
 

© 2018 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 10, No. 1 (2018) pp. 38-56 

Non Uniform Rational B Spline (NURBS) Based Non-Linear 
Analysis of Straight Beams with Mixed Formulations 

R. Ranjan
 1, *

, J.N. Reddy
 2
 

1
School of Aerospace and Mechanical Engineering, 865 Asp Avenue, Norman, OK, 73019, USA 

2
Department of Mechanical Engineering, 3123 TAMU, College Station, TX, USA 

Received 3 September 2017; accepted 6 December 2017 

 ABSTRACT 

 Displacement finite element models of various beam theories have been 

developed traditionally using conventional finite element basis functions 

(i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or 

spectral/hp Legendre functions). Various finite element models of beams 

differ from each other in the choice of the interpolation functions used for the 

transverse deflection w, total rotation x , and/or shear strain xz , as well as 

the variational method used (e.g., collocation, weak form Galerkin, or least-

squares). When nonlinear shear deformation theories are used, the 

displacement finite element models experience membrane and shear locking. 

The present study is concerned with development of alternative beam finite 

elements using both uniform and non-uniform rational b-splines (NURBS) to 

eliminate shear and membrane locking in an hpk finite element setting for 

both the Euler-Bernoulli beam and Timoshenko beam theories. Both linear 

and non-linear analysis are performed using mixed finite element models of 

the beam theories studied. Results obtained are compared with analytical 

(series) solutions and non-linear finite element and spectral/hp solutions 

available in the literature, and excellent agreement is found for all cases. 

    © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HREE different kinematic theories have been used to study beams, namely, Euler-Bernoulli theory (EBT), 

Timoshenko beam theory (TBT), and Reddy third-order shear deformation theory (RBT) [1]. The displacement 

finite element models of TBT and RBT are known to exhibit shear locking when using equal-order, lower-order 

interpolation of the generalized displacements (w, x ). Locking is due to inconsistency of the interpolation used for 

w and x . Often reduced-order integration techniques are used to alleviate locking [2]. The reduced integration 

beam elements are known to exhibit spurious energy modes. Others have used so-called consistent interpolations 

based on the recovery of correct constraints in the thick beam limit [3, 4]. Although such elements do not experience 

locking, they did not lead to the two-node super-convergent element developed by Reddy [5], who used the cubic 

Hermite interpolation of w and interdependent quadratic interpolation of x in developing the element. The 
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conventional reduced integration Timoshenko elements as well as consistent interpolated quadratic elements fail to 

capture the true behavior of such members unless two or more elements per structural member are used. While the 

displacement-based models for the Timoshenko beam theory (TBT) admit the use of 0C  expansions, the use of the 

Euler Bernoulli beam theory (EBT) requires the use of C
1
-continuous expansion of w and 0C -interpolation of x . 

The mixed formulation in which stress resultants are incorporated into the fundamental governing equations for the 

Euler Bernoulli beam theory admits the use of 0C  expansions [6]. The use of b-spline basis offers higher continuity 

and 1C  continuous hierarchal expansions lends itself to spectral accuracy. The TBT on the other hand, allows the 

use of 0C  approximations for the displacement based formulations. In the thin beam limit, the TBT model should 

provide similar results as the EBT. However due to the use of equal lower-order (i.e., linear) approximations for the 

displacements and rotation, the element fails to realize the thin beam limit and thus experiences shear locking. Most 

studies in literature make use of equi-spaced Lagrange higher-order expansions for studying the bending response 

(see Arciniega and Reddy [7]). The equi-spaced Lagrange approximation functions suffer from severe ill-

conditioning for high values of the polynomial degree p [8]. At high levelsp  the discrete problem suffers from a very 

high condition number of the stiffness matrix and the problem exhibits poor convergence behavior. The choice of 

higher-order approximation functions has a dramatic effect on the conditioning of the discrete problem. Significant 

amount of work has been done to improve higher-order finite elements or p-version FEM [9-13]. Low order finite 

element methods for solving beam problems exhibit either membrane or shear locking. This problem is commonly 

treated by reduced integration techniques, although other remedies may be found [2, 13]. Shear locking is evident in 

the weak-form displacement finite element models of TBT with equal-order interpolation of the generalized 

displacements. The phenomenon is more predominant when the length-to-thickness ratio of the beam is large. 

Higher-order elements have been explored in literature to alleviate shear locking but they have been mostly based on 

equi-spaced Lagrange polynomials. The use of spectral/hp nodal expansions was first explored by Ranjan [13], who 

used nodal expansions to study the bending response of EBT, TBT, and plates with both displacement based and 

mixed formulations. There has been increased interest in the past decade on using b-spline based iso-geometric 

method for studying vibration response [14] and bending response of third order shear deformation theory [15]. 

Non-linear analysis of the Euler-Bernoulli beam theory and the Timoshenko beam theory was performed with 

spectral/hp methods by Ranjan and Reddy [12, 16]. 

