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 ABSTRACT 

 In this article, transverse vibration of a cantilever nano- beam with functionally 

graded materials and carrying a concentrated mass at the free end is studied. 

Material properties of FG beam are supposed to vary through thickness direction of 

the constituents according to power-law distribution (P-FGM). The small scale 

effect is taken into consideration based on nonlocal elasticity theory of Eringen. 

The nonlocal equations of motion are derived based on Timoshenko beam theory 

in order to consider the effect of shear deformation and rotary inertia. Hamilton’s 

principle is applied to obtain the governing differential equation of motion and 

boundary conditions and they are solved applying analytical solution. The purpose 

is to study the effects of parameters such as tip mass, small scale, beam thickness, 

power-law exponent and slenderness on the natural frequencies of FG cantilever 

nano beam with a point mass at the free end. It is explicitly shown that the 

vibration behavior of a FG Nano beam is significantly influenced by these effects. 

The response of Timoshenko Nano beams obtained using an exact solution in a 

special case is compared with those obtained in the literature and is found to be in 

good agreement. Numerical results are presented to serve as benchmarks for future 

analyses of FGM cantilever Nano beams with tip mass. 

                                                       © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded material are new type of composite materials formed of two or multi phases which 

both it’s composition and structure gradually change over gradient directions smoothly and continuously, 

therefore by changing the properties of the material it is possible to perform a certain function of material properties 

of mechanical strength and thermal conductivity. These materials which is introduced by Japanese scientists in mid-

1980s possess various advantage in comparison with traditional composites, for instance, multifunctionality, ability 

to control deformation, corrosion and dynamic response, minimizations or remove stress concentrations, smoothing 

the transition of thermal stress, resistance to oxidation. Hence FGMs have received wide engineering applications in 

modern industries including aerospace, nuclear energy applications, turbine components, rocket nozzles, chemical 
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reactor tubes, batteries/fuel cells, critical furnace parts, etc. during the past two decades. These wide engineering 

applications is cause that researchers attracted to FGMs, and study their vibration, static and dynamic’s behavior of 

the FG structures. Many investigation are reported in literature to study the dynamic and static behavior of 

functionally graded beams, here some of these disquisitions are mentioned briefly. 

Moreover, structural elements such as beams, plates, and membranes in micro or Nano length scale are commonly 

used as components in micro/nano electromechanical systems (MEMS/NEMS). Therefore understanding the 

mechanical and physical properties of nanostructures is necessary for its practical applications. Nanoscale engineering 

materials have attracted great interest in modern science and technology after the invention of carbon nanotubes 

(CNTs) by Iijima, (1991) [1]. They have significant mechanical, thermal and electrical performances that are superior 

to the conventional structural materials. In recent years, Nano beams and CNTs hold a wide variety of potential 

applications [2] such as sensors, actuators, transistors, probes, and resonators in NEMSs. For instance, in 

MEMS/NEMS; nanostructures have been used in many areas including communications, machinery, information 

technology, biotechnology technologies.  Since conducting experiments at the nanoscale is a daunting task, and 

atomistic modeling is restricted to small-scale systems owing to computer resource limitations, continuum mechanics 

offers an easy and useful tool for the analysis of CNTs. However the classical continuum models need to be extended 

to consider the nanoscale effects and this can be achieved through the nonlocal elasticity theory proposed by Eringen 

[3] which consider the size-dependent effect. According to this theory, the stress state at a reference point is considered 

as a function of strain states of all points in the body. This nonlocal theory is proved to be in accordance with atomic 

model of lattice dynamics and with experimental observations on phonon dispersion [4]. Moreover, in recent years the 

application of nonlocal elasticity theory, in micro and nanomaterials has received a considerable attention within the 

nanotechnology community-. Peddieson et al. [5] proposed a version of nonlocal elasticity theory which is employed to 

develop a nonlocal Bernoulli/Euler beam model. Wang and Liew [6] carried out the static analysis of micro- and nano-

structures based on nonlocal continuum mechanics using Euler-Bernoulli beam theory and Timoshenko beam theory. 

