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 ABSTRACT 

 This paper presents new exact 3-D (three-dimensional) elasticity closed-form solutions for 
out-of-plane free vibration of thick rectangular single layered FG (functionally graded) 
plates and thick rectangular homogeneous plate coated by a functionally graded layer with 
simply supported boundary conditions. It is assumed that the plate is on a Winkler-
Pasternak elastic foundation and elasticity modulus and mass density of the FG layer vary 
exponentially through the thickness of the FG layer, whereas Poisson’s ratio is constant. In 
order to solve the equations of motion, a proposed displacement field is used for each 
layer. Influences of stiffness of the foundation, inhomogeneity of the FG layer and coating 
thickness-to-total thickness ratio on the natural frequencies of the plates are discussed. 
Numerical results presented in this paper can serve as benchmarks for future vibration 
analyses of single layered FG plates and coated plates on elastic foundations. 

                                                © 2015 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials are a new class of heterogeneous composite structures first introduced 
by a group of Japanese scientists in 1984 to address the needs of aggressive thermal environment [1, 2]. 

Typically, FGMs are made of a ceramic and a metal in such a way that the ceramic resists the rigorous thermal 
shocks from the high temperature environment, whereas the metal is applied to reduce the large tensile stresses 
occurring on the ceramic surface and causes large-loading capacity. The material properties of FGMs vary 
continuously and smoothly from one interface to the other. This important property is achieved by gradually varying 
the volume fraction of material components and results continuous and smooth behavior for stress distribution and 
eliminates ruptured stress distribution in the usual laminate composite structures. 

According to a comprehensive survey of the literature, it is found that over the years, free vibration of single 
layered FG plates and coated plates has been a focus of numerous studies according to various 2-D and 3-D plate 
theories, but few researches are based on 3-D elasticity theory. The 3-D elasticity theory is able and accurate for 
analysis of thick FG plates and thick coated plates compared to the other theories of plate. Tarn and Wang [3, 4] 
obtained 3-D elasticity thermal deformations of FG plates by using an asymptotic expansion method. Chen and Ding 
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[5] investigated bending of FG piezoelectric plates using state-space method. Also, Chen et al. [6] applied state-
space method to study free vibration of FG magneto-electro-elastic plates. Reddy and Cheng [7] used asymptotic 
expansion method to analysis thermo-mechanical behavior of simply supported FG plates. They studied the effects 
of the exponent of the volume fraction law on the structural response under thermal and/or mechanical loads. Vel 
and Batra [8] studied the large deformations of FG thick rectangular plates with simply supported boundary 
conditions subjected to transversely mechanical and thermal loading on its top and/or bottom surfaces. Also, Vel and 
Batra [9-10] presented an exact semi-analytical method to investigate thermal deformation, transient thermal stress 
distribution and free vibration of thick simply supported rectangular FG plates using suitable displacement 
functions. Zhong and Shang [11] developed a three-dimensional analysis for thermal stresses of a rectangular plate 
made of orthotropic functionally graded piezoelectric material. They assumed that the plate is simply supported and 
grounded along its four edges, and mechanical and electric properties of the material vary exponentially along the 
thickness direction.  Zhong and Yu [12] presented an analytical approach for free and force vibration of FG 
piezoelectric simply supported rectangular plates with exponential variation of material properties along the 
thickness direction. A three-dimensional elasticity analysis of deformation of a functionally graded coating/substrate 
structure was carried out by Kashtalyan and Menshykova [13]. They assumed that the coating was a single layered 
with an exponential variation of material properties through the thickness. Later, they studied the bending of coated 
plates with FG interlayer [14]. Both of their studies were carried out on the basis of a 3-D elasticity solution for 
bending response of full simply supported FG plates that previously was developed by Kashtalyan [15]. Huang et al. 
[16] described an excellent solution for bending of simply supported FG plates resting on Winkler–Pasternak elastic 
foundations. They used state-space method and assumed that the plate is isotropic at any point, while material 
properties vary exponentially along the thickness direction. Lu et al. [17] employed a developed hybrid analysis for 
investigating the bending and free vibration of thick laminated composite rectangular plates. Also, Lu et al. [18] 
provided an exact solution for free vibration of simply supported rectangular FG plates on Winkler-Pasternak elastic 
foundation. Li et al. [19, 20] investigated the free vibration of FG sandwich plates and FG plates in thermal 
environments by using Ritz method and Chebyshev polynomials.  Also, Amini et al. [21] utilized Ritz method and 
Chebyshev polynomials to study three-dimensional free vibration of rectangular FG plates with arbitrary boundary 
conditions while the plate is resting on an Winkler elastic foundation. Alibeigloo [22] analyzed three-dimensional 
thermo-elastic behavior of simply supported rectangular FG plates subjected to thermo-mechanical loads. Hosseini-
Hashemi et al. [23, 24] presented exact closed-form solutions for free vibration of rectangular FG plates and 
homogeneous plates coated by a FG layer based on 3-D elasticity theory.  