Isogeometric methods (IGA) have been proposed as a new computational paradigm for solving partial 

differential equations which enable an elegant integration of the computer aided design (CAD) in an hpk framework 

[17]. Isogeometric collocation methods were used to solve the Timoshenko beam theory by [14]. An isogeometric 

collocation approach for solving the Euler Bernoulli beam theory was demonstrated by [18]. An isogeometric 

analysis (IGA) for solving the static EBT beam deflection and vibrations were performed in [19]. Third-order shear 

deformation theory (TSDT) was analyzed with an iso-geometric approach in [20] and for laminated composite plates 

for first order shear deformation theory FSDT) in Kapoor and Kapania [21]. Thus both isogeometric collocation 

approach and weak form Galerkin finite element methods have been examined for solving displacement based 

formulations for EBT, TBT, and third-order shear deformation theory of Reddy (RBT) [22]. However, literature is 

lacking in examining mixed formulations for solving deflection of both EBT and TBT, especially using NURBS. 

We utilize non uniform b-spline basis (NURBS) functions within the framework of mixed formulations to develop 

beam finite elements. The motivation for this study comes from the many advantages associated with b-spline basis 

functions; spectral convergence (accuracy) of the solution, avoidance of locking (with displacement based 

formulations), mixed formulations lend themselves to locking avoidance naturally, control of continuity across the 

knot index space, and partition of unity. Different length-to-thickness, a/h, ratios are examined and with appropriate 

hpk-refinements full integration was found to provide consistently good agreement with published results for both 

linear and non-linear problems. 

2    BEAM THEORIES MIXED FORMULATIONS   

The EBT is based on the assumption that a straight line transverse to the axis of the beam remains straight, 

inextensible, and normal to the mid-plane after deformation. These assumptions amount to neglecting the Poisson 

effect and the transverse normal and shear strains. The displacement field for beams with moderately large rotations 

but with small strains (i.e., the von Karman non-linearity) can be derived using the displacement field (EBT) 
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where ( 1 2 3, ,u u u ) denote the total displacements along the three coordinate directions (x, y, z), and u and w denote 

the axial and transverse displacements of a point on the neutral axis. The only nonzero von Karman non-linear strain 

is given by 
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The Euler-Lagrange equations for the EBT can be derived using the principle of virtual work. For details on the 

virtual work principle the reader is referred to Reddy [2, 6]. Based on the virtual work principle and separating the 

virtual displacements we obtain the Euler Lagrange equations for the EBT as follows: 
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where xf  is the distributed axial load and xq  is the distributed transverse load. In the EBT, Eq. (4) is used in Eq. (5) 

to replace xV , and the resulting two equations govern the equilibrium of forces. 

Assuming a linearly elastic behavior of the material, the relationship between the stress resultants ( ,xx xxN M ) 

and the generalized displacements ( , , xu w  ) can be expressed as: 
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Timoshenko beam theory relaxes the normality restriction of the Euler-Bernoulli beam theory and allows for 

arbitrary but constant rotation of the transverse normals. The displacement field of the Timoshenko beam theory is: 

 

1 0 2 3 0( , ) ( ) , ( , ) 0 , ( , ) ( )xu x z u x z u x z u x z w x     (9) 

 

The equilibrium equations of the TBT theory are provided as: 
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where x  is the rotation of a transverse normal about the y axis. The equations of equilibrium of the Timoshenko 

beam theory are the same as in Eqs. (10)- (12), with the stress resultants ( , ,xx xx xN M Q ) are given in terms of 

( , , xu w  ) as: 
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The axial force xxN , the bending moment xxM , and the transverse shear force xQ are defined by 
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where sK  is the shear correction coefficient. The non-linearity in both theories comes from the von Karman non-

linear strain. For a complete treatment of the EBT and TBT with the displacement based formulations and the 

derivation of the weak forms, the reader is referred to Reddy [2]. For the descriptions of beam theories with different 

mixed formulations the reader is referred to Ranjan [12, 13].  

3    FINITE ELEMENT FORMULATION (EBT) 

The governing equations of the Euler-Bernoulli beam theory can be expressed in several forms using different 

variables [13], and different finite element models can be developed. In this section we examine the mixed finite 

element formulation for beams. The governing equations for an EBT beam undergoing static deformations is: 
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The development of the weak finite element models for the equations follows multiplication of the above with a 

weight function and integration by parts. Assigning the variables in the formulation in the order: 

( , , , , ,x xx x xu w N V M ). For the mixed model considered for analysis, the equations are kept in their primitive forms 

and the resulting formulation has six degrees of freedom per node. The finite element formulation follows standard 

procedures as detailed earlier. The nonzero terms of the stiffness matrix are obtained as follows: 
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The order of the variables for the generation of stiffness matrix coefficients are [ , , , , ,x xx x xu w N V M ]. Both 

primary and secondary variables are carried as the unknowns in the mixed formulation. The above equations provide 

the integral forms for the nonlinear system setup for solving the Euler-Bernoulli beam theory. We utilize a 1C  

continuous basis function across the knot index space which provides 1C  continuous displacement, and stresses 

over the domain of interest. 

4    FINITE ELEMENT FORMULATION (TBT) 

The governing partial differential equations for the variables that enter the finite element formulation for the TBT 

theory are being (repeated here) for clarity. 

