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 ABSTRACT 

 A dynamic two dimensional problem of thermoelasticity with double porous 

structure has been considered to investigate the disturbance due to normal force 

and thermal source. Laplace and Fourier transform technique is applied to the 

governing equations to solve the problem. The transformed components of stress 

and temperature distribution are obtained .The resulting expressions are obtained 

in the physical domain by using numerical inversion technique. Numerically 

computed results for these quantities are depicted graphically to study the effect 

of porosity. Results of Kumar & Rani [42] and Kumar & Ailawalia [43] have 

also been deduced as special cases from the present investigation. 

                                       © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OROUS media theories play an important role in many branches of engineering including material science, 

the petroleum industry, chemical engineering, biomechanics and other such fields of engineering. Representation 

of a fluid saturated porous medium as a single phase material has been virtually discarded. The material with the 

pore spaces such as concrete can be treated easily because all concrete ingredients have the same motion if the 

concrete body is deformed. However the situation is more complicated if the pores are filled with liquid and in that 

case the solid and liquid phases have different motions. Due to these different motions, the different material 

properties and the complicated geometry of pore structures, the mechanical behavior of a fluid saturated porous 

thermoelastic medium becomes very difficult. So researchers from time to time, have tried to overcome this 

difficulty and we see many porous media in the literature. A brief historical background of these theories is given by 

de Boer [1,2]. 

As far as modern era is concerned Biot [3] proposed a general theory of three-dimensional deformation of fluid 

saturated porous salts. Biot theory is based on the assumption of compressible constituents and till recently, some of 

his results have been taken as standard references and basis for subsequent analysis in acoustic, geophysics and 

other such fields. Another interesting theory is given by Bowen [4], de Boer and Ehlers [5] in which all the 

constituents of a porous medium are assumed to be incompressible. The fluid saturated porous material is modeled 

as a two phase system composed of an incompressible solid phase and incompressible fluid phase, thus meeting the 

many problems in engineering practice, e.g. in soil mechanics. One important generalization of Biot’s theory of 
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poroelasticity that has been studied extensively started with the works by Barenblatt et al. [6], where the double 

porosity model was first proposed to express the fluid flow in hydrocarbon reservoirs and aquifiers. 

The double porosity model represents a new possibility for the study of important problems concerning the civil 

engineering. It is well-known that, under super- saturation conditions due to water of other fluid effects, the so called 

neutral pressures generate unbearable stress states on the solid matrix and on the fracture faces, with severe 

(sometimes disastrous) instability effects like landslides, rock fall or soil fluidization (typical phenomenon 

connected with propagation of seismic waves). In such a context it seems possible, acting suitably on the boundary 

pressure state, to regulate the internal pressures in order to deactivate the noxious effects related to neutral pressures; 

finally, a further but connected positive effect could be lightening of the solid matrix/fluid system. 

Wilson and Aifanits [7] presented the theory of consolidation with the double porosity. Khaled, Beskos and 

Aifantis [8] employed a finite element method to consider the numerical solutions of the differential equation of the 

theory of consolidation with double porosity developed by Aifantis[7]. Wilson and Aifantis [9] discussed the 

propagation of acoustics waves in a fluid saturated porous medium. The propagation of acoustic waves in a fluid-

saturated porous medium containing a continuously distributed system of fractures is discussed. The porous medium 

is assumed to consist of two degrees of porosity and the resulting model thus yields three types of longitudinal 

waves, one associated with the elastic properties of the matrix material and one each for the fluids in the pore space 

and the fracture space. 

Beskos and Aifantis [10] presented the theory of consolidation with double porosity-II and obtained the 

analytical solutions to two boundary value problems. Khalili and Valliappan [11] studied the unified theory of  flow 

and deformation in double porous media. Aifantis [12-15] introduced a multi-porous system and studied the 

mechanics of diffusion in solids. Moutsopoulos et al. [16] obtained the numerical simulation of transport phenomena 

by using the double porosity/ diffusivity continuum model.  Khalili and Selvadurai [17] presented  a  fully coupled 

constitutive model for thermo-hydro –mechanical analysis in elastic media with double porosity structure. Pride and 

Berryman [18] studied the linear dynamics of double –porosity dual-permeability materials. Straughan  [19] studied 

the  stability and uniqueness in double porous elastic media . 