The purpose of this paper is to propose a new exact 3-D elasticity closed-form solutions for out-of-plane free 
vibration of thick simply supported rectangular single layered FG plates and homogeneous plates coated by a FG 
layer on Winkler-Pasternak elastic foundations. It is assumed that the elasticity modulus and mass density vary 
exponentially through the thickness of the FG layer, whereas the Poisson’s ratio is constant. To solve the elasticity 
equations of motion, a proposed displacement field is used for each layer. These displacement fields satisfy 
boundary conditions on the edges of the plate and substituting of them into 3-D elasticity equations of motion yield 
some independent equations that can be solved explicitly. A new solution procedure which is more simple than the 
solution procedures of Hosseini-Hashemi et al. [23, 24] is presented to solve the ordinary differential equations. The 
rest of solution is completed by satisfying boundary conditions of interface and surfaces of the structure. In order to 
prove the stability and high accuracy of the present solution, some comparative results are carried out with existing 
data in the literature. Effects of the foundation stiffness, inhomogeneity of the FG layer, and coating thickness-to-
total thickness ratio on the natural frequencies of FG plates and coated plates are investigated and discussed. The 
present results will be a useful benchmark for evaluating the accuracy of future vibration analyses of FG plates and 
coated plates on elastic foundations. 

2    PROBLEM FORMULATION    

Consider a thick rectangular coated plate on a Winkler–Pasternak elastic foundation (Fig. 1) which has the length of 
a, width of b, total thickness of h and FG coating thickness h1. The boundary conditions are assumed to be simply 
supported at all edges of the plate. Cartesian coordinate system (x, y, z) is considered to extract mathematical 
formulations when x and y axes are located in the bottom plane of the coated plate.    
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Fig. 1 
A rectangular coated plate resting on an elastic 
foundation, with coordinate system. 

 
 

Here, it is assumed that the material properties of the FG layer vary in the exponential law through the thickness 
of the FG layer as: 

 

1 0 1 1 0 1exp( ( ( ))), exp( ( ( )))z h h z h h                   (1) 

 
where 1  is the gradient index of the material properties of the FG layer, and  0 , 0  are shear modulus and mass 
density of the homogeneous substrate, respectively. Poisson’s ratio is assumed to be constant and is taken as 0.3 
throughout the analysis. It should be emphasized that the elastic constants and the density are assumed to have same 
gradient index. 

In the absence of body forces, the linear 3-D elasticity equations of motion in terms of displacements for an 
isotropic FG material with the shear modulus ( )z  , mass density ( )z  and constant Poisson’s ratio   in 

terms of displacement components have the form 
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  (2c) 

 
where u, v and w are the components of the displacement vector along the three Cartesian axes and t denotes the 
time variable. The 3-D elasticity equations have the following simple forms for the homogeneous substrate as: 
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In order to solve the Eqs. (2) and (3), the following displacement fields are employed 
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where ,m nm a n b    

 
and subscripts 0 and 1 refer to the homogeneous substrate and FG layer, 

respectively. The above displacement fields are Levinson’s representation form that applied to analysis bending and 
out-of-plane free vibration of isotropic homogeneous rectangular plates [25-27].  ( )ig z

 
and ( ) ( 0,1)if z i   are four 

unknown functions. m and n are integers and represent the number of half-waves in x and y directions. The above 
displacement fields satisfy simply supported boundary conditions which are defined by following equations  
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Substitution of the assumed displacement field (4a) into the elasticity Eqs. (3) and substitution of the assumed 

displacement field (4b) and material properties Eqs. (1) into the elasticity Eqs. (2) and simplifying the results lead to 
just four different ordinary differential equations as: 
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where the constant coefficients ijA and ijB  ( 1,...,5i  and 0,1j  ) are given in Appendix. 

