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 ABSTRACT 

 Electro-magneto-thermo-elastic response of a thick double-layered cylinder made from a 

homogeneous interlayer and a functionally graded piezoelectric material (FGPM) outer 

layer is investigated. Material properties of the FGPM layer vary along radius based on the 

power law distribution. The vessel is subjected to an internal pressure, an induced electric 

potential, a uniform magnetic field and a temperature gradient. Stresses and radial 

displacement are studied for different material in-homogeneity parameters  in the FGPM 

layer. It has been shown that the material in-homogeneity parameters   significantly 

affect the stress distribution in both layers. Therefore by selecting a suitable material 

parameter   one can control stress distribution in both homogeneous and FGPM layers. It 

has been found that under electro-magneto-thermo-mechanical loading minimum effective 

stress can be achieved by selecting 1.5    in the FGPM layer.  

                                               © 2016  IAU, Arak Branch.All rights reserved. 

 Keywords : Closed form solution; Electromagnetothermoelastic; Double-walled cylinder; 

Homogeneous interlayer; FGPM outer layer. 

1    INTRODUCTION 

 ATERIAL tailoring and analysis of components to withstand the combined thermal, mechanical and 

dynamical loadings have been attracted many researchers attention in the past two decades [1]. Analysis of 

single block cylinders made of functionally graded piezoelectric material has been considered by many 

investigators. Babaei and Chen [2] presented an analytical solution for the electromechanical response of a rotating 

functionally graded piezoelectric hollow cylinder. A piezoelectric hollow cylinder with thermal gradient has been 

investigated by Saadatfar and Razavi [3]. Ghorbanpour et al. [4] studied the effect of material inhomogeneity 

parameter on electro-thermo-mechanical response of functionally graded piezoelectric rotating shafts. 

Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder has 

been considered by Ghorbanpour et al. [5]. Analysis of Multi-walled cylinders with different materials has also been 

an active area of research in recent years [6]. Mithchell and Reddy [7] have studied an embedded piezoelectric layer 

in composite cylinders. Dynamic  response  of  a  multilayered  orthotropic piezoelectric  hollow  cylinder  for  

axisymmetric plane  strain  condition has been presented by Wang and Chen [8]. Transient plane-strain responses of 

multilayered elastic cylinders to axisymmetric impulse have been considered by Yin and Yue [9]. 

Magnetothermoelastic interactions  in  hollow  structures  of  functionally graded  material  subjected  to  

mechanical  loads have been considered by Dai and Fu [10]. Dynamic thermoelastic behavior of a double-layered 
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hollow cylinder with an FGM layer has been presented by Dai and Rao [11]. An exact solution for magneto-thermo-

elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer  has been 

presented by Loghman and Parsa [12]. 

The main objective of this paper is to obtain a closed form solution  for electro-magneto-thermo-elastic response 

of double-walled cylinder made of an inner homogeneous layer and an outer FGPM layer.  

2    GEOMETRY AND LOADING CONDITION 

A thick double-walled hollow long cylinder with an inner radius 1a , an interface radius of 2a   and outer radius 3a  is 

considered. The interlayer is homogeneous and the outer layer is made from FGPM material. The FGPM material’s 

property varies along radius based on the power law distribution. The material in both homogeneous and FGPM 

layers are assumed to be independent of temperature. Loading is composed of internal pressure 
iP , external pressure 

oP , a uniform magnetic field in axial direction and a temperature field due to steady state heat conduction. The 

FGPM layer is also subjected to an electric potential difference. It is assumed that no separation will occur 

longitudinally or radially for all loading combinations. Geometry and loading combination is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry and loading condition of double-walled long 

cylinder made of an inner homogeneous and an outer FGPM 

layer. 

 

3    HEAT CONDUCTION FORMULATION 

Heat conduction equation in the cylindrical coordinate system with the thermal boundary condition (T1 in the inner 

radius and T3 in the outer radius) is given as [13]: 

 

 
  

   

1 ( )
( ) 0

T r
rk r

r r r
          

 

   (1) 

 

hk  and 
 0p pk k r  are the thermal conduction coefficients of  the homogeneous and  FGPM layers in hollow 

cylinder in radial direction. Substituting these coefficients into the heat conduction Eq. (1) the general solution for 

the temperature distribution is obtained as: 

 

   1 2 1 2( ) ln homogeneoush h hT r M r M a r a for layer              (2) 

 
   1 2 2 3( )p p pT r M r M a r a for FGPM layer              (3) 

 

where the subscripts h and p are for homogeneous and piezoelectric layers. The thermal boundary conditions for the 

double-walled hollow long cylinder are: 
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(4) 

 

where 
1hM and 

2hM  and 1pM   and 2 pM  are obtained from the thermal boundary conditions as follows: 
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(6) 

 

Substituting 
1 2 1, ,h h pM M M  and 2 pM  into Eqs . (2)  and (3) the temperature distribution in homogeneous and  

FGPM layers are obtained for different values of   and shown in Fig. 2. 

