully used to obtain buckling loads for the cases of 
uniform or linearly distributed loadings. In this paper, the new version of differential quadrature method (DQM), for 
calculation of the buckling coefficient of rectangular plates is considered and the results are compared with the data 
of finite-element and finite-difference [17].    

2    MATERIAL PROPERTIES 

Consider a rectangular plate made of a mixture of metal and ceramic as shown in Fig. 1. The material in top surface 
and in bottom surface is metal and ceramic, respectively. The modulus of elasticity E, the coefficient of thermal 
expansion ,α  and the Poisson’s ratio υ  are assumed as [18] 
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Subscripts m and c denote the properties of metal and ceramic, respectively. The relation between volume fraction of 
ceramic cv  and metal mv  by the power law is represented as follows: 
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where z ( 2/2/ hzh ≤≤− ) is the thickness coordinate variable and, where h is the thickness of plate and p is the 
power law index that takes values greater than or equal to zero. The material properties of the FGM plate with 
attention to the equations proposed by Reddy is as follow. 
 

 
Fig. 1 
Configuration and coordinate system of a rectangular plate. 
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3    STABLE EQUATIONS 

Consider a rectangular plate of FGM material with length a and width b and thickness h, that are subjected to 
mechanical loading. According to the classical theory of plates, the components of normal strain, xy εε ,  and shear 

strain xyε  in every point of the thickness of plate with distance z from mid-plane, are presented as follow [1]. 
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That yx εε ,

 
and xyε  are normal strains and shear strain respectively in mid plane. The yx kk ,  and xyk  are the 

indications of curvature and torsion respectively. The Kinematic equations of mid-plane that is known as Sander , s 
nonlinear equations is defined as: 
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As that uvw ,,  denote the displacement of plane in xyz ,,  directions, respectively. The subscript (,) is the sign 

of partial derivatives. The stress relations without the effective of thermal for above plate are defined as: 
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So E  and υ  are assumed as the modulus of elasticity and Poisson’s ratio for FGM material, respectively. That 
was represented by Eq. (3), where xσ  , yσ  and xyσ are the normal and shear stresses in every point of plate 
thickness with distance z from mid-plane. The forces and moments per unit length of the plate are expressed in terms 
of the stress components (through the thickness): 
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The constitutive equation of FGM plate can be obtained by substituting Eqs. (3), (5) and (7) into Eq. (8).  
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That yxxyyx NNNN ,,,  are the normal and shear forces in plane and yxxyyx MMMM ,,,  are torsion and bending 

momentums, also from Eqs. (3) and (4) will have 
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Finally the nonlinear equations of equilibrium according to Von Karman’s theory are given by: 
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When Eq. (9) are substituted into Eq .(11), the equations of equilibrium in terms of displacements are as follow: 

 

0
1

)(
)1(2

)(
1

)(
1 ,

2
,,

1
,,2

2
,,2

1 =
+

−+
+

++
−

−+
−

xyyxyyyyyxxxxyxxx w
E

vu
E

ww
E

vu
E

υυ
υ

υ
υ

υ
 (12a) 

0
1

)(
)1(2

)(
1

)(
1 ,

2
,,

1
,,2

2
,,2

1 =
+

−+
+

++
−

−+
−

xyxxxyxxxyyyyxyyy w
E

vu
E

ww
E

uv
E

υυ
υ

υ
υ

υ
 (12b) 



62                   Kazemi Mehrabadi and Mirzaeian / Journal of Solid Mechanics 1 (2009) 58-72 
 

© 2009 IAU, Arak Branch  

02

1
2)(

)1(
)(

1

)(
1

)(
1

)(
1

,,,

,
3

,,
2

,,2
3

,,2
2

,,2
3

,,2
2

=+++

+
−+

+
++

−
−

+
−

++
−

−+
−

xyxyyyyxxx

xyxyxxyyxyxxyyyyyy

xyyyyyyyxxxxxxyxxxxx

wNwNwN

w
E

vu
E

ww
E

uv
E

ww
E

vu
E

υυ
υ

υ

υ
υ

υ
υ

υ
υ

 (13) 

