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 ABSTRACT 

 In this article, the prominence has been given to study the influence of skew angle on bending 
response of functionally graded material shell panels under thermo-mechanical environment. 
Derivation of governing equations is based on the Reddy’s higher-order shear deformation 

continuity  1theory and Sander’s kinematic equations. To circumvent the problem of C
formulation is developed.  A  0on, Crequirement coupled with the finite element implementati

nine noded isoparametric Lagrangian element has been employed to mesh the proposed shell 
element in the framework of finite element method. Bending response of functionally graded 
shell under thermal field is accomplished by exploiting temperature dependent properties of the 
constituents. Arbitrary distribution of the elastic properties follows linear distribution law which 
is a function of the volume fraction of ingredients. Different combinations of ceramic-metal 
phases are adopted to perform the numerical part.  Different types of shells (cylindrical, 
spherical, hyperbolic paraboloid and hypar) and shell geometries are concerned to engender 
new-fangled results. Last of all, the influence of various parameters such as thickness ratio, 
boundary condition, volume fraction index and skew angle on the bending response of FGM 
skew shell is spotlighted. Some new results pertain to functionally graded skew shells are 
reported for the first time, which may locate milestone in future in the vicinity of functionally 
graded skew shells.                                                 © 2013 IAU, Arak Branch. All rights reserved. 

 Keywords: Functionally graded material; Skew shell; Higher order shear deformation theory; 
Bending analysis; Thermal field 

1    INTRODUCTION 

 HE supremacy of functionally graded materials (FGMs) over homogenous conventional materials and the                   
ability to fabricate the material with graded properties in the favored direction made them to occupy fore-font in 

the material research. In general, FGMs are made by two isotropic constituents to propose two distinct properties: 
the first phase which is engineering metal may have alloys such as aluminium, titanium and steel and the other phase 
being ceramic comprise of alumina, zirconia and silicon carbide. The user can opt for appropriate blend of these two 
materials to realize the merits offered by each constituent. Owing to the potential to withstand ultra high temperature 
and large temperature changes that occurs with in a fraction of seconds, FGMs are widely used in space shuttles, 
nuclear reactors, solar panels and aerospace structures. As a final observation concerning FGMs, it can be noted that 
these graded materials concept has demonstrated that compositional micro/macrostructure gradient can not only 
dismiss undesirable effects such as stress concentration, but can also generate unique positive function [1]. Recently, 
an in-depth assessment on static, vibration and buckling problems of FGM plates was lucratively given by Jha et al. 
[2]. In addition, the reader can locate inestimable literatures available in the past to understand the behavior of FGM 
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structures [3-16]. For the sake of shortness, here we concise our attention to recapitulate the works performed on 
analysis of isotropic and FGM shells that utilize shear deformation theories in conjunction with various analytical 
and numerical techniques.   

Many classical theories were evolved based on Love’s assumption to analyze the elastic laminated shells [17-
19]. But these theories are proven to be substandard in case of thick shells, due to the negligence of transverse shear 
effect. Further, to overcome the drawbacks of the classical theories, transverse shear stresses are taken to care by 
many researchers [20-22]. In due course of time, many displacement based higher order theories were also 
developed [23, 24], but the major drawback was the assumption of constant variation of transverse shear stresses 
thus leading to the estimation of shear correction factor. To end with, a simple higher order theory that accounts for 
parabolic variation of transverse shear stresses was proposed by Reddy [25], to eradicate the shear correction factor. 
The theory is based on the displacement field in which the displacements of the middle surface are expanded as 
cubic function of thickness coordinate which is equivalent to neglecting the stretching effect of normal to the middle 
surface of the shell. In addition, Reddy and Arciniega [26] carried out a comprehensive study of various plate and 
shell theories available till now, for vibration, bending and buckling analysis of plates and shells. Despite of the 
above pointed out research works, a substantial number of literatures are also available based on meshless methods 
supplemented with radial basis collocation technique [27-31]. Over a period of time, the focus has been diverted to 
utilize these developed theories for the analysis of functionally graded structures. Furthermore, some of the 
imperative earlier works in the area of FGM shells which serves the channel for the present study has been discussed 
in this section. 