4    ELECTRO-MAGNETO-THERMO-ELASTIC FORMULATION   

Radial, circumferential and axial stresses in the homogeneous layer under axisymmetric geometry and loading 

condition can be written in terms of displacement as follows: 
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(7) 

 

The subscript h is for the homogeneous layer . The coefficients in the above equation are written as: 

 

 
 

   


     
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(1 )
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(1 )(1 2 ) (1 )(1 2 )
i ij j

E E
c c c c c c           

   

(8) 

 

The  equation  of  equilibrium  for  the homogeneous layer  in  the  presence  of  magnetic  field  in  axial 

direction is written as follows 

 

  
  


( ) 0rh hrh f r

r r
          

   

(9) 

 

In which ( )f r   is the Lorentz’s force written as follows [9]: 

 

  
 

 
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f r r H
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(10) 
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Substituting Eq. (7) and Eq. (8) and Eq. (10) into Eq. (9) , Eq. (11)  is obtained as follows: 

 

         
        

 

2
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( )
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r rr
          

   

(11) 

 

Eq. (11) can be rewritten as follows: 

 

    
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 

2
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(12) 

 

where ccoefficients in Eq. (12) are written as: 

 

    

   

   
    

   

2 2

11 0 22 0 1 1 2

1 2 3 42 2 2 2

11 0 11 0 11 0 11 0

1 , , ,z z

z z z z

c H c H
I I I I

c H c H c H c H
          

   

(13) 

 

Stress-strain relations in the FGPM layer under  axisymmetric  geometry  and  loading condition in terms of 

radial displacement, electric potential and temperature field are given as [14,15] 
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(14) 

 

The subscript p is for the FGPM layer.  Electrostatic charge equation in the FGPM layer may be written as: 

 

 
   

 
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(15) 

 

Coefficients in Eq. (14) and Eq. (15) are written as: 
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(16) 

 

Equation  of  equilibrium  for  the  FGPM layer  in  the  presence  of  magnetic  field  in  axial direction is written 

as follows 

 

   
  


( ) 0

rp rp p
f r

r r
          

   

(17) 

 

The charge equation of electrostatics in the absence of free charge density, is given as [15] 

 


 


0r rD D
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(18) 

 

By solving the Eq. (18) the electrical displacement is obtained as: 
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A
D

r
          

   

(19) 
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Substituting Eq. (19) into Eq. (15) , Eq. (20) is obtained as follows 

 

 
 

   
 

1
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(20) 

 

Substituting Eq. (20) into Eq. (14) and then using equilibrium Eq. (17) the following differential equation for the 

FGPM layer is obtained  
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(21) 

 

Coefficients in Eq. (21) are written as: 
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Substituting 




( )T r

r
 and ( )T r  into Eq. (12) and Eq. (21) the following differential equations for homogeneous 

and FGPM layers are obtained as follows 
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(24) 

5   SOLUTION OF DIFFERENTIAL EQUATIONS 

General  solution  of  the  above  differential  equations  can  be  obtained  by  substituting  mu cr  in  Eqs. (23)  

and  (24) leading  to  the  following  solution  for  the  homogeneous  and FGPM  layers as: 
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Particular solution of differential Eqs. (23)  and  (24) can be written as follows 
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(28) 

 

And  finally the solution for homogeneous and FGPM  layer is obtained as: 
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Substituting Eq.(30) into Eq.(20) , yields 
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with integrating Eq. (31) , electric potential distribution  is obtained as: 
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(32) 

 

The solution for radial, circumferential and axial stresses in homogeneous layer are obtained with substituting 

Eqs. (29) and (5) into Eq. (7) as follows 

 


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(33) 

 

The solution for radial, circumferential and axial stresses in FGPM layer are obtained with substituting Eqs. (30), 

(31) and (6) into Eq. (14) as follows 
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Coefficients of Eqs. (33) and (34) are written in appendix A. Considering  an  internal  pressure  of  
iP    and  an  

external  pressure  of 
0P and  the potential electric in 

2a  and potential electric in 
3a  and continuity  of  radial  stress  

and  displacement at  the  interface of  two  layers the following boundary conditions must be satisfied 
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(35) 

 

Coefficients in Eq. (35) are written in appendix B. With solution of boundary conditions unknown parameters 

are obtained as: 
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(36) 

 

The coefficients in the Eq. (36) are written in appendix C. 