 
With deriving from Eq. (12a) ratio the variable of x and Eq. (12b) ratio y and after pulsing them will have: 
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Next multiply 2E  in Eq. (14) and then substituting it in Eqs. (13) after simplification followed equation 

obtained: 
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With the using of definition of delfour the above equation will be as follow: 
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According to definition 
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which is related to the classical theory of plates, the displacement field ( , , )u v w  are assumed in coordinate 

),,( wvu . The arbitrarily small increment of displacement performed as ),,( 111 wvu . The displacement 
components in neighboring of equilibrium state is 
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With substituting Eqs. (17) into Eqs.(16), the stability equation of FGM rectangular plate according to the classical 
theory obtained as follow 
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Where xyyx NNN ,,  refer to the pre-buckling force resultants. 

4    THE NEW VERSION OF DQ METHOD 

k
iQ  is the kth-order derivative of the solution function at grid point i in ordinary DQ method [19], 

 

niQCQ j

n

j

k
ij

k
i ,...,2,1,

1

)( ==∑
=

 (19) 

 
jQ  is the solution values at grid point j and N is the total number of grid points in the entire domain including the 

end points and the solution values at grid point j. )(k
ijC are called the weighting coefficients of kth-order derivative. 

)4()3()2()1( ,,, ijijijij CCCC  (i=1,2,…,n; j=1,2,…,n) the weighting coefficients of the first-,second-,third- and fourth order 

derivatives for the ordinary DQ method. In the new version of DQ )1()1(
1 , nQQ  the first-order derivatives of Q at two 

end points are introduced as additional independent variables. 
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where
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fourth- order derivatives in the new version of DQ method [19], therefore 
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      The weighting coefficient of third- and fourth- orders are calculated differently: 
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For obtaining the weighting coefficient ijij DC , , the value of *

ijB  is defined as: 
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Consequently : 
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With substituting the new version of DQ weighting coefficient in equations, we can change those to new DQ 

form. 

5    BUCKLING OF FGM RECTANGULAR PLATE TO THE NEW VERSION OF DQ 

Consider first the problem of in-plane elasticity, anisotropic FGM thin rectangular plate with length a and width b 
subjected to a uniaxial non-uniform distributed in-plane edge load. When all boundary conditions are stress 
boundary conditions, methods based on stress function are most convenient to be used. The Airy stress function is 
used for solving the problems of plate reactionary theory. These functions without body forces are defined as 
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Fig. 2 
Rectangular plate under unaxial edge compressions. 
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Airy stress function satisfied the governing differential equations and should satisfy the following compatibility 
differential equation. 
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When Q is obtained, Eq. (27) calculated the in-plane stresses xyyx τσσ ,,  in Eq. (26). 

6    BOUNDARY CONDITIONS 
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7    EQUATIONS IN TERMS OF NEW VERSION OF DQ  

Let yx nn ,  be the total number of grid points in the x and y directions shown in Fig. 3. As it can be seen, both Eq. 
(18) and Eq. (27) are fourth-order partial differential equations. The new version of DQ method is to be used to 
solve both equations. Each corner grid point has three degree of freedom, namely yx QQQ ,,  (or yx www ,, ), where 
 

 
 
 
 
 
Fig. 3 
Sketch of a rectangular plate with grid points. 
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The remaining boundary points have two degrees of freedom each, either xQQ ,  (or xww, ) for points at edges 

parallel to the y – axis or yQQ ,  (or yww, ) for points at edges parallel to the x-axis. Each inner grid point has only 

one degree of freedom Q  (or w ). 
In terms of the new version of DQ method, the governing differential equation of Eq. (27) at inner grid point is 

expressed as: 
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And the governing differential equation of Eq(18) at inner grid points is expressed as: 
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where y
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x
ij AA ,  are the weighting coefficients of the first-order derivatives, y
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ij BB ,  are the weighting coefficients of 

the second-order derivatives and y
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x
ij DD ,  are the weighting coefficients of the fourth-order derivatives with respect 

to the variables of x and y, ijQ  and ijw  are values of stress function and deflection at grid point ij, and 
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As it is pointed out the Eq. (32) cannot directly be applied to obtain stress function. First solving Eq. (32) when 

obtaining the values of ijQ  , the in-plane stresses can be computed by  
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At each boundary point except for the corner points, i.e., at il (i=1 or )1,...,3,2  , −= yx nln  on edges parallel to y-
axis (x=-a/2 or a/2) , the momentums can be expressed as 
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Similarly at each boundary point except for the corner points, i.e., at il (l=1 or )1,...,3,2  , −= xy nin  on edges 

parallel to x-axis (y=-b/2 or b/2) , the momentums can be expressed as 
 

∑∑
==

+
−

−=
yn

k
ik

y
lk

xn

k
kl

x
ikily wBwB

E
M

11
2

3 )(
1

)( ν
ν

 (37) 