Eqs .(6) can be simplified by using the derivative operator D as follows 
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The algebraic solution of the set of Eqs. (7) leads to four ordinary equations. So, the functions ( )ig z

 
and 

( ) ( 0,1)if z i   are obtained easily from Eqs. (7) as follows 
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where the coefficients ijs  ( 1,2,3,4i   and 0,1j  ) are explicitly expressed as follows 
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The coefficients ijR  ( 1,2,3,4i   and 0,1j  ) can be written in terms of ijL . Substituting 0 ( )g z

 
and 0 ( )f z  into 

either Eqs. (7a) or (7b) and Substituting 1( )g z
 
and 1( )f z  into either Eqs. (7c) or (7d) yield the following 8 

dependency equations 
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Satisfying the boundary conditions of interface and surfaces of the plate is the final step to extract the natural 

frequencies related to out-of-plane modes. The continuity conditions of displacements and stresses between the FG 
coating layer and the homogeneous substrate are defined by 

 

0 1 0 1 0 1 1, , ( )zz zz xz xz yz yz z h h           (13a) 

0 1 0 1 0 1 1, , ( )u u v v w w z h h      (13b) 
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The top surface of the plate is free, while the bottom surface is resting on a Winkler-Pasternak elastic foundation. 
The boundary conditions related to these surfaces are defined by 

 

1 0 ( )zz z h    (14a) 

1 1 0 ( )xz yz z h     (14b) 
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0 0 0 ( 0)xz yz z     (14d) 

  
Eq. (14c) expressed the reaction–deflection relation between the bottom surface of the plate and Winkler-

Pasternak elastic foundation. wk is the Winkler stiffness of foundation. pxk
 
and pxk are shear stiffness related to the 

x and y axes, respectively. It is true that px py pk k k 
 
for an isotropic foundation. By replacing the displacement 

fields (4a) and (4b) into Eqs. (13) and (14) and simplifying the results, 16 continuity condition equations and 
boundary condition equations  reduce to only 8 independent equations as follows 
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0 0( ) ( ) 0 ( 0)f z g z z    (15f) 

 
Eqs. (15) are 8 algebraic equations in terms of unknown coefficients ijL  ( 1,2,3,4i   and 0,1j  ). For a 

nontrivial solution, the determinant of coefficient matrix of equations must be zero. By solving the consequence 
characteristic equation, the exact natural frequencies related to out-of-plane vibration modes are attained.  

The procedure of extracting out-of-plane natural frequencies of a single layered FG plate is similar to that of 
coated plates.  In order to obtain frequencies of a single layered FG plate, only one of the displacement fields (4) is 
used and replaced to elasticity Eqs. (2) and surface boundary conditions (14). The rest of solution procedure is 
similar to that of coated plate. 

4    RESULTS AND DISCUTIONS 

The numerical results are presented using previously 3-D elasticity closed-form exact solution. In order to validate 
accuracy and stability of the developed solution and investigate different mechanical conditions such as stiffness of 
the foundation, inhomogeneity of the FG layer, and coating thickness-to-total thickness ratio on the natural 
frequencies, some numerical results are presented that some of them are compared with corresponding results of Lu 
et al. [18]. Without losing generality, numerical results are presented for square plates on isotropic foundations. In 
all numerical results, dimensionless forms of natural frequency and foundation stiffness are used as follows 
 