Svanadze [20-24] investigated some problems on elastic solids, viscoelastic solids and thermoelastic solids with 

double porosity. Scarpetta et al. [25, 26] proved the uniqueness theorems in the theory of thermoelasticity for solids 

with double porosity and also obtained the fundamental solutions in the theory of thermoelasticity for solids with 

double porosity. 

A potential method is easy and common way to uncouple a set of coupled linear differential equation.The 

completeness of the potential function is a significant issue in the continuum mechanics. Many authors have 

presented the completeness of the potential functions for a different system of equations.  

Nowacki [33] presented a unified potential representation in terms of two scalar potentials for three-dimensional 

classical elastodynamics and electrostatics and also degenerated a complete solution for the corresponding static 

problems.Wang and Wang [34] constructively proved the completeness of the general solutions in elastodynamics. 

Ghadi [35] presented a complete solution in terms of retarded potential functions for the wave equations in 

transversely isotropic media. Ghadi and Pak [36] presented a new general solution in terms of two scalar potential 

functions for classical elastodynamics of 3x  convex domains. Hayati et al. [37,38] derived the dynamic 

thermoelastic Green’s functions  of an axisymmetric linear elastic half-space concerned by using a method of 

potentials and gave an analytical formulation for an axisymmetric linear thermoelastic transversely isotropic half-

space by using method of potentials. Ghadai et. al [39] gave an analytical formulation for an axisymetric linear 

thermoelastic transversely isotropic half-space y using method of potentials. Raoofian Naeeni et al. [40] derived the 

transient responses of an isotropic thermoelastic half-space subjected to time dependent tractions and half flux 

applied to a finite patch at an arbitrary depth below a free surface with the aid of a complete set of two scalar 

potential functions. Raoofian Naeeni et al. [47] presented a performance comparison among different numerical 

methods when they are applied to transformed functions related to actual engineering problems. 

In the present investigation, we determine the components of stress and temperature distributrion in isotropic, 

homogeneous, thermoelastic medium with double porous structure due to thermomechanical sources.The solution is 

obtained by introducing potential functions after applying an integral transform technique. The integral transforms 

are inverted by using  numerical inversion technique. 
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2    BASIC EQUATIONS 

Following Iesan and Quintanilla [30], the constitutive relations and field equations for homogeneous thermoelastic 

material with double porosity structure without body forces, extrinsic equilibrated body forces and heat source can 

be written as: 

Constitutive relations: 

 

2ij rr ij ij ij ij ijt e e b d T                      (1) 
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Equilibrated stress equations of motion: 
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Equation of heat conduction: 

 

   * 2 *
0 1 0 2 0. 0K T T T T C Tu                  (7) 

 

where   and   are Lame’s constants,   is the mass density;    3 2 ;       is the linear thermal 

expansion; * C is the specific heat at constant strain,   iu  is the displacement components;  ijt  is the stress tensor; 

1 and 2  are coefficients of equilibrated inertia; 1  is the volume fraction field corresponding to pores and 2  is 

the volume fraction field corresponding to fissures ;   and    are the volume fraction fields corresponding to  1  

and 2  respectively ; 1  is the equilibrated stress corresponding to 1 1;   is the equilibrated stress corresponding to 

*
2;K is the coefficient of  thermal conductivity and 1 1 2, ,  , , ,b d b     are constitutive coefficients;   ij is the 

Kronecker’s delta; T is the temperature change measured form the absolute temperature  0 0 0T T  ; a superposed 

dot represents differentiation with respect to time variable t. 
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are the gradient and Laplacian operators, respectively. 
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3    FORMULATION OF THE PROBLEM 

We consider a homogeneous, isotropic, thermoelastic material with double porosity structure in the undeformed 

state at uniform temperature 0T . The rectangular Cartesian coordinate system 1 2 3( , , )x x x  having origin on the 

surface 3 0x   with 3x  axis pointing vertically into the medium is introduced. A concentrated normal force or 

thermal source is assumed to be acting at the origin of the rectangular Cartesian coordinates. It follows from the 

description of the problem that all the considered functions will depend upon 1 3( , , )x x t . We thus obtain the 

displacement vector u of the form 1 3( ,0, )u u u . 