 
The buckling coefficient, (k) is defined as  
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where Dh /σ  is the eigen value of Eq. (33), this value is calculated by the computer programs of Maple and 
Matlab that are used in tables. To achieve convergence, set nnn yx ==  and used the following non-uniform grid 
spacing for results presented in the next section 
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8    PROPERTIES OF SAMPLE FGM PLATE 

A FGM (Aluminum-Alumina) rectangular plate is taken into consideration. The properties of plate [20] are defined 
as: 

     
Alumina (Ceramic Constituent) 380=cE Gpa                  
Aluminum (Metal Constituent) 70=mE Gpa 

9    RESULTS AND DISCUSSION 

For obtaining buckling coefficient, first we obtained the Airy stress function after calculation of Eq. (32) and then 
with obtaining the stresses from Eq. (35) and substitute them in to Eq. (33), as the egen value Dh /σ  has 
calculated, for obtaining buckling coefficient. A computer program was written by Maple and Matlab software, the 
above equations were solved and finally the buckling coefficient has been calculated. The buckling coefficient was 
calculated for different grid points under two kinds of loading when all edges are simply supported and clamped.  
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Fig. 4 
Normal stress distributions at 

/ 2x a= ± for n=11 . 
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Fig. 5 
Normal stress distributions at 

/ 2x a= ± for n=15. 
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Fig. 6 
Shear stress distributions at 

/ 2y b= ± . 

 
When power law index is equaled to zero, the FGM material is changed to uniform material and obtaining results 

were compared with principle reference. After getting to essential accuracy, the buckling coefficient was calculated 
for different value of power law index for sample FGM material and finally results were presented to table and 
figures. In the tables and figures, (n) is total number of grid points, (p) is power law index, (SS) and (C) are simply 
supported and clamped boundary conditions respectively and (K) is the buckling coefficient. 

Two non-uniform distributed loading cases are studied, at first the rectangular plate is under uni-axial linearly 
varying compressive load 
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Table 1    
Buckling coefficient for sample FGM plate, under uni-axial linearly varying compressive load, 02 / 3(1 / )x y bσ σ= − −  and 
different aspect ratios, all edges are (ss) for different value of power law index (n=11) 

 
Table 2    
Convergence for buckling coefficient of rectangular plate with three different aspect ratios, under uniaxial half-cosine 
compressive load, 0 cos( / )X y bσ π= − , all edges are simply supported (n=15). 

 
Table 3     
Buckling coefficient for sample FGM plate, under uniaxial half-cosine compressive load, 0 cos( / )X y bσ π= −  and a/b=1, all 
edges are (C) for different value of power law index  

 
Table 4  
 Buckling coefficient for sample FGM plate, under uniaxial half-cosine compressive load, 0 cos( / )X y bσ π= −  and a/b=1, all 
edges are (SS) for different value of power law index 

  

a/b Present Wanng[17] FEM Bert[9] Benoy[22] Van Der Neut[21] 
0.5 7.421 7.452 7.409 7.841 7.08 4.68 
1.0 5.408 5.419 5.383 5.146 4.59 4.68 
3.0 5.847 5.849 5.818 5.748 4.53 4.68 

n=15 n=13 n=11 n=9 p 

36.14 36.15 36.17 36.15 2 
41.57 41.57 41.55 41.55 4 
43.74 43.71 43.70 43.71 6 
45.40 45.40 45.37 45.39 8 
46.93 46.91 46.91 46.93 10 
48.36 48.34 48.37 48.37 12 
49.71 49.72 49.69 49.70 14 