2a E h    (16a) 
4 2,W w P pK k a D K k a D   (16b) 

 
where 3

0 6(1 )D h  
 
is a reference of bending rigidity of the plate. In Table 1 and Table 2 , the first two 

dimensionless out-of-plane natural frequencies of a square single layered FG plate related to nine pairs of the three 
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minimum positive values of integers m and n for the length-to-thickness ratios of 10 and 5 are tabulated, 
respectively. Excellent agreement can be observed from the comparative results of these tables. It is important that 
softer surface (case1) or harder surface (case2) of the plate is attached to the elastic foundation, because the results 
of each case is different. The results of each case are presented for three different values of dimensionless 
foundation stiffness, while the gradient index   is assumed to be 1 ln10h . It is obvious that the results of case 2 
are more than the counterpoint results of case 1. Similar results are presented for square coated plates in Table 3. 
The foundation is assumed to be attached to the homogeneous substrate and the coating thickness-to-total thickness 
ratio 1h h  of 1/4 is considered. A glance at the results in Tables 1,2 and 3 reveals that increasing the stiffness of 
foundation increases the dimensionless natural frequencies of single layered plates and coated plates. The first 
dimensionless natural frequency related to the each integer pair (m, n) increases remarkably by increasing the 
foundation stiffness, while the second frequency don't vary sensibly by increasing the foundation stiffness. 
 

Variations of the two first dimensionless natural frequencies of square single layered square FG plates versus the 
shear elasticity modulus ratio 1 0( )h   for length-to-thickness ratios of 10 (moderately thick plates) and 5(thick 

plates) are depicted in Figs. 2 and 3, respectively. The ratio 1 0( )h  gives the slope of variation of material 
properties through the thickness of the FG layer. The curves are depicted for three different values of foundation 
stiffness 0w pK K 

 
(solid line), 100, 0w pK K 

 
(dash line) and 100, 10w pK K 

 
(dotted line). 

 
 
Table1 
Dimensionless out-of-plane natural frequency of a square single layered FG plate ( 10a h  ) for three values of foundation 
stiffness 

Method 
mode 
(m, n) 

1 ln10h   
Case 1

1 ln10h   
Case 2 

0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  
0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  

Present 1st 5.12953 5.34360 5.74254 5.12953 5.34984 5.76001 

[18] (1,1) 5.1295 - 5.7425 5.1295 5.3498 5.7600 

Present 2nd 12.3204 12.4059 12.8191 12.3204 12.4121 12.8552 

[18] (1,2)/(2,1) 12.320 - 12.819 - - - 

Present 3rd 19.0098 19.0625 19.4732 19.0098 19.0686 19.5267 

[18] (2,2) 19.010 - 19.473 - - - 

Present 4th 23.2341 23.2759 23.6839 23.2341 23.2819 23.7485 

[18] (1,3)/(3,1) 23.234 - 23.684 - - - 

Present 5th 29.2671 29.2989 29.7027 29.2671 29.3048 29.7835 

[18] (2,3)/(3,2) - - - - - - 

Present 6th 38.6371 38.6597 39.0569 38.6371 38.6654 39.1637 

[18] (3,3) - - - - - - 

Present 7th 46.5183 46.5188 46.5196 46.5183 46.5184 46.5186 

[18] (1,1) 46.518 - 46.520 - - - 

Present 8th 73.4155 73.4162 73.4196 73.4155 73.4157 73.4164 

[18] (1,2)/(2,1) 73.415 - 73.420 - - - 

Present 9th 92.6846 92.6855 92.6927 92.6846 92.6848 92.6864 

[18] (2,2) 92.685 - 92.693 - - - 

Present 10th 103.486 103.487 103.498 103.486 103.487 103.489 

[18] (1,3)/(3,1) 103.49 - 103.50 - - - 

Present 11th 117.748 117.749 117.765 117.748 117.748 117.752 
[18] (2,3)/(3,2) - - - - - - 
Present 12th 138.048 138.050 138.077 138.048 138.049 138.055 
[18] (3,3) - - - - - - 
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It can be concluded from these Figures that the two first dimensionless natural frequencies of a single layered FG 
plate decrease when the gradient index increases. It is deduced from Figs. 2 and 3 that the slope of curves decrease 
by increasing the value of gradient index. Also, it is evident that the natural frequency is higher when the foundation 
is harder and the effects of elastic foundation on the first natural frequencies is more significant when compared to 
second natural frequency. 