 

0xx

x

N
f

x


 


   ,     0xx

x

M
Q

x


 


  ,   

0 0xx

xx

wQ
N q

x x x

   
   

   
 

2

0 01

2
xx

u w
N EA

x x

   
   

    

 ,   x

xxM EI
x





   ,   

0

x xx x

w
Q S

x


 
   

 

 

 

 

(19) 

 

Weak finite element formulation entails the multiplication of the governing partial differential equation with a 

weight function and integration of the equations over the domain. Following such procedures for the weak form 

Galerkin finite element formulation the stiffness matrices for the mixed formulation are being presented below (for 

the Timoshenko beam theory). The order of the variables for the generation of the stiffness matrix coefficients are 

[ , , , , ,i i i i i iu w N V M ]. 
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Both primary and secondary variables are carried as the unknowns in the mixed formulation. 

5    B-SPLINE BASIS DEFINITION  

One dimensional B-splines are piecewise polynomials. They can be defined as linear combinations of a B-Spline 

basis. Let us assume we work in the parametric space I   where I is a closed interval of Ɍ. To define a B-spline 

basis, the degree of the engendering polynomial p and the knot vector need to be specified. Let us denote a knot 

vector  1 2 3 4 1, , , ...... n p        as a non-decreasing sequence of real numbers i.e. 1i i   . In the above 

sequence of real numbers  i  are called the knots and     the knot vector. The i
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degree (order p+1), denoted by  ( , ) ( )i pN   is defined below. The zero
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 b-spline basis function of p-degree (order 1p  ), denoted by ( , ) ( )i pN   is defined as: 
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This is referred to as the Cox-DeBoor recursion formulae. Throughout the paper we assume the knot vector to be 

open, that is the first and the last knots in the knot vector are interpolator and repeated ( 1p  ) times. The basis 

functions form a partition of unity, besides having other properties of interest as listed below. Partition of unity is 

expressed as: 
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The b-spline basis functions possess many desirable properties which enable the use of these functions for 

solving partial differential equations. 

a. ( , ) ( ) 0i pN   , if   is outside the interval 1,i i p   
 .  

b. In any given knot span at most ( , )1, ( )i pp N   are non-zero.  

c. Non-negativity of the basis functions. ( , ) ( ) 0i pN    for all i , p and  . 

d. Except for the case ( , )0, ( )i pp N  attains exactly one maximum value.  

6    DERIVATIVES OF B-SPLINE BASIS FUNCTIONS   

The derivatives of the b-spline basis are efficiently expressed in a functional form based on b-spline basis of lower 

order as: 
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Generalizations to higher derivatives is obtained by simply differentiating each side of the above equation to 

obtain 
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with the given basis functions we obtain b-spline curves in one dimension. Surfaces in two and three dimensional 

space are obtained as tensor products of the one-dimensional b-splines. Some affiliated properties of b-spline curves 

are of further interest in numerical computations and are listed below.  

6.1 Affine invariance 

Let r be a point in 3  (three dimensional Euclidian space). An affine transformation denoted by   maps 3  into 

3 and has the form 
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where A is a 3 3  matrix, and v is a vector. Affine transformations include translations, rotations, scaling and 

shears. Affine invariance property of b-splines follows from the partition of unity property of b-spline basis.  

6.2 Strong convex hull 

The b-spline curve in one-dimension or surface in two and three dimensions lies in the convex hull of the control 

points. This property follows from the non-negativity and partition of unity properties of the ( )ipN u . The tensor 

product structure in two dimensions requires the b-spline surface in two dimensions to be defined as: 

 

( , ) ( , ) ( , )
0 0

( , ) ( ) ( )
n m

i p j p i j
i j

S u v N N P 
 

     
 

(27) 

 

The tensor product entails the surface formed with a cubic in U and a quadratic b-spline in V. In matrix notation 

the formation of the tensor product takes the form 

 

 ( , ) ( , )( , )( , ) ( , )
( , ) ( ) ( ) 1

T

k p l qk lk p l q
S u v N P N i p k i and j q j                  

(28) 

 

Having examined the b-spline basis functions in detail and described the properties we study the advantages 

associated with solving beam theories with a NURBS based mixed formulation. 

7    BOUNDARY CONDITIONS    

The specification of the boundary condition for the beam problem can be achieved based on a number of different 

ways in which the beam is supported. The different boundary conditions that were examined were the clamped-

clamped, pinned-pinned, and hinged-hinged cases. The clamped-clamped case involves specification of the 

following variables to zero; 

 

0 0xu w       (29) 

 

The pinned-pinned case requires the specification of the following variables to be zero; 
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0 0u w     (30) 

 

Also, the specification of the third variable comes from the specification of the end moment, which is zero for 

the case that the ends are not subject to any external moments. For the mixed formulations, the boundary condition 

is specified explicitly. Finally, the hinged-hinged case involves the specification of the following variables, 

 

0 0w     (31) 

 

Since the essential boundary conditions were essentially homogeneous the enforcement of these conditions 

required no special treatment.  

8    LINEARIZATION PROCEDURE    

The linearization process can be accomplished with either of two techniques, namely the Picard (direct iteration 

procedure) or the Newton-Raphson's method. For checking the convergence behavior of both methods of 

linearization with NURBS both of these were implemented. Some of the advantages of the Newton-Raphson method 

are a faster convergence rate, since we are using incremental load steps for the runs. The linearized problem with the 

Newton's method is represented as follows: 

 

     
tan

r ree e eK R    
  

   
 

(32) 

 

A direct solver Gauss-Elimination with scaled partial pivoting was used for solving the linear system generated 

after linearization. The non-linear convergence was declared when the 2L  norm of the incremental vector 

normalized with the norm of the solution vector was less than 0310 for the FEM models. In the forthcoming sections 

we present the results that we obtained for the linear and non-linear problems that were studied with different types 

of boundary conditions. 