Pradyumna et al. [32] carried out the transient analysis of FGM shell panels by considering parabolic distribution 
of transverse shear strains along the thickness of the shell. Element with nine degrees of freedom per each node is 
utilized to develop C0 finite element formulation. Zhao and Liew [33] studied the response of FGM shell panels 
based on the non-linear Sander’s shell theory and geometric non linearity is taken into account for the analysis. 
Mesh free kernel particle functions, are length method and Newton-Raphson methods are employed in the study. 
They pointed out that volume fraction index plays dominant role and there may be significant influence on stresses 
when the panel is under thermal field. Zhao et al. [34] presented the Sander’s first order shear deformation shell 
theory and used mesh-free kernel particle functions to carry out the static and vibration analysis of functionally 
graded shells under thermal and mechanical loads. Naghdabadi and Kordkhejli [35] presented a finite element 
formulation based on explicit through the thickness integration scheme for the thermoelastic analysis of FGM plates 
and shells. Cinefra et al [36] analysed the simply supported FGM shell under thermal field and transverse 
mechanical loads. Unified formulation with single and layer wise theory is used to analyze the panel. A series of 
studies on vibration and stability of circular shells with ring support under different loading environment is 
performed by Najafizadeh et al. [37-42]. 

Subsequently, considerable amount of work has been also published in relative to the analysis of FGM shells 
[43-47] considering non linearity into account. However, as far as the author’s knowledge is concern, immense 
works were placed in the literature on the subject of bending response of FGM plates, but still, there is scarceness of 
results for the bending analysis of FGM shell panels with skew boundary which has specific application in modern 
construction structures. Hence, the authors are provoked to put forward the bending analysis of functionally graded 
panels by incorporating C0 finite element formulation to acquire the cause of skew boundary in FGM shells. The 
material properties are assumed to have a smooth and gradual variation along the thickness direction of the shell and 
obey linear distribution law. Both thin and thick shells have been analyzed and the influence of skew angle (α), 
thickness ratio (R/h), volume fraction index (n) and boundary conditions on deflection parameter of the shell are 
accomplished in the form of Tables and Figures.  

The paper is structured in the following fashion. Section 1 serves as platform for the present paper while giving 
brief idea on earlier related research works. In order to give an unambiguous motivation of the present study, we 
first furnish the significance of the present work in view of research under Section 2 and shell geometry considered 
with the FGM material properties is presented next in Section 3. A kinematics equation that describes the proposed 
model along with the strain part is surrendered in Section 4. A brief remark on the output of the various numerical 
problems is highlighted in Section 5 followed by summary bulletin of the study under Section 6. 

2    RESEARCH SIGNIFICANCE 

Skew shells which have ample employment in diverse fields of engineering demand the thorough understanding of 
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response in bending under various loading conditions. Hitherto, there are no works in the scientific literature 
regarding the bending analysis of FGM skew shells incorporating mechanical and thermal field using finite element 
as a tool. This is the root cause why the authors are motivated to accomplish the bending analysis of functionally 
graded skew shell panels using an efficient displacement based finite element approach, which is considered to be a 
most versatile and consistent tool to handle problems involving more complexity. The displacement field proposed 
in the present study (refer Eq. (5)), involves the derivatives of the out-of-plane displacement in in-plane 
displacement field (u and v). Further, this would invite the problem what is known as C1 continuity requirement by 
involving second order derivatives in the strain part. Picking C1 continuity invites complication and involvedness 
which is well established one and C0 continuity allows the easy execution of isoparametric finite element 
formulation. Owing to the fact,  C0 elements can be applied to non-rectangular plan forms such as skew shells 
without involving any intricacy. For this intention, in the present formulation the strain vector having only the first-
order derivatives has been evolved, thereby leading to a C0 formulation. The significance of the present work can be 
recapitulated as below. 

 An efficient C0 element is developed for the finite element implementation which matches with other 
elements in practical owing to its unproblematic sense. 

 Novel results are generated considering skew angle as the prime variable to ascertain the bending   analysis 
of FGM shells under thermo-mechanical environment. 

 Hyperbolic parabolid and hypar type skew shells which are known for its special form of its geometry, and 
not yet considered in any of the earlier works are analyzed using third order shear deformation theory 
(TSDT). 

 Special form of displacement field proposed by Reddy [48] is incorporated to accomplish strain-
displacement relation, thus eliminating the use of shear correction factor which is the cumbersome process 
otherwise. 