In Figs. 4(a) and 4(b), the variation of first dimensionless natural frequency of single layered FG plates versus 
the aspect ratio b a  for length-to-thickness ratios of 10 and 5 are depicted, respectively. The shear elasticity 

modulus ratio 1 0( )h   is assumed to be taken as 10. The curves of Figs. 4(a) and 4(b) are depicted for three 
different values of foundation stiffness as Figs. 2 and 3. It can be observed from Figs. 4(a) and 4(b) that the effect of 
elastic foundation on the first dimensionless frequency increases as the aspect ratio b a  is enhanced. 

Figs. 5(a) and 5(b) show variation of two first dimensionless frequencies related to integer pair (1, 1) of single 
layered square FG plates versus foundation stiffness. It is assumed that Winkler stiffness and shear stiffness are 
equal ( w PK K K  ) and the ratio 1 0( )h   is 10. These Figures illustrated that the foundation influences the first 
frequency more significant than the second frequency. Also, the slope of curves decrease as the foundation stiffness 
K  is increased.  
 
 
 
Table 2 
Dimensionless out-of-plane natural frequency of a square single layered FG plate ( 5a h  ) for three values of foundation 
stiffness  

Method 
mode 
(m, n) 

1 ln10h   
Case 1 

1 ln10h   
Case 2 

0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  
0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  

Present 1st 4.75245 4.95855 5.33824 4.75245 4.98241 5.40721 
[18] (1,1) 4.7524 - 5.3382 4.7524 4.9824 5.4072 
Present 2nd 10.5449 10.6251 11.0043 10.5449 10.6477 11.1396 
[18] (1,2)/(2,1) 10.545 - 11.004 - - - 
Present 3rd 15.3776 15.4262 15.7929 15.3776 15.4477 15.9887 
[18] (2,2) 15.378 - 15.793 - - - 
Present 4th 18.2413 18.2795 18.6379 18.2413 18.3005 18.8724 
[18] (1,3)/(3,1) 18.241 - 18.638 - - - 
Present 5th 22.1433 22.1720 22.5181 22.1433 22.1924 22.8095 
[18] (2,3)/(3,2) - - - - - - 
Present 6th 23.1711 23.1748 23.1820 23.1711 23.1720 23.1736 
[18] (1,1) 23.171 - 23.182 - - - 
Present 7th 27.8752 27.8950 28.2216 27.8752 27.9149 28.6055 
[18] (3,3) - - - - - - 
Present 8th 36.3231 36.3297 36.3618 36.3231 36.3245 36.3316 
[18] (1,2)/(2,1) 36.323 - 36.362 - - - 
Present 9th 45.4793 45.4889 45.5630 45.4793 45.4813 45.4971 
[18] (2,2) 45.479 - 45.563 - - - 
Present 10th 50.4501 50.4620 50.5755 50.4501 50.4524 50.4759 
[18] (1,3)/(3,1) 50.450 - 50.576 - - - 
Present 11th 56.7477 56.7636 56.9577 56.7477 56.7506 56.7884 
[18] (2,3)/(3,2) - - - - - - 
Present 12th 64.9480 64.9719 65.3651 64.9480 64.9518 65.0197 
[18] (3,3) - - - - - - 
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Table 3 
Dimensionless out-of-plane natural frequency of a square coated plates for 11 ln10, 1 1 4h h h    and three values of 

foundation stiffness  

Method mode 
(m, n) 

10a h  5a h 
0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  
0

0
W

P

K

K



  
100

0
W

P

K

K



  
100

10
W

P

K

K



  

Present 1st 6.06783 6.47182 7.20225 5.35296 5.76377 6.48550 
 (1,1)       
Present 2nd 14.1818 14.3501 15.1510 11.2119 11.3901 12.1992 
 (1,2)/(2,1)       
Present 3rd 21.4119 21.5189 22.3430 15.7828 15.8983 16.7308 
 (2,2)       
Present 4th 25.8503 25.9368 26.7721 18.3964 18.4900 19.3243 
 (1,3)/(3,1)       
Present 5th 32.0462 32.1137 32.9629 21.8665 21.9387 22.7613 
 (2,3)/(3,2)       
Present 6th 41.3903 41.4401 42.3084 26.8034 26.8542 27.6288 
 (3,3)       
Present 7th 46.4913 46.4923 46.4943 23.1067 23.1160 23.1345 
 (1,1)       
Present 8th 73.2989 73.3006 73.3090 35.9571 35.9773 36.0747 
 (1,2)/(2,1)       
Present 9th 92.4269 92.4292 92.4476 44.4080 44.4448 44.7200 
 (2,2)       
Present 10th 103.104 103.107 103.134 48.5629 48.6149 49.0933 
 (1,3)/(3,1)       
Present 11th 117.128 117.132 117.175 53.0322 53.1096 54.0266 
 (2,3)/(3,2)       
Present 14th 136.873 136.877 136.958 57.3176 57.4245 59.1802 
 (3,3)       
 