9    NUMERICAL RESULTS   

The TBT beam and the EBT beam were solved with mixed finite element formulation. We present the results with 
1C  continuous b-spline basis over the computational domains of interest.    

9.1 Linear series solutions 

Analytical solutions for the Timoshenko beam theory as also the first order shear deformation theory of plates exist 

in terms of the Navier solutions in two dimensions. For a complete description of the Navier equations the reader is 

referred to Reddy [22]. The solution to the problem can be expressed in terms of an infinite series which can be 

extended to any desired level of accuracy with the help of inclusion of an appropriate number of terms in the infinite 

expansion. The boundary conditions of simply supported beams are expressed as [22]: 0w  and, 0M  , at 0x  , 

L. The linear solution that corresponds to the solution of the Timoshenko Beam Theory are provided. Consider a 

Timoshenko beam subject to the end deflection of zero and moment to zero. For the case that the beam is subject to 

a uniform load, expressions for deflections and slopes for the Timoshenko beam elements are;  

 
4

4 4

1

( ) sin( )n
n n

n

Q L n x
w x

Ln EI










     
 

(33) 
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(34) 

 

where the constants introduced are defined as follows; 

 

 2 2

2
1 ,n

s

EI
n

GAK L
         

 

(35) 

 

The linear series solutions provided above serve as a very good estimate to the actual results obtained from the 

solutions of the NURBS based TBT solutions with mixed formulations. This served as validation benchmarks for 

the problem solved.  

9.2 Nonlinear solutions 

The first formulation examined is the NURBS based mixed formulation for EBT, and the second formulation is the 

NURBS based mixed formulation for TBT. Both of these will be described in the following sections for both beam 

theories studied. 

9.2.1 Euler-Bernoulli beam theory 

Results from mixed model are discussed in the following sections when subject to non-linear analysis and different 

boundary conditions.  

Hinged- Hinged B.C. (EBT) 

Consider a EBT beam which is subject to hinged-hinged boundary conditions at both ends. The beam length 

100L in , 1 1in in  cross section, made of steel ( 30E msi ), and subjected to a uniform loading of intensity 

01 /q b in . The Poisson ratio for the beam was taken as 0.25. The moment of inertia of the beam was taken as 1/12 

in
4
. For the mixed model the whole domain of the beam was modeled. The geometric boundary conditions for the 

beam with hinged-hinged boundary condition have been specified earlier. The non-dimensionalization of the 

deflection was carried out based on equation [37].  

A total of 10 elements were used for this analysis, with uniformly spaced knots and uniform levelp  for the 

uniform knot considered. The discrete problem resulted in a total of 132 degrees of freedom of the system. A 

constant valuep  of 3 was used in each element. A second parametric run was performed based on non-uniform 

rational basis functions. 

The discretization involved a total of 34 b-splines over the computational domain. The number of degrees of 

freedom for the system were specified as 204 for the NURBS basis. A constant polynomial order of 3 was used in 

the analysis. A uniform load parameter of 1.0 was used for stepping through the loads till a maximum value of 10 

(as reported in Table 1.) was reached. For the mixed formulation each node has a total of six degrees of freedom. As 

can be seen from Table 1, the agreement with the NURBS based results and the results of Reddy [2] is excellent. 

The low polynomial order of 3 was used in the problem formulation. Column results with a subscript N was used to 

denote the results obtained for the non-rational basis functions. The maximum percentage error between the mixed 

model and the reduced integration results of Reddy [2] was found to be 0.05%. Hinged-hinged case is the most 

sensitive case for verifying the absence of locking issues and it was realized that with appropriate levelp  refinement 

there was no need to use reduced integration to obtain excellent results. For the hinged-hinged case the deflection 

corresponds to the linear case and it is possible to derive w analytically. The maximum deflection at the center of the 

beam is derived as: 

 
4 3 4

0
0 3 4
( ) 2

24

q L x x x
w x

EI L L L

 
   

 
   

 

(36) 
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From the above expression it follows the maximum deflection is at the mid-span of the beam / 2x L where 

0 ( / 2) 0.5208333w L  for 
0 1q  . We recover this deflection for the first load case as shown in Table 1. 

 
Table 1 

Hinged-Hinged cases results EBT models. 

( )q xx  Mixed Model (MX) Reddy (04) 

    
0w  w(dimlss) 

Nw  0w  

     1 0.52052   1.3013 0.52071 0.5208 

2 1.04104   2.6026 1.04142 1.0417 

3 1.56156   3.9039 1.56213 1.5625 

4 2.08208   5.2052 2.08284 2.0833 

5 2.6026     6.5065 2.60355 2.6042 

6 3.12312     7.80779 3.12426 3.125   

7 3.64364     9.10909 3.64497 3.645   

8 4.16416 10.4104 4.16568 4.1667 

9 4.68468 11.7117 4.68639 4.6875 

10 5.2052   13.013    5.2071    5.2083 

     

Pinned-Pinned B.C. (EBT) 

Consider a beam with the material properties defined earlier subject to pinned-pinned boundary conditions. Picard 

method of linearization was used to obtain the results. The non-dimensional deflections at the center of the beam are 

also being reported for this beam in Table 2. A total of 10 elements were used for the mixed model. The discrete 

problem resulted in a total of 132 degrees of freedom of the system. A constant valuep  of 3 was used in each element. 