By presenting the various important conclusions regarding bending of functionally graded skew shell (FGSS) 
incorporating various parameters and shell types, the authors confident that, the presented results should serve as 
crucial reference data in case of FGM skew shells.  

3    FUNCTIONALLY GRADED MATERIALS 
3.1 Geometry of FGSS 

A shell element having dimensioned a x b x h and skew angle α is represented in Cartesian co-ordinate system as 
demonstrated in Fig. 1. The mid plane of the shell (z=0) is assumed as reference plane for the material co-ordinate 
system. The top surface of the shell (z=+h/2) is rich in ceramic content, whereas the bottom surface of the shell (z=-
h/2) is rich in metal content. The finite element implementation of the model is based on the application of the nine 
noded isoparametic Lagrangian element with seven nodal unknowns per node  (Fig. 2). 

   
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  
Geometry of cylindrical skew shell. 
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Fig. 2  
Isoparametric Lagrangian element in natural co-ordinate 
system. 
 
 

3.2 FGM properties 

In common, FGMs are characterized by their smooth and gradual variation of material properties along the preferred 
direction. In the present study, the effective material properties of the shell panel are assumed to vary only in the 
thickness direction. Different schemes are proposed in the literature to evolve the effective properties of the 
functionally graded materials. Amid the methods projected in the literature: Self consistent scheme [49-51] Mori and 
Tanaka scheme [52, 53] composite sphere assemblage model [54, 55] composite cylindrical assemblage model [56, 
57] simplified strength of materials method [58, 59] method of cells [60] and Voigt rule of mixture [61] are few to 
cite. Even though each scheme has its own pros, Voigt rule of mixture [61] dominate the literature and henceforth 
utilized in the study. As per Voigt method, the effective property (P) of FGSS can be expressed as: 

 c c m mP P V P V  (1) 

 
where Vc and Vm are the volume fraction of the ceramic and metal phase of the FGM shell, respectively. In the 
present study, Eq. (1) is utilized to homogenize Young’s modulus (E), Poisson’s ratio (γ), thermal conductivity (k), 
thermal expansion (α) and density (ρ) of the material. The volume fraction of the ceramic part (Vc) can be estimated 
from the linear distribution law which can be expressed in its mathematical form as: 
 

0.5
n

c

z
V

h
   
 

 
 

(2) 

 
It should be obvious that n is the non-negative parameter and referred in the literature by diverse terms as 

volume fraction index, power law index, power law exponent and power law constant. Here, we refer the constant n 
as volume fraction index in all the sections. It assumes the value between zero and infinity. The value of n=0 
corresponds to top of the shell (z=+h/2) which is rich in ceramic content, and infinity corresponds to bottom of the 
shell (z=-h/2) which is rich in metal content. By varying the magnitude of n between zero and infinity, the user can 
predict the properties of the functionally graded material at any location (depth) in the simple manner. Further, the 
volume fraction of the ceramic and metal phases are correlated by the relation, 

1 c mV V  (3) 

 
By assuming the plane stress condition (σzz=0), the linear constitutive relation for the FGM shell may be 

expressed as: 
 

 

11 12

21 22

33

44

55

0 0 0 1

0 0 0 1

0 0 0 0 0 ,

0 0 0 0 0

0 0 0 0 0

                                                               

xx xx

yy yy

yz yz

xz xz

xy xy

Q Q

Q Q

Q z T T

Q

Q

 
 

  

 
 

 

 
 
 

(4) 

1                 2             3 

8                    9                 4         ξ 

7                   6                  5 

 



An Efficient Co Finite Element Approach for Bending Analysis …                    51 

© 2013 IAU, Arak Branch 

where 11 22 12 21 33 44 552 2

( ) ( ) ( )
, ,

2(1 )1 1

E z E T E z
Q Q Q Q Q Q Q


 
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 

 , Qij is the stiffness coefficient 

matrix depends on the Young’s modulus (E) and Poisson’s ratio (γ) of the material. Here, thermal expansion co-
efficient (α) is a function of depth (z) and temperature (T) of the material. 