Aydogdu [6] proposed a generalized nonlocal beam theory to study bending, buckling, and free vibration of Nano 

beams based on Eringen model using different beam theories. Phadikar and Pradhan [7] reported finite element 

formulations for nonlocal elastic Euler–Bernoulli beam and Kirchhoff plate. Pradhan and Murmu [8] investigated the 

flap wise bending–vibration characteristics of a rotating Nano cantilever by using Differential quadrature method 

(DQM). They noticed that small-scale effects play a significant role in the vibration response of a rotating Nano 

cantilever. Ghorbanpour et al. [9] researched wave propagation of Nano beams resting on a Pasternak Foundation 

with considering surface stress effect. Ansari et al.[10] employed modified couple stress theory for investigating the 

vibration characteristic of a post-bucked micro beam based on Euler-Bernoulli theory with different boundary 

conditions, they considered the geometric nonlinearity by using Von Karman strain tensor. They find out that the 

stiffness of the beam was increased by considering of the larger value of the material length-scale parameter to the 

thickness ratio. Thermal effect on free vibration behavior of FG Nano beams based on Euler-Bernoulli with three 

type of boundary conditions was investigated by Ebrahimi and salari [11], the small scale effect was based on 

nonlocal elasticity theory of Eringen, materials properties was assumed to be the temperature-dependent. They used 

differential transform method and analytical solution based on Navier type method and compared the result of two 

methods, also concluded that small scale has an important effect on vibrations of Nano beams. Determination of the 

influence of the parameters characterizing a system on the vibration of the system is of practical interest in 

engineering applications. Many factors can affect the flexural vibration of beams, in particular the axial load, 

intermediate supports and attached masses. Free vibrations of a beam having concentrated masses are extensively 

studied. Beam–mass systems are frequently used as design models in engineering. 

Studies on the vibration response of FG nano structures with attached tip mass, especially for beams, are still 

limited in number. for instance. Exact and approximate analyses have been carried out for calculating the natural 

frequencies of a beam–mass system under simple supported condition [11–20]. There are many studies about free 

vibration of beams with different boundary conditions and about free vibration of beams with any number of 

attachments in this study [21–25]. Most of these studies were presented without considering the effects of 

Timoshenko beam theory. They utilized Euler–Bernoulli beam theory while Timoshenko beam theory has more 

accurate results than Euler–Bernoulli theory, and the number of studies using this theory is limited. Considering the 

influence of masses on a shaft or beam is very important due to the decrease of natural frequencies of the shaft or 

beam in the presence of concentrated masses. This reduction should be considered in designing and manufacturing 

of structures, shafts and other applications. As mentioned above, some researchers were studied the vibration of the 

beams with concentrated masses by Euler–Bernoulli theory. Laura et al. [26] studied an Euler–Bernoulli Cantilever 

beam with a point mass and. He studied only one boundary condition and considered one position for a concentrated 

mass. The transverse vibration of a beam with an arbitrary placed concentrated mass and elastically restrained-

hinged boundary condition at both ends was conducted by Goel [27]. He used Dirac’s delta to impose the effect of 
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one concentrated mass to governing equation and used Laplace transform in his solution. Parnell and Cobble [28] 

studied lateral displacement of a vibrating Cantilever beam with a concentrated mass with general boundary 

condition by Laplace transform method. They also considered one position for the point mass. A research on 

vibration of a Cantilever beam with a concentrated mass and base excitation was carried out by To [29]. He imposed 

the effect of distance between tip mass center of gravity and point of its attachment to end of the beam. Grant [30] 

employed Timoshenko beam theory for obtaining the frequency and normal mode of uniform beams carrying a 

concentrated mass. He used Dirac’s delta function to represent the effects of the concentrated mass on Timoshenko 

beam and then solved governing equations by Laplace transform method. Bruch and Mitchell [31] studied vibration 

of a Clamped-Free Timoshenko beam which carries lumped mass-rotary inertia on its free end. He proved the 

reduction of first five natural frequencies of beam due to increasing mass or rotating inertia of lumped mass-rotary 

inertia. Abramovich and Hamburger [32] considered the effect of distance between the tip mass centroid and the 

point of tip mass attachment on the transverse vibration of a Cantilever beam carrying a tip mass at its free end. This 

effect causes a moment at the end of beam, and accompanied by effects of Timoshenko beam theory in the vibration 

of beam with tip mass. He compared the obtained results with results of Bruch [31]. In another research [33] 