5   RESULTS AND DISCUSSION 

The results presented in this paper are based on the data written in the Tables 1. and 2 for material properties 

,geometry and loading condition  for the inner homogeneous and outer FGPM layer.  

 
Table 1 

Material properties. 

 11( )c GPa  
12( )c GPa  

22( )c GPa  
13( )c GPa  

23( )c GPa  

Homogeneous material 312.7 134 312.7 134 134 

 
1( )K   1

0 ( )Hm   1 1( )hk Wm K     

 5.87×10-6 4 ×10-7 13.723   

 011( )c GPa  
012( )c GPa  

022( )c GPa  
013( )c GPa  

023( )c GPa  

FGPM  material  111 77.8 220 115 115 

 
1

01 ( )K   1

02 ( )K   1

03 ( )K   1

0 ( )Hm   1 1

0 ( )Pk Wm K   

 10×10-5 1×10-5 10×10-5 4 ×10-7 1.5 

 
2

011 ( )e Cm   2

012 ( )e Cm   2

013 ( )e Cm   2 2 1

01 ( )g C m N   2 2 1

01 ( )p C m K   

 15.1 -5.2 -5.2 5.62×10-9 -2.5×10-5 
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Table 2 

Geometry and  loading condition. 

 ( )l m  1( )KWA   ( )P MPa  ( )T K  1)(Hz Am   

a1  1    ----------    100  30 
2.23×109 

(uniform) 
a2    1.5 0 ----------- ----------- 

a3 2   100 0 0 

 

 

Temperature distribution due to steady state heat conduction for different values of   is shown in Fig. 2.  It is 

obvious from this figure that the temperature gradient in the homogeneous layer is much lower than the FGPM layer 

which is justified by its higher heat conduction coefficient written in Table 1. Electric potential distribution just 

occurs in the FGPM layer because of its piezoelectric material property. Electric potential distribution due to an 

external imposed electric potential for different values of   is shown in Fig. 3.  Electric potential distribution will 

occur in the FGPM layer for any distinct or loading combination. Distribution of the induced electric potential due to 

internal pressure and temperature field are shown for various   in Fig. 4 and 5. In both figures the electric 

boundary conditions are satisfied and the negative or positive values of electric potential can be justified by their 

respective radial displacements shown in Figs. 6 and 7. As we can see in the FGPM layer of Fig. 6 the radial strain 

( r

du

dr
   ) which is the slope of the radial displacement is negative while in Fig. 7 in the FGPM layer radial strain 

is positive. Radial stresses due to internal pressure, applied electric potential, electro-thermo-mechanical and electro-

magneto-thermo-mechanical loading combination is shown in Figs. 8, 9, 10 and 11. All radial stresses satisfy the 

continuity condition at the interface and the boundary conditions at the inner and outer surfaces of the double 

layered vessel. Significant effect of magnetic field on radial stresses can be observed by comparing Figs. 10 and 11. 

Circumferential stresses of internal pressure, electric potential, electro-thermo-mechanical and electro-magneto-

thermo-mechanical loading combinations are shown in Figs. 12, 13, 14 and 15. Fig. 12 indicates that the 

circumferential stresses of internal pressure in the homogeneous layer is indeed the classical Lame tangential 

stresses however in the FGPM layer higher values of circumferential stresses belong to higher absolute values of 

radial stresses at the interface which can be considered as an internal pressure for the outer layer. Thermoelastic 

circumferential stresses in the homogeneous layer are not significant as shown in Fig. 13. This is because of small 

temperature gradient in this layer. In the FGPM layer thermo-elastic circumferential stresses are compressive at the 

inner region and are tensile at the outer region of the vessel. This is because in the presence of high temperature 

gradient the outer layers are at lower temperatures than the inner layers and therefore they will be stretched by the 

high temperature layers while the inner layers will be left in compression as is clear in Fig. 13. Circumferential 

stresses of combined internal pressure, thermal gradient and an imposed electric potential are shown in Fig. 14. In 

this case electrothermoelastic stresses are nearly the sum of elastic and thermoelastic stresses shown in Figs. 12 and 