 
 

 
(a) 

 
(b) 

Fig. 2 
Two first out-of-plane dimensionless natural frequency of square single layered FG plate ( 10a h  ) versus shear elasticity 

modulus ratio 1 0( )h  : a) (m, n)= (1,1); b) (m, n)= (1,2)/(2,1). 
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(a) 

 
(b) 

Fig. 3 
Two first out-of-plane dimensionless natural frequency of square single layered FG plate ( 5a h  ) versus shear elasticity 

modulus ratio 1 0( )h  : a) (m, n)= (1,1); b) (m, n)= (1,2)/(2,1). 

 
 

 
(a) 

 
(b) 

Fig. 4 
First out-of-plane dimensionless natural frequency of single layered FG plates versus width-to-length ratio b a : a) length-to-
thickness of 10; b) length-to-thickness of 5. 
 
 

 
(a) 

 
(b) 

Fig. 5 
Two first out-of-plane dimensionless natural frequencies of square single layered FG plates related to the integer pair (1,1) versus 
stiffness K for: a) length-to-thickness of 10; b) length-to-thickness of 5. 

 
 
In order to investigate the effect of coating thickness-to-total thickness ratio 1h h , stiffness of foundation and 

gradient index of coating layer on the two first dimensionless natural frequencies of square coated plate, attention is 
focused on Figs. 6 and 7 which are depicted for length-to-thickness ratios of 10 (moderately thick) and 5 (thick), 
respectively. For sufficiently small values of 1h h , the first two dimensionless natural frequencies increases when 

the coating thickness-to-total thickness ratio 1h h  increases, while it is not true for higher values of coating 

thickness-to-total thickness ratio 1h h . So, it is clear that for single values of coating thickness-to-total thickness 

ratio 1h h , two first dimensionless frequencies should be maximum. It can be concluded that the variation of  two 
first dimensionless natural frequencies versus the foundation stiffness are more significant for smaller values of 
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gradient index and coating thickness-to-total thickness ratio 1h h . Also, it is deduced that increasing the value of 
foundation stiffness decreases the ascendant part of curves. 
 
 

 
(a) 

 
(b) 

Fig. 6 
Two first out-of-plane dimensionless natural frequencies of a square coated plate ( 10a h  ) versus 1h h  for 1 0( ) 5h    

(solid line and dashed line) and 1 0( ) 10h    (dotted line and dash-dotted line): a) (m, n)= (1,1); b) (m, n)= (1,2)/(2,1). 

 
 

 
(a) 

 
(b) 

Fig. 7 
Two first out-of-plane dimensionless natural frequencies of a square coated plate ( 5a h  ) versus 1h h  for 1 0( ) 5h    (solid 

line and dashed line) and 1 0( ) 10h    (dotted line and dash-dotted line): a) (m, n)= (1,1); b) (m, n)= (1,2)/(2,1). 

4    CONCLUSIONS 

This paper presented new exact closed-form 3-D elasticity solutions for the out-of-plane free vibration of thick 
single layered FG plates and coated plates resting on Winkler–Pasternak elastic foundations. The material properties 
were assumed to vary exponentially through the thickness of FG layer. Comparison results were presented to 
demonstrate the stability and accuracy of the current exact solution. The effects of foundation stiffness, gradient 
index of material properties of FG layer and coating thickness-to-total thickness ratio on the natural frequencies 
were considered and discussed. It was observed that the natural frequencies with the softer surface subjected to the 
foundation differ significantly from that of the plate with the harder surface subjected to the same foundation. 
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