The non-uniform discretization involved a total of 34 b-splines over the computational domain. The number of 

degrees of freedom for the system were specified as 204 provided for the NURBS basis. A constant polynomial 

order of 3 was used in the analysis. The uniform load parameter of 1.0 was used for stepping through the loads till a 

maximum value of 10 (as reported in Table 2.) was reached. In Table 2, subscript N has been used to denote the 

results obtained from the usage of non-uniform rational b-spline basis. For the mixed formulation each node has a 

total of six degrees of freedom. 

 
Table 2 

Pinned-Pinned case results EBT models.  

( )q xx  Mixed Model (MX) Reddy (04) 

    
0w  w(dimlss) 

Nw  0w  

     1 0.368242 0.920606 0.368374 0.3685 

2 0.545069 1.36267   0.545257 0.5454 

3 0.663559 1.6589     0.663782 0.6640 

4 0.755027 1.88757    0.755302 0.7555 

5 0.830623 2.07656    0.831012 0.8312 

6 0.895685 2.23921    0.896173 0.8964 

7 0.954319 2.3858      0.953757 0.9540 

8 1.00621     2.51553      1.00559    1.0058 

9 1.04868    2.6217      1.05253   1.0531 

10 1.09177    2.72943     1.09611   1.0967 

      

Reddy [2] results were obtained with 4 quadratic elements with reduced integration techniques for this case. The 

maximum percentage error between the two different mixed models was found to be 0.45%. The non-dimensional 

deflections for the different a/h ratios for the pinned-pinned cases were also explored and are presented in Table 3. 
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Table 3 

Pinned-Pinned results for different a/h ratios (EBT).  

( )q xx  Non-dimensional displacements different a/h ratios 

 
10w  20w  25w  100w  

1 1.28097 1.28096 1.28095 0.920606 

2 2.58195 2.58193 2.58183 1.36267   

3 3.86259 3.86252 3.8622   1.6589    

4 5.16324 5.16308 5.1623   1.88757 

5 6.42254 6.42224 6.42077 2.07656 

6 7.72121 7.72069 7.7181   2.23921 

7 9.02235 9.02151 9.01732 2.3858   

8 10.3236     10.3224     10.316       2.51553 

9 11.5382     11.5364      11.5279     2.6217   

10 12.8286     12.8263      12.8144     2.72943 

Clamped-Clamped B.C. (EBT) 

Consider a beam which is subjected to clamped-clamped boundary conditions at both ends. The beam length was 

taken as 100L in , 1 1in in  cross section, made of steel ( 30E msi ), and subject to a uniform loading of 

intensity 01 /q b in . The Poisson ratio for the beam was taken as 0.25 and the moment of inertia was taken as 1/12 

in
4
. Table 4., reports the deflections of the center of the beam subject to the clamped-clamped boundary condition 

and also the non-dimensional deflections at the center of the beam. 

A total of 10 elements were used for this analysis for the mixed model, with uniform elements with a uniform 

levelp  in each element. The discrete problem resulted in a total of 132 degrees of freedom of the system. A constant 

valuep  of 3 was used in each element. The discretization involved a total of 34 b-splines over the computational 

domain.  

The number of degrees of freedom for the system were specified as 204 provided for the NURBS basis. A 

constant polynomial order of 3 was used in the analysis. The uniform load parameter of 1.0 was used for stepping 

through the loads till a maximum value of 10 (as reported in Table 4.) was reached. The discrete problem was solved 

with Gaussian-Elimination with scaled partial pivoting. 
 

Table 4  

Clamped-Clamped case results EBT models.  

( )q xx  Mixed Model Reddy (04) 

 
0w  w(dimlss) 

Nw  0w  

1 0.102524 0.25631   0.103319 0.1035 

2 0.200969 0.502422 0.202218 0.2025 

3 0.292952 0.732381 0.293808 0.2943 

4 0.376644 0.941609 0.377152 0.3777 

5 0.451988  1.12997    0.452452 0.4534 

6 0.520688 1.30172   0.520465 0.5220 

7 0.582825  1.45706   0.58434   0.5845 

8 0.64021    1.60052   0.642107 0.6418 

9 0.693075   1.73269   0.695669 0.6946 

10 0.742087   1.85522   0.74563   0.7436 

 

The results presented above is for the case where a/h = 100 . The maximum percentage error between the two 

models was found to be 0.20%. Different a/h ratios were analyzed and Table 5. illustrates the non-dimensionalized 

center deflection as a function of changing length of the beam. For the analysis of the beam deflection with changing 

lengths of the beam, 10 elements were used, and the full beam was modeled. The levelp  used was set at a uniform 
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value of 3 to generate these results. The model consisted of a total of 132 degrees of freedom which was stepped 

with Picard method. 
 

Table 5 

Clamped-Clamped results for different a/h ratios (EBT).  