4    FINITE ELEMENT FORMULATION 
4.1 Kinematics 

A special form of displacement field proposed by Reddy [48] is chosen, which can be dictated by the condition of 
zero transverse shear stresses (σxz=σyz=0) at the top and bottom and non-zero at any other location of the shell. The 
in-plane displacement field (u and v) presented here are expanded as cubic functions of the thickness coordinate (z), 
while the constant transverse displacement (w) through the thickness has been assumed. Any other choice of 
displacement field would either not satisfy the stress-free boundary conditions or lead to a theory that would involve 
more dependent unknowns than those in the first-order shear deformation theory [48]. The present finite element 
formulation is based on shallow shell theory and the middle plane of the shell is taken as the reference plane (see 
Fig.1). It is to be noted that, the theory given by Reddy assumes the parabolic variation of transverse shear stresses 
through the thickness of the shell, due to which the use of shear correction factor can be avoided. Meanwhile, the C1 
continuity requirement of the higher order theory has been circumvented in the present study by assuming the 

derivatives of the transverse displacement as separate field variables i.e., * *and
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According to Reddy’s third order shear deformation theory, the in-plane displacement field u and v and the 
transverse displacement w of the shell surface can be expressed as: 
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Also, the displacement field at any point within the element can be written in-terms of nodal unknowns by using 

interpolation functions otherwise known as shape functions as:  
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To define the deformation profile, the basic field variables interpreted in the present study are u0, v0, w0, θx, θy, , , 
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y  for each node and hence a total number of 63 field variables are taken for the analysis of each element. 

In the present study, following shape functions are considered. 
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4.2 Strain-Displacement relation 

All the formulations are confined to linear elastic behavior with small displacements and small strains. The linear 
strain- displacement relations according to Sander’s shell theory are 
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Rx, Ry represents the radii of curvature in the x and y directions respectively and Rxy is the twist radii of curvature. C1 
is the tracer that helps to reduce the approximation in to Love’s shell theory and it is taken as unity in the present 
formulation. It is worth here to mention that, in Eq. (8), the term for twist radii of curvature (Rxy) will facilitate the 
formulation to handle shell with special geometry (i.e., hypar).Upon substitution of Eq. (5) in to Eq. (8), we get the 
strain terms as: 
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Further, the strain matrix will involve the shape functions (Ni), derivatives of shape functions ori iN N

x y

 
 

and 

curvature terms (Rx, Ry and Rxy) as derived in Appendix A.  
Hence, the strain vector in terms of displacement of each node may be expressed as: 

 
{ } [ ]{ } B   (10) 

 
In Eq. (10), [B] is the strain-displacement matrix and { } is the vector contains the nodal-displacement variables. 
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4.3 Governing equations 

According to the principle of virtual, work the element stiffness matrix [K] and the load vector {P} can be derived 
as: 
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[D], [J] are the rigidity matrix and Jacobian matrix respectively, for the element under the consideration. The 

above formed stiffness matrix [K]e and the load vector {P}e at element level are assembled using the standard 
assembly procedure to get stiffness matrix and load vector at global level. The boundary conditions are imposed to 
get the nodal displacements and stresses are calculated using Eq. (4). Different types of boundary conditions are 
incorporated to study its response on the deflection parameter. A numerical code in FORTRAN 90 is developed to 
implement the above finite element formulation for the calculation of deflection in FGSS. The global stiffness 
matrix is stored in singly array using skyline method and Gaussian elimination procedure is used for the solution of 
simultaneous equations. 

4.4 Boundary conditions 

Following types of boundary conditions have been utilized to perform the various numerical problems. For the sake 
of brevity only the short term notations mentioned in the bracket are utilized wherever necessary.  
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5    COMMENTS ON NUMERICAL STUDIES 

To explain, this section is broken down into two major phases. In the first phase, to make certain the exactness and 
efficacy of the present formulation, the result obtained by the present higher order theory is compared with that of 
results presented by Zhao et al. [34] which utilizes the first order shear deformation theory (FSDT) and ensure the 
linear variation of shear strain through the thickness of the shell. In addition, the convergence study is also 
performed by taking different mesh sizes before proceeding to attain generate new results. In the second phase, an 
effort has been made by the authors to engender innovative results with respect to bending performance of FGM 
skew shell panels. However, the prime emphasis has been given to highlight the effect of skew angle on bending 
response of FGSS. The properties of the constituents of the material like Young’s modulus (E), Poisson’s ratio (γ), 
thermal conductivity (k), co-efficient of thermal expansion (α)  and  density (ρ) that depends on temperature has also 
been considered for thermal analysis. Following are the different properties of ceramic and metal constituents 
employed to perform the numerical part. 