The initial and regularity conditions are given by: 
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4    SOLUTION OF THE PROBLEM 

To transform Eqs. (4)-(7) to non-dimensional form, we define the following non-dimensional constants : 
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is the velocity 

in the medium. Making use of dimensionless quantities given by (10) in Eqs. (4)-(7), we obtain (suppressing the 

primes for convenience)  
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The displacement components 1  u and 3u are related by potential functions 1 and 1 .  As: 
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We define Laplace and Fourier transforms by 
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Making use of (16) in (11)-(15) and applying (17) and (18), after simplification and assuming that 
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and 5E  are given in the Appendix A.  

The coupling constants are given by 1 2 3
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5    BOUNDARY CONDITIONS 

 

We consider a concentrated normal force/thermal source acting at 3 0.x   Mathematically, the boundary conditions 

on the surface 3 0x   are 
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where 1F and 2F  are the magnitude of force and constant temperature applied on the boundary respectively and ()   

is the Dirac delta function. 

Substituting the values of 1, , ,T    and 1  from (19) and (20) in (23)-(27) and with the aid of (1)-(3), (10), 

(17) and (18), we obtain the corresponding expressions for components of stress and temperature distribution as: 
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5.1 Normal  force acting on the surface 

If 2 0F   in Eqs.(28)-(32), yields the resulting expressions for normal force. 

5.2 Thermal source acting on the surface  

If 1 0F   in Eqs.(28)-(32) , yields the resulting expressions for thermal source. 

5.3 Particular cases 

(i) If 1 3 2 2 0b d          in Eqs. (28)-(32), we obtain the corresponding expressions for 

thermoelastic body with primary porosity for thermomechanical sources which are in agreement with the 

results obtained by Kumar and  Rani [42]. 

(ii) If *
1 1 0b K         in above case (i) yields the corresponding results for elastic body for 

thermomechanical sources which are similar as obtained by Kumar and Ailawalia [43] in absence of porous 

dissipation. 

6    NUMERICAL RESULTS AND DISCUSSION 

The material chosen for the purpose of numerical computation is copper, whose physical data is given by Sherief 

and Saleh [31] as, 
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Following Khalili [32], the double porous parameters are taken as, 
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The software MATLAB has been used to find the values of normal stress 33t , tangential stress 31,t equilibrated 

stresses 3 3,   and temperature distribution T. The variations of these values with respect to distance x have been 

shown in Figs.1-8 respectively. In all these figures, solid lines without and with central symbols correspond to 

thermal double porous material (TDP) for 0.1,0.5t   respectively and small dashes line without and with central 

symbols correspond to thermal porous material (TP) for 0.1,0.5t   respectively.
  
 

6.1 Normal force 

Figs.1-4 depict the variation of normal stress 33t , tangential stress 31t  equilibrated stress 3 , temperature 

distribution T with respect to distance x due to  normal force. 

In Fig.1, the behavior and variation of 33t  for TDP and TP is opposite to each other and also it is noticed that the 

porosity increases the value of 33t  for the region 0 1x  and 2.5 3.8x   and decreases in the remaining region 

for x. It is also noticed that with the increase in the value of t, the magnitude values of  33t decrease although the 

variation remains the same.  

In Fig.2, it is noticed that for TDP, the values of 31t are almost stationary for 0 2x  , then increase sharply in 

the range 2 3x  and again decrease sharply in the range 3 4x  and become constant afterwards while an  

oscillatory  behavior is shown for all values of x in case of TP. Also the magnitude values of  31t  decrease with the 

increase in value of t with  the similar trend of variation . 

In Fig. 3, it is found that  the behavior is alike for both the materials for both values of t while as t increases, the 

magnitude values of 3  
decreases. Also the variation of 3 is oscillatory in nature for both the materials for all 

values of x but for 0 2.5x   and 3.5x  , the magnitude values are higher for TDP than that of  TP while reverse 

behavior is noticed in the range 2.5 3.5x  . Also, with the increase in the value of t, the magnitude values of 3  

for both the materials decrease although the trend of variation remains the same. 