( )q xx  Non-dimensional displacements different a/h ratios 

 
10w  20w  25w  100w  

1 0.256097 0.256097 0.256097 0.25631    

2 0.516195 0.516195 0.516195 0.502422 

3 0.772226 0.772226 0.772225 0.732381 

4 1.03226   1.03226   1.03226   0.941609 

5 1.28402   1.28402   1.28402   1.12997   

6 1.54366   1.54366   1.54365   1.30172   

7 1.80379   1.80379   1.80378   1.45706   

8 2.06395   2.06395   2.06393   1.60052   

9 2.30677   2.30676   2.30675   1.73269   

10 2.56476    2.56476   2.56473   1.85522   
     

 

Based on the above observations the non-dimensional load vs. deflection curves for clamped-clamped Euler-

Bernoulli beams is constant with varying lengths from a range of a/h = 10 through a value of a/h = 75 and varies 

significantly only for the case of a slender beam of slenderness ratio a/h = 100.  

9.2.2 Timoshenko beam theory 

Non-linear results obtained with the solutions of the Timoshenko beam theory with the mixed formulation (MX) 

have been outlined with published results in literature.  

Hinged-Hinged B.C. (TBT) 

Consider a beam which is subjected to hinged-hinged boundary conditions at both ends. The beam length 

100L in , 21 1in cross section, made of steel 30E msi , subject to a uniform loading of intensity 01 /q b in . 

Moment of inertia of the beam was considered as 0.08333 in
4
. The non-dimensionalization of the deflection was 

carried out based on the following formula; 

 

max

4

100* * xxw D
w

L
    

 

(37) 

 

The non-dimensional deflections at the center of the beam are also being reported for this beam in Table 6. A 

total of 10 elements were used for this analysis, with constant knot intervals of length 10. The discrete problem 

resulted in a total of 132 degrees of freedom of the system for the mixed formulation. The discretization involved a 

total of 34 b-splines over the computational domain for the non-uniform rational b-spline basis functions. The 

number of degrees of freedom for the system were specified as 204 provided for the NURBS basis. A constant 

polynomial order of 3 was used in the analysis. The uniform load parameter of 0.50 was used for stepping through 

the loads till a maximum value of 10 (as reported in Table 6.) was reached. Ten elements were used in the analysis 

with a valuep of 3. As can be seen from Table 6, the agreement with present results and reported results of Reddy [2] 

is excellent. Table 6 presents the results obtained with mixed formulations when utilizing b-splines with a 

polynomial expansion of 2. There were 10 elements used for this analysis with the load increment taken as 1.0. The 

lowest possible (a two point quadrature) was used for performing the numerical integration of the b-splines on the 

hpk element space. Any lower quadrature requirements will be equivalent to a reduced or a selective integration 

technique. From the column p-2 NURBS results it is clear there was no locking observed for the problem and the 

formulation  lends itself to a locking free implementation.  
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Table 6 

Hinged-Hinged case results TBT models. 

( )q xx  Mixed (MX) Reddy (04) P2 NURBS 

     
0w  w(dimlss) 

0w  Nw  0w  

      1 0.51251 1.28127 0.5208 0.520835   0.519818 

 2 1.03303 2.58257 1.0417 1.04167  1.03964    

 3 1.54541 3.86351 1.5625 1.5625     1.55945 

 4 2.06579 5.16448 2.0833 2.08334  2.07927 

 5 2.56963 6.42408 2.6042 2.60417  2.59909 

 6 3.08923 7.72307 3.1250 3.12501  3.11891 

 7 3.60981 9.02452 3.6458 3.64584  3.63873 

 8 4.13045 10.3261     4.1667 4.16668  4.15854 

 9 4.61638 11.541        4.6875 4.68751  4.67836 

 10 5.13269 12.8317     5.2083 5.20835  5.19818 

       
Pinned-Pinned Boundary Condition (TBT) 

Consider a TBT beam with material properties defined earlier subject to pinned-pinned boundary condition. The 

non-dimensional deflections at the center of the beam are reported for this beam in Table 7. Reddy results were 

obtained with 4 quadratic elements with reduced integration techniques for this case. 

A total of 10 elements were used for this analysis. The discrete problem resulted in a total of 132 degrees of 

freedom of the system. A constant valuep  of 3 was used in each element. The uniform load parameter of 1.0 was used 

for stepping through the loads till a maximum value of 10 (as reported in Table 2.) was reached. As can be seen 

from Table 7., the agreement of the b-spline mixed results and the results of Reddy [2] is excellent. The non-

dimensional deflections for the different a h ratios for the pinned-pinned cases were also studied and have been 

presented in Table 8. 
 

Table 7 

Pinned-Pinned case results TBT models.  

( )q xx  Mixed (MX) Reddy (04) 

    
0w  w(dimlss) 

Nw  0w  

1   0.368237  0.920592 0.369262 0.3685 

2   0.54502     1.36255    0.54661   0.5454 

3  0.663419  1.65855    0.665044 0.6640 

4 0.75495   1.88737   0.752304 0.7555 

5 0.830631 2.07658   0.828173 0.8312 

6 0.895567 2.23892   0.902283 0.8964 

7 0.953158 2.38289    0.958572 0.9540 

8 1.00499   2.51247    1.01006   1.0058 

9 1.05173    2.62932     1.05702   1.0531 

10 1.09541   2.73852    1.08737   1.0967 

 

 
 

 

 

 

 

 

 

 

 



R. Ranjan and J.N. Reddy                     51 

 

© 2018 IAU, Arak Branch 

Table 8 

Pinned-Pinned results for different a/h ratios (TBT).  