Abramovich and Hamburger restudied vibration of a uniform Cantilever Timoshenko beam with translational and 

rotational springs and with a tip mass. In Ref. [34] Rossi et al. investigated free vibrations of Timoshenko beams 

carrying elastically mounted concentrated masses. He used governing equations of Timoshenko beam, and then 

compatibility conditions were used to impose the effect of shear force which is caused by mass-spring system on 

transverse vibration of a Timoshenko beam. In recent years, scientists tried to solve more complex problems related 

to the effect of concentrated mass on vibration of beams. Salarieh and Ghrashi [35] studied the effect of finite mass 

on both torsional and transverse vibration of Timoshenko beam. Free vibration analyses of an immersed beam 

carrying an eccentric tip mass with rotary inertia is performed by Wu and Hsu [36]. Lin and Tsai [37] used Euler–

Bernoulli beam theory to analyze a uniform multi-span beam carrying multiple spring-mass systems. They only used 

Pinned–Pinned boundary condition for the concerned beam. Togun [38] provided multiple scale method for 

nonlinear analyze of free and forced vibration of nano beam with attached mass based on Euler–Bernoulli beam 

theory. Finally some researchers used numerical procedures to investigate free vibrations of non-uniform beams 

carrying concentrated mass or masses. 

As seen, there is no study investigating the tip mass effect on vibration behavior of functionally graded Nano 

beams based on Timoshenko beam theory, while there is strong scientific need to understand the vibration behavior of 

FG nano beam with tip mass. It is assumed that material properties of the beam, vary continuously through the beam 

thickness according to power-law form. Governing equations and boundary conditions for the free vibration of a FG 

nano beam have been derived via Hamilton’s principle. An exact method is employed to solve governing equations for 

vibration behavior analysis of FG nano beams with tip mass. 

2    THEORY AND FORMULATION   

2.1 Power-law functionally graded beams with concentrated mass 

Consider a uniform FG beam with tip mass and rectangular cross-section of length L, width b and thickness h 

according to Fig. 1. X–axis is matched with neutral axis of the beam in the undeflected position, the y–axis in the 

width direction, and the z–axis in the thickness direction. The beam is made of inhomogeneous and isotropic 

functionally graded materials which the volume fraction and nano-structural morphology of the material 

compositions are varying continuously in the thickness direction only. Functionally graded materials are the new 

generation of composite materials which are usually produced from two or multi different materials. In this study 

FG material is made from a mixture of ceramic and metal and the material properties of FG beam are supposed to 

vary through thickness direction of the constitutes according to power-low distribution. The effective material 

properties of FG beam that distributed identical in two phases of ceramic and metal can be expressed by using the 

rule of mixture as: 

 

 f c c m mvp p p v          (1) 

 

where cp and mp are the material properties of ceramic and metal cv and mv are the volume fraction of ceramic 

and metal that are attached as: 
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 1c mv v        (2a) 

 

The power-low volume fraction of the ceramics constituents of the beam is assumed to be given by; 
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Here z is the distance from the mid-plane of the FGM beam and p is the non-negative variable parameter (power-

low exponent) which determines the material distribution through the thickness of the beam. According to this 

distribution we have a fully metal beam for large value of p and when p equal to zero a fully ceramic beam remain. 

Effective material properties such as Young’s modulus  E , Poisson’s ratio
 
( ) and mass density    are assumed 

to vary continuously in the thickness direction according to power-law distribution. P-FGM is one of the most 

favorable models for FGMs. The effective material properties of FG beam can be expressed by: 
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Fig.1 

Geometry and coordinates of functionally graded cantilever 

Nano beam attached to a concentrated mass at the free end. 

 

2.2 Kinematic relations 

The equations of motion are derived based on the Timoshenko beam theory, so that the displacement field at any point 

of the beam can be written as: 

 

     , , , ( , )xu x z t u x t z x t        (4a) 

 

( , , ) ( , )zu x z t w x t        (4b) 

 

where u is the axial displacement along x–axis, w is the transverse displacement along z–axis,   is the rotational 

angle due to bending and t is the time. Then the strains field can be expressed as: 
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xx ,  xz are normal and shear strain. The Euler Lagrange equations has been used to derive the equation of 

motion by using a Hamilton’s principle, which` can be stated as: 

 

   
2

1

( ) 0
t

t
U T V dt        (6) 

 

where 1 2,t t  are the initial and end time U  is the virtual variation of strain energy, V is the virtual variation of 

work done by external loads, T  is the virtual variation of kinetic energy. Here strain energy, kinetic energy and 

potential energy (external loading) can be calculated step by step and the equations of motion has been obtained by 

using rules of calculus of variations and Hamilton's principle. 