 3 4Silicon Nitride Si N :  E  322.27GPa,  0.24   (13) 

 3 4Stainless Steel SUS 0 :  E 207.78GPa,  0.318                                (14) 

 Aluminium Al :  E 70 GPa,  0.3   (15) 

 2Zirconia Zr0 :  E 151 GPa,  0.3    (16) 

 2 3Alumina Al 0 :  E 320.2 GPa,  0.26  (17) 

 
The above mentioned ceramic and metal phases are combined together to carry out the validation study and 

generate new results. Three types of FGM shells: type I- Al/Zr02, type II- Al/Al203 and type III SUS304/Si3N4 are 
considered. Unless otherwise specified, the dimensions of the shell panel used for all the examples are a = b = 1m, R 
= 1m, h = 0.01m. A mechanical load of magnitude q =1.0x106 N/m2 is applied in the transverse direction. All the 
results presented in the form of Tables and Figures are adimensionalized and different parameters handled in the 
study are represented below. 

 

Displacement:  w
w

h
  

Axial stresses:  
2

2
0

 xx
xx

R

q h


              

5.1 Convergence and validation study 

Table 1. enlightens the efficiency and convergence of the present formulation which compared with the source paper 
by Zhao et al. [34] based on first order shear deformation theory, using type I FGM cylindrical shell. An excellent 
agreement between the two papers is obvious. Based on the progressive mesh refinement, it is decided that 16x16 
mesh is adequate for the bending analysis of FGM skew shells. Hence, in the present study a mesh of size 16x16 is 
adopted for all the numerical examples performed. For the sake of brevity, the mesh size is not mentioned in the 
subsequent Tables of the paper. Here, the volume fraction index n is chosen from 0 to 5. Different support 
conditions such as, simply supported-simply supported (SSSS), clamped-clamped (CCCC) and camped-simply 
supported (CSCS) are incorporated in the Table 1. The error percentage between the present and the source paper 
results are also exposed in Table 1. The least error is reported for the case of n= 0.5 related with simply supported 
condition and maximum error was noted to be around 2.27 with reference to n= 5.0 with clamped boundary 
condition. The discrepancy between the two results happens due to different theories involved to refer the 
kinematics field and the various solution strategies followed by the authors. It is to be noted that the different values 
of volume fraction index n have no pronounced influence on the convergence rate. Also, the shell with clamped-
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clamped (CCCC) boundary undergoes less deflection followed by clamped-simply supported (CSCS) and simply 
supported (SSSS) boundaries. After ensuring the exactness of the present formulation, it is extended to engender 
new results by considering various shell types and geometry. 
 
 
Table 1 
 Non dimensional central deflection  of cylindrical shell (type I FGM)-convergence and validation 

 a indicates mesh size. 

5.2 New results-FGM skew shell 
5.2.1 Skew cylindrical shell under mechanical load 

In Table 2, an attempt has been made to study the influence of skew angle for type I FGM cylindrical shell (Rx=R, 
Ry=Rxy=∞) with several types of support condition. The considered value of skew angle ranges from 15° to 60° and 
several values of volume fraction index (n=0 to10) are also chosen. Three types of boundary conditions, simply 
supported-simply supported (SSSS), clamped-clamped (CCCC) and simply supported-clamped (SCSC) are adopted. 
It is noticed that hike in skew angle (α) tends to decline the deflection irrespective of the value of volume fraction 
(n) considered.  Another important observation from the Table 2. , is that larger volume fraction (n) of the shell 
tends to boost up the deflection parameter. The low stiffness contributed by the metal segment of the shell may be 
the contribution factor for this type of tendency. Moreover, the shell with SSSS boundary condition endures the 
large amount of deflection than that of shell with CCCC and SCSC type of boundary condition. This is not 
surprising, because of the high rigidity phenomenon offered by clamped shell compared with other type boundary 
conditions. Further, the outcome regarding the effect of volume fraction index n on the deflection parameter remains 
unchanged as observed from Table 1. Finally, it can be interpreted that the volume fraction index n plays a key role 
in bending response of the plate. 