( )Q xx  Non-dimensional displacements different a/h ratios 

 
10w  20w  25w  100w  

1 1.31171 1.28865 1.28587 0.920592 

2 2.64392 2.59742 2.59174 1.36255   

3 3.9553   3.88569 3.87701 1.65855   

4 5.28717 5.19405 5.18208 1.88737   

5 6.5767   6.46076 6.44533 2.07658   

6 7.90654 7.76699 7.74758 2.23892   

7 9.2389   9.07559 9.05171 2.38289   

8 10.5714      10.3842      10.3553     2.51247   

9 11.8151      11.6056     11.5715      2.62932   

10 13.1365      12.9031     12.8628    2.73852   

Clamped-Clamped B.C. (TBT) 

Consider a beam subjected to clamped-clamped boundary conditions at both ends. The beam length 100L in , 
21 1in  cross section, made of steel (E=30 msi), and subjected to a uniform loading of intensity 01 /q b in . The 

Poisson ratio considered was taken as 0.25. Table 9, reports the deflections of the center of the beam subjected to the 

clamped-clamped boundary condition and also the non-dimensional deflections at the center of the beam obtained 

with the mixed formulation. 

Reddy [2] results were obtained with 4 quadratic elements with reduced integration techniques for this case. A 

total of 10 elements were used in this analysis, with gradation at the edges of the beam. The discrete problem 

resulted in a total of 132 degrees of freedom of the system. A constant valuep  of 3 was used in each element. 

 
Table 9 

Clamped-Clamped case results TBT models.  

( )q xx  Mixed (MX) Reddy (04) 

 
0w  w(dimlss) 

Nw  0w  

1 0.103373 0.258432 0.103441 0.1035 

2 0.202281 0.505703 0.202434 0.2025 

3 0.293956 0.73489   0.29416   0.2943 

4 0.3774     0.943501 0.377701 0.3777 

5 0.452944  1.13236    0.453368 0.4534 

6 0.52144   1.3036      0.521995 0.5220 

7 0.58385   1.45962   0.584529 0.5845 

8 0.64106   1.60265   0.641851 0.6418 

9 0.693834 1.73459   0.694722 0.6946 

10 0.742807 1.85702   0.743778 0.7436 

      

The discretization involved a total of 34 b-splines over the computational domain for the non-uniform rational b-

spline basis functions. The number of degrees of freedom for the system were specified as 204 provided for the 

NURBS basis. A constant polynomial order of 3 was used in the analysis. The uniform load parameter of 0.50 was 

used for stepping through the loads till a maximum value of 10 was reached. The run presented above is for the case 

where a / h  100 . As can be seen from Table 9., the agreement of the NURBS based mixed results and the results 

of Reddy [2] is excellent. The maximum error between the mixed model and Reddy [2] results was found to be 

0.11%. Different a/h ratios analysis were carried out and Table 10., reports the dimensionless center deflection as a 

function of the changing length of the beam. For the analysis of the beam deflection with changing lengths of the 

beam, 10 elements were used, and the full beam was modeled. The levelp  used was set at a uniform value of 3 to 
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generate the results. As can be seen from the results presented here, an increase in the length of the beam did not 

cause any deterioration of the results and all the results were obtained with full integration techniques. 

 
Table 10 

Clamped-Clamped results for different a/h ratios.  

( )q xx  Non-dimensional displacements different a/h ratios 

 
10w  20w  25w  100w  

1 0.286843 0.263783 0.261016 0.258432 

2 0.578167 0.531688 0.52611   0.505703 

3 0.864937 0.795403 0.787059 0.73489   

4 1.15619   1.06324   1.05209   0.943501 

5 1.43818   1.32256   1.30869   1.13236   

6 1.72899   1.58999   1.57331   1.3036    

7 2.02035   1.85793   1.83843    1.45962  

8 2.31174   2.12589  2.10358  1.60265 

9 2.58371   2.376        2.35106    1.73459 

10 2.87268   2.64173  2.614     1.85702 

     

10    DISCUSSION   

Mixed models pose a more difficult problem to solve as compared to displacement based formulations which cause 

the model to experience significant convergence issues with standard iterative solvers. Direct solvers were found to 

be able to parse the discrete system. Mixed model however furnish the axial force, shear force, and bending moment 

as a function of the length along the beam whereas the displacement model can furnish these results only as part of 

the post processing stage.  

Fig. 1 presents the b-spline basis over the computational domain of 100 units of the beam length. For generating 

the figure the following uniform knot vector was used 

 

 0,0,0,0,25,25,50,50,75,75,100,100,100,100x     (38) 

 

which provided a total of 14 knots over the domain. The multiplicity of the knots was taken as 2. The number of b-

splines for this problem were set to 10 which spanned the domain. For the non-linear problems solved the uniform 

knot vector for the refined discretization was taken as: 

 

 0,0,0,0,10,10,20,20,30,30,40,40,50,50,60,60,70,70,80,80,90,90,100,100,100,100x     (39) 

 

with a multiplicity of the knot set to 2. This resulted in ensuring a 1C  basis over the domain. There were 26 knots 

over the domain with a total of 22 b-splines over the computational domain. A further parametric study was 

performed with a non-uniform knot vector of 

 