In the first step we define strain energy as: 

 

             0
( )

x

ij ij xx xx xz xz
v

A

U dV dAdx        (7) 

 

where   is the variational symbol, A is the cross-section area of the uniform beam,  xx the axial stress and  xz is 

the shear stress, by substituting the expressions for  ,xx xz into Eq. (7) as: 
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By defining , ,N M Q
 
as axial force, bending moment and shear force components as following: 
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where coefficient 
sK  is called the Timoshenko shear correction factor. The exact value of 

sK  is function of 

material properties and cross section parameters of the beam. Here for rectangular beams
sK has been assumed is 

equal to 5 / 6  approximately. By replacing these resultants into Eq. (8), get to: 

 

0
( ( ) ( ) ( ))

L u w
U N M Q dx

x x x

  
 

  
   

          (11) 

 

0 0 0

0 0 0 0

L L L L
x L x L x L
x x x

N M Q
u u M Q w w Q

x x x
U N       

  
  

  
     

  
            (12) 

 

 
0

0

L
x L

x

N M Q
u M Q w u w Q

x x x
U N       





   
         

         (13) 

In the second step, the kinetic energy expression for Timoshenko beam with concentrated mass can be expressed 

as: 

 

Total Beam Tip massT T T         (14) 
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where 0 1 2( , , )I I I are the mass moment of inertias that can be defined as: 
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The first variation of the virtual kinetic energy can be written in the form: 
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In the last step, the variation of potential energy can be obtained as: 
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At last by substituting Eqs. (13), (20), (21) and (22) into Eq. (6) as: 
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And setting the coefficients of u ,  and w  equal to zero, the governing equations of motion of FG Timoshenko 

beam attached tip mass can be obtained as: 
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2.3 The nonlocal elasticity model for FG Nano beam based on Timoshenko beam theory 

Based on Eringen nonlocal elasticity model, the stress at a reference point x in a body is considered as a function of 

strains of all points in the near region. This assumption is agreement with experimental observations of atomic 

theory and lattice dynamics in phonon scattering in which for a nonhomogeneous and isotropic elastic solid; the 

nonlocal stress-tensor components
ij at any point x in the body can be expressed as: 

 

( ) ( , ) ( )ij ijx x x t x d  



     
      (28) 

 

ij ijkl klt C         (29) 

 

0e a
l

         (30) 

 

The magnitude of 0e  is determined experimentally or approximated by matching the dispersion curves of plane 

waves with those of atomic lattice dynamics. According to nonlocal theory for a class of physically admissible 

kernel ( , )x x    it is possible to represent the integral constitutive relations given by Eq. (28) in an equivalent 

differential form as: 

 
2

0
2(1 ( ) ) kl kle a t          (31) 

 
2

2
0 2

( ) xx
xx xxe a E

x


 


 


       (32) 

 
2

2
0 2

( ) xz
xz xze a G

x


 


 


       (33) 

 

where and are the nonlocal stress and strain, respectively. E is the Young’s modulus, ( ) / 2(1 ( ))G E z z  is the 

shear modulus (where v is the Poisson’s ratio). By defining ( , , , )xx xx xx xzA B D C  and replacing these resultants into 

Eqs. (32) and (33) and integrating over the beam’s cross-section area, the force-strain and the moment-strain of the 

nonlocal Timoshenko FG beam theory can be obtained as following: 
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In which the cross-section stiffness are defined as: 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second derivative of N 

from Eq. (25) into Eq. (34) as follows: 
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Also, the explicit relation of the nonlocal bending moment can be derived by substituting for the second 

derivative of M from Eq. (26) into Eq. (35) as follows: 
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M B D I I I

x x t x t x t

 

     

     
       

       (40) 

 