13. This is because mechanical and thermal stresses are dominant due to high internal pressure and thermal gradient 

while the imposed electric potential is not really considerable. Magnetic field has a significant effect on 

circumferential stresses as can be observed by comparing Figs. 15 and 14. Effective electrothermoelastic and 

electromagnetithermoelastic Von Mises stresses are shown in Figs. 16 and 17. Under electro-magneto-thermo-

mechanical loading combination minimum effective stress distribution can be achieved by selecting 1.5    in 

the FGPM layer.   

The results reported in this paper are for a few selected combination of mechanical, thermal, electro-thermo-

mechanical and electro-magneto-thermo-mechanical loadings and material grading index. However the closed form 

solution presented in this paper can be used for any combination of loading and material properties. 
 

 

 

 

 

 

 

Fig.2 

Temperature field due to steady state heat conduction for 

various  . 
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Fig.3 

Electric potential distribution due to an imposed potential 

difference on the FGPM layer for various  . 

  

 

 

 

 

 

 

Fig.4 

Electric potential distribution due to internal pressure for 

various  . 

  

 

 

 

 

 

 

Fig.5 

Electric potential distribution due to temperature field for 

various  . 

  

 

 

 

 

 

 

Fig.6 

Radial displacement due to internal pressure for various  . 

  

 

 

 

 

 

 

 

Fig.7 

Radial displacement due to temperature field for various  . 

  

 

 

 

 

 

 

 

Fig.8 

Elastic radial stresses due to internal pressure for various  . 
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Fig.9 

Thermoelastic radial stresses due to temperature field for 

various  . 

  

 

 

 

 

 

 

 

Fig.10 

Electrothermoelastic radial stresses for various  . 

  

 

 

 

 

 

 

 

Fig.11 

Electromagnetothermoelastic radial stresses for various  . 

  

 

 

 

 

 

 

Fig.12 

Elastic circumferential stresses due to internal pressure for 

various  . 

  

 

 

 

 

 

 

Fig.13 

Thermoelastic circumferential stresses due to temperature 

field for various  . 

  

 

 

 

 

 

 

 

Fig.14 

Electrothermoelastic circumferential stresses for various  . 
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Fig.15 

Electromagnetothermoelastic circumferential stresses for 

various  . 

  

 

 

 

 

 

 

 

Fig.16 

Electrothermoelastic effective Von Mises stresses for 

various  . 

  

 

 

 

 

 

 

Fig.17 

Electromagnetothermoelastic effective Von Mises stresses for 

various  . 

7    CONCLUSIONS 

A double-walled cylinder made of an inner homogeneous and an outer FGPM layer under electro-magneto-thermo-

mechanical loading is studied. The closed form solution presented for stresses and displacements in both 

homogeneous and FGPM layers can be used for any combination of electrical, mechanical, magnetic and thermal 

loading. Stress distribution in the homogeneous and FGPM layers depends on the material in-homogeneity 

parameter  . Therefore by selecting a suitable material parameter    in the FGPM layer one can control stress 

distribution in both homogeneous and FGPM layers. It has been found that under electro-magneto-thermo-

mechanical loading combination minimum effective stress distribution can be achieved by selecting 1.5    in 

the FGPM layer.   

APPENDIX A 

The coefficients in the Eq. (33) are  defined  as follows: 

11 1 11 12 12 2 11 12 13 3 11 12 1 1 14 4 11 12 3 11 1 2

21 1 12 22 22 2 12 22 23 3 12 22 2 1 24 4 12 22 3 12 2 2

31 1 13 23 32 2 13 23 33 3 13 23 3 1 34
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( ) ( )

( )

h h

h h
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Q m c c Q m c c Q C c c M Q C c c C c M
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 

 
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        4 13 23 3 13 3 2( ) hc c C c M  

 

                       

 

And the coefficients in the Eq. (34) are written as: 
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APPENDIX B 

The coefficients in the Eq. (35) are  defined  as follows: 
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APPENDIX C 

The coefficients in the Eq. (36) are  written as: 
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