0,0,0,0,5,5,10,10,17.5,17.5,25,25,31.25,31.25,37.5,37.5,43.75,43.75,50,50,56.25,56.25,

62.5,62.5,68.75,68.75,75,75,82.5,82.5,90,90,95,95,100,100,100,100
x

 
  
 

   
 

(40) 

 

The above specified a non-uniform knot vector with a knot multiplicity of 2. This ensured 1C  continuity across 

the knot index space. There were a total of 38 knots over the domain with a total of 34 b-splines over the 

computational domain. Fig. 2 presents the deflection and slope along the length of the beam when analyzed with the 

NURBS based mixed formulation with the Timoshenko beam theory. A linear analysis was performed. The 

maximum defection and slopes obtained for the TBT beam was found to be in excellent agreement with spectral/hp 

results of Ranjan [10] and published analytical solutions of Reddy [22].  



R. Ranjan and J.N. Reddy                     53 

 

© 2018 IAU, Arak Branch 

Let us consider a total length of the beam as 10 inches described with the TBT. The modulus of elasticity of the 

beam was taken as 30 msi, Area of cross section of the beam was taken as 0.05 in
2
. The moment of inertia of the 

beam was determined to be 1.04167e
-5

 in
4
. Poisson ratio of the beam was taken as 0.3. We subject the beam to 

elastic deformation analysis with the Timoshenko beam theory. A linear analysis was performed to verify the 

convergence history with known analytical solutions available for the problem in the form of series expansions.  

 

      

 

 

  

 

 

 
Fig.1 

B-splines over the computational domain for given knot 

vector. 

  

  

Fig.2 

Deflection and slope series solutions TBT theory. 
 

 

Fig. 3 presents the 2L  convergence of the deflections and slopes with non-uniform rational b-spline basis with 

increasing polynomial orders along with previously published spectral/hp convergence results from Ranjan [13]. 

Discrete values of polynomial orders of the NURBS basis of (2, 3, 4, 5, and 7) were examined to study the 

convergence history. A conforming 1C continuous NURBS vector space was determined to describe the solution for 

the problem. As an example the knot vector for the polynomial order of 5 was taken as: 

 

 0,0,0,0,0,0,2.5,2.5,2.5,2.5,5,5,5,5,7,5,7.5,7.5,7.5,10,10,10,10,10,10x     (41) 

 

We observe exponential convergence history of both the deflections and slopes for the problem on a semi log 

plot with increasing polynomial order. The NUBBS basis provides superior convergence than the spectral/hp results 

of Ranjan [13] and attains machine accuracy by the expansion order 4. This is attributed to an appropriate k-

continuous expansion which respects 1C  continuity of each of the variables in the problem.  

 

  
Fig.3 

Convergence of deflection and slopes for NURBS and spectral/hp results. 
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Fig. 4 presents the shear and moment along the length of an EBT beam subject to pinned-pinned boundary 

conditions at the end of the first load step. The shear and moment obtained along the length of the beam with 

NURBS based mixed formulation and spectral/hp methods are being provided. The usage of NURBS with a higher 

continuity across the knot index space clearly recovers the constant state of shear along the beam length where as an 

hp framework provided by the spectral/hp methods recovers irregular shear along the length. The moments obtained 

with the earlier spectral/hp results of Ranjan [10] and the present results were found to be excellent. Fig. 5 presents 

mixed formulation results for the load versus deflection curves with different slenderness ratios for a EBT beam 

subject to pinned-pinned boundary conditions. Fig. 6 presents load vs. deflection curves for the EBT model with 

clamped-clamped boundary conditions for different slenderness ratios. In Fig. 7 we present load versus deflection 

curves for the pinned-pinned TBT beam as a function of different slenderness ratios. A corresponding load versus 

deflection behavior for the clamped-clamped beam has been presented in Fig. 8 for different slenderness ratios. 

 

  
Fig.4 

Axial force (Nxx) and moment (V) for spectral/hp and NURBS results. 

  

 

 

 

 

Fig.5 

Non-dimensional deflection vs. load for pinned-pinned 

boundary condition for different slenderness ratio for EBT. 

  

 

 

 

 

 

Fig.6 

Non-dimensional deflection vs. load for clamped-clamped 

condition for different slenderness ratios for EBT beam. 

  

 

 

 

 

 

Fig.7 

Load vs. non-dimensional deflection curves for Pinned-

Pinned TBT beam for different slenderness ratios. 
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Fig.8 

Load vs. non-dimensional deflection curves for CC TBT 

beam for different slenderness ratios.    

11    CONCLUSIONS 

Through this work we have demonstrated the usage of b-spline mixed finite element method as a viable tool for 

predicting the bending response of both Euler-Bernoulli beam and Timoshenko beam models with mixed 

formulations. We also advocate the usage of b-spline basis for predicting the bending response of beams with mixed 

formulations to obtain reliable results with full-integration techniques both for linear and non-linear problems. 

Direct evaluation of secondary variables of the displacement formulations from the mixed formulation is one of the 

primary advantages offered by the mixed formulation. The usage of b-spline mixed finite element formulation also 

alleviates perennial problems of ill-conditioning of the stiffness matrices obtained with the usage of higher-order 

equi-spaced Lagrange basis and provides an adjustable continuity which is very useful for even solving problems in 

the strong form of the partial differential equations (collocation based approaches). 
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