In Fig.4, the trend of variation of T is oscillatory in nature for both TDP and TP while the magnitude values of T 

are higher for TP than that of TDP. It is found that with the increase in the value of t, the magnitude values of T 

increase and decrease for  TDP and TP respectively. 
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Fig.1 

Variation of normal stress 33t  w.r.t. x  (Normal force). 
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Fig.2 

Variation of tangential stress  31t w.r.t.x (Normal force). 
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Fig.3 

Variation of equilibrated stress 3  w.r.t.x (Normal force). 
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Fig.4 

Variation of temperature distribution T w.r.t.x(Normal force). 

6.2 Thermal source 

Figs. 5-8 depict the variation of normal stress 33t , tangential stress 31t , equilibrated stresses 3 and temperature 

distribution T with respect to distance x due to thermal source. 

In Fig. 5, it is noticed that the values of 33t are almost stationary for 0 2x  , then decrease sharply in the range 

2 3x   and again increase sharply in the range 3 4x   and becomes constant afterwards for TDP. For TP, it 

increases for 0 1x  , then decreases for 1 3x   and becomes almost stationary with the increase in distance x. 

The values of 33t are more for TDP than that of TP near the application of source while trend gets reversed as 

moving away from source. It is also noticed that with the increase in the value of t, the magnitude values of  

33t decrease although the trend of  variation remains the same. 

In Fig. 6, the variation of 31t  is oscillatory in nature for both TDP and TP. The magnitude values of 31t  are small 

for TP than TDP near the application of source whereas a reverse behavior is noticed away from source. It is also 
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omitted that as the value of t increases, the magnitude values of  31t decrease for TDP while for TP it increase 

except for the region 1 2x  . 

In Fig. 7, the values of 3  remain almost constant for 0 3x  , then decrease for 3 4x   and increase for 

4x   for TDP whereas for TP, it increases for 0 2x  , decreases for 2 3x   and again increases sharply with 

the increases in distance x. Also the magnitude values of 3  decrease and increase for TDP and TP respectively 

with the increase in time t . 

Fig.8. shows that the values of  T, for TDP, decrease for the region 0 2.5x  , increase for 2.5 4x  and 

again decrease with the increase in distance x whereas for TP, the value of T decreases for 0 3x   and then start  

increasing for 3x  . The values of T are more for TDP as compared to TP. As the value of t increases, the 

magnitude values of T decrease for both TP and TDP. 
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Fig.5 

Variation of normal stress 33t  w.r.t. x (Thermal source). 
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Fig.6 

Variation of tangential stress 31t w.r.t.x (Thermal source). 
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Fig.7 

Variation of equilibrated stress 3  w.r.t.x (Thermal source). 
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Fig.8 

Variation of temperature distribution T w.r.t.x (Thermal 

source). 

 

7    INVERSION OF THE TRANSFORMS 

According to Bradie [49], the various quadrature formulae such as Newton-cotes, Romberg and Gaussian quadrature 

etc. can be used to approximate the value of an improper integral, provided the integral exists. However, some 

changes of variable must be made to achieve theoretical order of convergence, if required. Due to existence of 

damping terms, the dependence of characteristic roots    1,2,3,4,5lm l   on s and   is very complicated and hence 

the inversion of integral transforms is quite difficult because the isolation of s is impossible. These difficulties, 

however, are reduced if we use some approximate or numerical methods as given by Sharma and Chauhan [48]. To 

obtain the solution of the problem in the physical domain, we must invert the transforms in Eqs. (28)-(32) for both 

the materials in case of normal force and thermal source applied. These expressions are functions of 3
x , the 

parameters of Laplace and Fourier transforms s and   respectively and hence are of the form 
3

ˆ( , , )f x s . To get the 

function 
1 3

( , , )f x x t   in the physical domain, first we invert the Fourier transform using  
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(34) 

 

where e
f  and 0

f  are even and odd parts of the function 
3

( , , )f x s respectively. Thus, expression (34) gives us the 

Laplace transform 
1 3

( , , )f x x s of the function 1 3( , , ).f x x t  

Now, for the fixed values of 
1

, x  and 3 1 3
, ( , , )x f x x s in the expression (34) can be considered as the Laplace 

transform ( )g s  of some function ( ).g t Following Honig and Hirdes [45], the Laplace transformed function ( )g s  

can be  inverted  as follows: 