5.2.2 Spherical, Hyperbolic paraboloid and hypar skew shells under mechanical load 

In this problem, we assess the superiority of the shell type in bending by considering type-II FGM shell having 
different types of plan view. The other parameters considered in the problem remain same as mentioned in 
comparison part. Bending performance of three kinds of shell types namely spherical (Rx=Ry=R, Rxy=∞), hyperbolic 
paraboloid (Rx=-Ry) and hypar (Rx=Ry=∞) are demonstrated in Fig. 3. It is to be noted that the term Rxy incorporated 
in the strain part (refer Eq. (5)) will enable the formulation to handle the special form like hypar skew shells, which 
is the one of the major aspect of the present paper. The results are shown for the linear variation of ceramic and 
metal phase i.e, n=1.0. Four types of support conditions such as simply supported-simply supported (SSSS), 
clamped-clamped (CCCC), simply supported-clamped (SCSC) and clamped-free (CFCF) are evaluated. Among all 
the boundary conditions considered, clamped-free boundary condition (CFCF) endures the least bending response 
regardless of the shell type. Moreover, the hypar shells show better performance in comparison with spherical and 
hyperbolic paraboloid shell.  
 
 

Boundary 
condition 

Reference Volume fraction index (n) 
0 0.2 0.5 1 2 5 

SSSS Present (4x4)a 0.04235 0.04747 0.05367 0.06027 0.06612 0.07192 
Present (6x6) a 0.04265 0.04781 0.05405 0.06069 0.06657 0.07240 
Present (8x8) a 0.04272 0.04789 0.05414 0.06079 0.06668 0.07251 

Present (12x12) a 0.04275 0.04792 0.05419 0.06084 0.06673 0.07256 
Present (16x16) a 0.04275 0.04793 0.05419 0.06085 0.06674 0.07257 
Zhao et al. [34] 0.04267 0.04807 0.05425 0.06072 0.06658 0.07235 

% of error   0.19   0.29   0.11   0.21   0.24   0.30 
CCCC Present (16x16) a 0.01374 0.01539 0.01739 0.01953 0.02146 0.02341 

Zhao et al. [34] 0.01347 0.01516 0.01711 0.01915 0.02102 0.02289 
% of error   2.00   1.52   1.64   1.98   2.09   2.27 

CSCS Present (16x16) a 0.02161 0.02423 0.02740 0.03077 0.03375 0.03668 
Zhao et al. [34] 0.02122 0.02391 0.02700 0.03022 0.03310 0.03593 

% of error   1.84   1.34   1.48   1.82   1.96   2.09 
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Table 2 
Non dimensional central deflection  of cylindrical skew shell (type I FGM) 

5.2.3 Effect of radius and load parameter on displacement of skew cylindrical shell 

Fig.4 exhibits the dominance of radius-thickness ratio over the deflection parameter of type II FGM, shell 
considering SSSS support condition. Three types of radius-thickness ratio R/h= 50, 100 and 200 are picked to study 
the effect of Rx on bending response of skew cylindrical shell. Several values of volume fraction index n=0.5, 1.0, 
2.0 and 10 are utilized for the present example. The examination on Fig. 4 reads, as the radius tends to rise, stiffness 
of the shell becomes less there by reporting more deflection factor. Increase in volume fraction index corresponds to 
segment offers less stiffness and hence ensures maximum bending response. For the value of R/h=50 which means 
thickness h=0.02 shows almost least influence on the bending response of the plate is another output depicted from 
Fig.3. Further, for R/h=200 which means h=0.005 reflects drastic change in its behavior over other cases considered. 
The consequence of load parameter on non-dimensional deflection is exhibited in Fig.5 for several values of volume 
fraction index (n=0 to 1000). Increase in the load parameter confirms the rise in deflection parameter for all the 
values of volume fraction index considered. Further, the increase in volume fraction index n tends to lift the 
deflection, which is the same statement observed from previous examples also. 

5.2.4 Skew cylindrical shell under thermal field 

The consequence of temperature field on the bending response of the type-III FGM cylindrical shell is revealed in 
Table 4. The temperature dependent material properties of the constituents of the shell are displayed in Table 3 with 
relative units. Here, Young’s modulus (E), Poisson’s ratio (  ), thermal expansion co-efficient (a) thermal 
conductivity (k) and density ( ) are taken as temperature-dependent properties under the temperature T=300K. The 
bottom temperature which refers to temperature of the metal segment is kept as unchanged (i.e., Tm=20°C), while the 
top temperature that corresponds to temperature of the ceramic segment takes the value from 100°C to 400°C. The 
repeating observation concluded from Table 2 with regard to skew angle is again confirmed in Table 4. (i.e., 
increase in skew angle lowers the deflection parameter).Further, amplification in temperature field be likely to rise 
the deflection regardless of the skew angle of the shell. This is because of the weak young’s modulus of the material 
under high temperature.  