1.0 0.8 0.75 0.6 0.4 a/b 
11.96 12.54 12.94 15.25 24.56 p=1 
16.84 17.66 18.22 21.47 34.58 p=3 
18.12 19.00 19.61 23.11 37.21 p=5 
18.86 19.76 20.39 24.03 38.70 p=7 
19.57 20.53 21.18 24.96 40.20 p=9 
20.20 21.19 21.86 25.76 41.49 p=11 
20.79 21.80 22.50 26.51 42.70 p=13 
21.33 22.37 23.09 27.20 43.81 p=15 

n=15 n=13 n=11 n=9 p 

10.85 10.89 10.86 10.87 1 
13.94 13.91 13.93 13.93 2 
15.31 15.30 15.32 15.31 3 
16.03 16.01 16.01 16.01 4 
16.42 16.47 16.47 16.48 5 
16.84 16.81 16.85 16.85 6 
17.14 17.12 17.12 17.13 7 
17.50 17.52 17.50 17.50 8 
17.83 17.83 17.81 17.80 9 
18.07 18.05 18.07 18.09 10 
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Fig. 7 
Buckling coefficient for 

02 / 3(1 / )x y bσ σ= − − , all edges are 
(SS), (n=11). 

 
 

(k)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 (p)

n=9
n=11
n=13
n=15

 
 
 
 
 
 
 
 
 
Fig. 8 
Buckling coefficient for 

0 cos( / )X y bσ π= −  and a/b=1, all 
edges are (C). 
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Fig. 9 
Buckling coefficient for 

02 / 3(1 / )x y bσ σ= − − , all edges are 
(SS) (n=11). 

 
 

)/1(3/2 0 byX −−= σ  (40a) 
 

This load is presented in Fig. (2a), so we will have 
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Two boundary conditions are considered for buckling analysis: 1) All edges are simply supported. 2) All edges 

are clamped. It can be seen that DQ results are very close to the FE data that one may conclude that the numbers 
listed in the manual are not accurate enough for this loading case. Consider next a rectangular plate under non-
uniformly distributed compressive load (Fig. 1b). 
 

)/cos(0 byX πσ−=  (41) 
 

It was found that solutions to in-plane elasticity problem by DQ method are sensitive to grid spacing. The normal 
stresses in x and y directions are equal to zero, but shear stress is 0≠xyτ . As presented in Fig. (6) 0≠xyτ along 

edges of .2/by ±=  The shear stress along these two edges are opposite in sign. 0=xyτ  can be approximately 

achieved with the increase of number of grid points. In Figs. 4 and 5, the calculated xσ  along 2/ax ±=  by DQ 
method for n=11, n=15 as can be seen that symbols are close to the solid line (the applied load, 

)/cos(0 byX πσ−=  ) , and the answers are very close together. It was found that the new version of DQ is 
comfortable for these problems. Table (1) shows the DQ results with n=11 for three different aspect ratios. It is 
found that differences are observed between the data obtained by DQ method and results cited from literature [21], 
but are close to the FE data, this shows the manual method is not accurate. In table (2) the buckling coefficient (k) 
obtained for a sample FGM plate. It can be seen with increasing aspect ratio, buckling coefficient decrease and with 
increasing the power law index it increases. And also in tables 3 and 4, the buckling coefficient obtained, it is found 
that the buckling coefficient is similar for different value of grid points numbers and increase with increasing the 
power law index. Figs (7-9) show the resultant of tables (2-4) alike curvature. 

10    CONCLUSION 

In this paper, the new version of differential quadrature method (DQM), for calculation of the buckling coefficient 
of rectangular plates is considered. At first the governing differential equation for plate has been calculated and then 
according to the new version of differential quadrature method the existence derivatives in equation are converted to 
the amounts of function in the grid points inside of the region is solved. Calculation performed and observed show 
that if the number of grid point was low then the results will be not convergence, therefore the manual are not 
accurate enough. It is also found that DQ solutions are sensitive to grid spacing, thus non-uniform grid spacing 
should be used to ensure the solution accuracy. The results of the new version of DQ are close to FE data. This 
indicates this method can be employed for obtaining buckling loads of plates under non–uniform distributed loading 
for all boundary conditions.   
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