The function ( )g t can be obtained by using 

 

1
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2

C i
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where C is an arbitrary real number greater than all the real parts of the singularities of ( ).g s Taking 3
,s C ix  we 

get 

 

3 3
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Now, taking ( )Cte g t
as ( )h t

 
and expanding it as Fourier series in [0,2 ]L , we obtain approximately the formula 
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(38) 

 

D
E  is the discretization error and can be made arbitrarily small by choosing C large enough. The value of C and 

L are chosen according to the criteria outlined by Honig and Hirdes [45]. 

Since the infinite series in Eq. (38) can be summed up only to a finite number of N terms, so the approximate 

value of g( )t becomes 
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(39) 

 

Now we introduce a truncation error T
E that must be added to the discretization error to produce the total 

approximation error in evaluating g( )t  using the above formula. Two methods are used to reduce the total error. The 

discretization error is reduced by using the ‘Korrecktur’-method, Honig and Hirdes [45] and then ‘  -algorithm’, is 

used to reduce the truncation error and hence to accelerate the convergence. 

The ‘Korrecktur’ – method formula,to evaluate function g( )t  is 
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 
     (40) 

 

where                                 
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Thus, the approximate value of g( )t
 
becomes 
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where N is an integer such that .N N  

We shall now describe the   algorithm which is used to accelerate the convergence of the series in Eq. (39). 

Let N be a natural number  and 
1

m

m k

k

S C


  be the sequence of partial sums of Eq.(39).We define the   sequence 

by  
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It can be shown (Honig and Hirdes [44]) that the sequence 
1,1 3,1 N,1

, ,...,   converges to 0
( ) / 2

D
g t E C   faster 

than the sequence of partial sum , 1,2,3,....
m

S m  .The actual procedure to invert the Laplace transform consists of 

Eq.(42) together with   algorithm. 
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It should be noted that a good choice of the free parameters N is not only important for the accuracy of the 

results but also for the application of the Korrecktur method and   algorithm. The values are chosen according to 

the criterion outlined in Honig and Hirdes[45].  

The last step is to evaluate the integral in Eq. (34). The method for evaluating this integral by Press et al. [46], 

which involves the use of Romberg’s integration with adaptive step size. This also use the results from successive 

refinement of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size 

tends to zero.   

8    CONCLUSIONS 

It is concluded that analysis of elastodynamics deformation in thermoelastic materials with double porosity structure 

due to normal force and thermal source is a significant problem of mechanics. The behavior of components of stress 

and temperature distribution in an isotropic homogeneous thermoelastic material with double porosity structure has 

been investigated for thermoelastic interactions due to normal force and thermal source by using integral transform 

technique. It is observed that porosity effect increases the value of 33t  and 31t  near the application of the source 

while opposite trend is observed away from the source for both normal force and thermal source. Due to the effect of 

porosity, the magnitude values of temperature distribution decreases in case of application of normal force while 

reverse behavior is observed for thermal source. Figures indicate that double porosity has both increasing and 

decreasing effects on the numerical values of the physical quantity. It is found that  as the value of t  increases, the 

magnitude values of the normal and tangential stress decrease in case of  normal force while for thermal source  

same behavior is observed near the application of source but reverse  behavior is observed as moving away from the 

source. The magnitude values of 3
  decrease for TDP for both the sources while for TP, it decreases for normal 

force and increases for thermal source as t increases. Also the magnitude values of T decrease for TP for both the 

sources while for TDP, it decreases for normal force and increases for thermal source as the value of t increases. 

All the field quantities are observed to be very sensitive towards the porosity and thermal parameters. Graphical 

representation indicated that double porosity and single porosity have both the increasing and decreasing effects on 

the numerical values of the physical quantities. This type of study is useful due to its application in geophysics and 

rock mechanics. The results obtained in this investigation should prove to be beneficial for the researchers working 

on the theory of thermoelasticity with double porosity structure. The introduction of double porous parameter to the 

thermoelastic medium represents a more realistic model for these studies.   
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