5.2.5 Influence of axial stresses in skew cylindrical shell under mechanical load 

Axial stresses of type II FGM cylindrical shell at the top and bottom surface of the shell panel subjected to 
transverse mechanical load was exhibited in Table 5. Effect of volume fraction index has been taken in to account 
by assuming several values of n=0, 1, 5 and 1000. It reveals the fact that bottom of the shell where z=-h/2 
experiences the stresses which are compressive in character, while the top of the shell where z=+h/2 experiences the 
stresses which are tensile in character. Increase in skew angle tends the shell to have minimum stresses (either 
compressive or tensile in nature) at both top and bottom surfaces. Further, increase in volume fraction index n makes 
the shell to experience maximum stress (either compressive or tensile in nature). 
 

Boundary 
condition 

Skew 
Angle (α) 

Volume fraction index (n) 
0 0.2 0.5 1 2 5 10 

SSSS 
 

15° 0.04264 0.04792 0.05430 0.06096 0.06656 0.07184 0.07681 
30° 0.02993 0.03363 0.03810 0.04278 0.04672 0.05044 0.05393 
45° 0.01508 0.01694 0.01919 0.02155 0.02355 0.02546 0.02722 
60° 0.00440 0.00493 0.00559 0.00627 0.00687 0.00745 0.00797 

CCCC 
 

15° 0.01364 0.01531 0.01734 0.01947 0.02131 0.02310 0.02470 
30° 0.00943 0.01058 0.01198 0.01346 0.01474 0.01599 0.01710 
45° 0.00473 0.00531 0.00600 0.00674 0.00740 0.00805 0.00861 
60° 0.00145 0.00162 0.00183 0.00206 0.00227 0.00248 0.00266 

SCSC 15° 0.02237 0.02513 0.02846 0.03196 0.03495 0.03781 0.04043 
30° 0.01558 0.01749 0.01981 0.02224 0.02434 0.02636 0.02819 
45° 0.00792 0.00888 0.01005 0.01129 0.01237 0.01343 0.01436 
60° 0.00245 0.00274 0.00310 0.00349 0.00383 0.00418 0.00447 
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Table 3 
Temperature dependent properties of FGM constituents 

Constituents Elastic properties of FGM 

E (x109N/m2)   (x10-6/0C) K (W/m-K) (kg/m3) 
Zirconia (Zr02) 151.0 0.30 23.0         204  2707 
Aluminium (Al)   70.0 0.30 10.0    2.09 3000 
Alumina (Al203) 320.2 0.26   7.2 10.4 3750 

SUS304  207.78  0.318 15.3    9.54 8166 
Si3N4  322.27 0.24     7.47 10.12 2370 

 
 
Table 4 

Effect of temperature field on non-dimensional deflection w  of cylindrical skew shell (type III FGM, thermal load, 
Tbottom=20°C) 

 
 
Table 5 
Non dimensional axial stresses for cylindrical shell (type II FGM, mechanical load) 
Skew 
angle 
(α) 

Volume fraction index (n) 
0 1 5 1000 

Top Bottom Top Bottom Top Bottom Top Bottom 
15° 0.1104e09 -0.79508e08 0.16848e09 -0.40741e08 0.23331e09 -0.62714e08 0.50517e08 -0.79508e08 

30° 0.90266e08 -0.61881e08 0.13845e09 -0.31937e08 0.19182e09 -0.49126e08 0.41290e09 -0.61881e08 
45° 0.60161e08 -0.40295e08 0.92840e08 -0.20950e08 0.12813e09 -0.32055e08 0.27519e09 -0.40295e08 
60° 0.26999e08 -0.18978e08 0.41680e08 -0.98531e07 0.57312e08 -0.14996e08 0.12350e09 -0.18978e08 

 
 

Skew angle 
(α) 

Ttop(°C) Volume fraction index (n) 
0 0.5 1 2 5 1000 

 
 
 

15° 

100 0.02030 0.01920 0.01940 0.02140 0.02730 0.04410 
150 0.03290 0.03120 0.03160 0.03480 0.04440 0.07170 
200 0.04560 0.04320 0.04370 0.04820 0.06140 0.09930 
250 0.05830 0.05510 0.05590 0.06150 0.07850 0.12700 
300 0.07100 0.06710 0.06800 0.07490 0.09550 0.15400 
350 0.08360 0.07910 0.08020 0.08830 0.11300 0.18200 
400 0.09630 0.09110 0.09230 0.10200 0.13000 0.21000 

 
 
 

30° 

100 0.01590 0.01510 0.01530 0.01680 0.02150 0.03470 
150 0.02590 0.02450 0.02480 0.02740 0.03490 0.05640 
200 0.03590 0.03390 0.03440 0.03790 0.04830 0.07810 
250 0.04580 0.04340 0.04390 0.04840 0.06170 0.09980 
300 0.05580 0.05280 0.05350 0.05890 0.07510 0.12200 
350 0.06580 0.06220 0.06310 0.06940 0.08860 0.14300 
400 0.07570 0.07170 0.07260 0.08000 0.10200 0.16500 

 
 
 

45° 

100 0.00998 0.00944 0.00957 0.01050 0.01340 0.02170 

150 0.01620 0.01530 0.01550 0.01710 0.02180 0.03530 
200 0.02250 0.02120 0.02150 0.02370 0.03020 0.04890 
250 0.02870 0.02710 0.02750 0.03030 0.03870 0.06250 
300 0.03490 0.03300 0.03350 0.03690 0.04710 0.07610 
350 0.04120 0.03890 0.03950 0.04350 0.05550 0.08970 
400 0.04740 0.04490 0.04540 0.05010 0.06390 0.10300 

 
 
 

60° 

100 0.00432 0.00408 0.00414 0.00456 0.00582 0.00942 
150 0.00701 0.00663 0.00672 0.00741 0.00946 0.01530 
200 0.00971 0.00919 0.00931 0.01030 0.01310 0.02120 
250 0.01240 0.01170 0.01190 0.01310 0.01670 0.02710 
300 0.01510 0.01430 0.01450 0.01600 0.02040 0.03300 
350 0.01780 0.01680 0.01710 0.01880 0.02400 0.03890 
400 0.02050 0.01940 0.01970 0.02170 0.02770 0.04480 
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(a) (b) (c) 

 
Fig. 3  
Non dimensional central deflection of different shell types for various skew angles (type II FGM, mechanical load). 

 
 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 4 
Influence of radius (Rx) on deflection for cylindrical skew shell (type II FGM, mechanical load). 
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Fig. 5 
Influence of Load parameter on deflection for cylindrical 
skew shell (type II FGM, mechanical load). 

6    CONCLUSIONS 

Bending analysis of different types of functionally graded skew shells with various geometries namely cylindrical, 
spherical, hyperbolic paraboloid and hyper has been carried out using a nine noded C0 isoparametric Lagrangian 
element with seven nodal unknowns per each node, for the first time. The Voigt rule of mixture is used to estimate 
the effective elastic properties of the FGM shell. The displacement field is expressed based on a higher order shear 
deformation theory (HSDT) which requires no shear correction factor unlike first order shear deformation theory 
(FSDT) and Sander’s approximation is used to represent the linear strain components. The response of the different 
types of skew shells under mechanical and thermal field is studied by performing various numerical examples. 
Following vital comments are put forward regarding bending analysis of FGM skew shells. 
- Increase in skew angle confirms less magnitude of deflection irrespective of the nature of boundary                            
condition of the panel. 
- Clamped skew shell ensures minimum deflection compared with SSSS and SCSC boundary conditions due to   
high rigidity phenomenon. 
-  Hypar skew shells shows better performance compared to spherical and hyperbolic paraboloid shells in view of 
deflection criteria. 
- Temperature field will have noticeable consequence on deflection criteria of the panel. It tends to rise the 
deflection when it goes up. 
- In all the examples performed, increase in volume fraction index n tends to record high deflection due to less 
stiffness offered by metal segment. 
- On the whole, volume fraction index n and skew angle (a) of the shell are found to be a key parameter in 
predicting the bending response of the shell. 

Further, the work of sandwich functionally graded plates considering the thickness stretching effect is under the 
study by authors. 
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APPENDIX A 
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