By substituting for the second derivative of Q from Eq. (27) into Eq. (36), the following expression for the 

nonlocal shear force is derived: 

 
3

0 2
( )xz

w w
Q C I

x x t
 

  
    

   
       (41) 

 

The nonlocal governing equations of Timoshenko FG Nano beam in terms of the displacement can be derived by 

substituting for N, M and Q from Eqs. (39) - (41), respectively, into Eq. (34) - (36) as follows: 

 

2 42 4 2

xx xx 0 1 0 12 2 2 2 2

2

2 22
0

u u u
A B I I I I

x x t x t x t t

  

      

               
       (42) 

 
4

2
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w w
C I I

x

w

xx t t




  
   
  

       (43) 

 
4 2 2

xx xx 2 1 22 2 2

2 2 4

12 2 2 22
( ) ( ) 0xz

u w u u
B D C I I I I

xx x t x t x t t

  
 

      
       

       
       (44) 

 

By ignoring the axial displacement, the nonlocal governing equations of Timoshenko FG Nano beam and 

boundary condition can be obtained as: 

 
4

2

2 2

0 02 22
( ) ( ) 0xz

w w
C I I

x

w

xx t t




  
   
  

       (45) 

 
2

xx 2 2

2

22 22

4

( ) ( ) 0xz

w
D C I I

xx t x t

  
 

   
    

   
       (46) 

 

By considering clamped-free, the boundary condition can be stated as following; 
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2 3 3 2

0 2 02 2 2 2
0 , ( ) 0xx xz

x L x L

w w w w
D I I C I m
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 
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 

           
                              

       (47) 

 

0
0

0 0
x

x
w and 




         (48) 

3    SOLUTION METHOD: ANALYTICAL SOLUTION   

Assuming a sinusoidal variation of ( , )w x t  and ( , )x t , which the functions are approximated as: 

 

( , ) i tw x t we         (49) 

 

and 

 

( , ) i tx t e          (50) 

 

And by substituting Eq. (50) into Eqs. (45), (46), (48) and (49), equations of motion and boundary conditions are 

obtained as: 

 
2 2

2 2
02 20( ) ( ) 0xz

w
C I

x

w
I

x x
w


 





 
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       (51) 

 

2 2
xx 2 2

2 2

2 2
( ) ( ) 0xz

w
D C I I

xx x

 
   

  
    
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       (52) 

 

Boundary conditions: 

 

2 2 2
0 2 00 , ( ) 0xx xz

x Lx L

w w
D I w I C I m w

x x x x

 
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       
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       (53) 

 

0 0

0 0
x x

w 
 

         (54) 

 

By finding first derivation of  and w  from Eqs. (51) and (52) and calculating the second and third derivations 

of them. Then by deriving over the Eqs. (51) and (52), and substituting the first and third derivation of   and 

w yield: 
 

4 2

11 11 114 2
0A B C

x x

 


 
  

 
       (55) 

 

11 11 11

4 2

4 2
0

w w
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x x
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       (56) 
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                 

       (57) 
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0 0

0 0
x x

w 
 

         (58) 

 

where 
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(59) 

 

Solution to Eqs. (55) and (56) are easily found to be as follow: 

 

1 2 3 4

1 2 3 4
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(60) 

 

In which 
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,
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The values of the constants in Eq. (62) are related by the coupling Eqs. (51) and (52) as following: 
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(62) 

 

By inserting the Eq. (61) into boundary conditions as following: 
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The matrix equation can be expressed as follows: 
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(64) 

 

The coefficients 11 12,a a  and etc., of the matrix equation can be obtained and by taking the determinant of the 

coefficient matrix in Eq. (65) and setting this multinomial to zero, we can find natural frequencies .n  
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(65) 

 

The non-dimensional natural frequencies ( ) can be calculated as following: 
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m

m

L

h e


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(66) 

4    NUMERICAL RESULT AND DISCUSSIONS    

The functionally graded beam is combined of Aluminum ( Al ) and Alumina (
2 3Al o ) where their properties are 

given in Table 1. In Table 2. Numerical results are compared with Simsek [38] and Pradhan& Chakraverty [39] for 

validating the present research, hereupon natural frequencies of FG beams composed of alumina and aluminum for 

two different values of slenderness ratio,  / 5, 20L h  and various gradient indexes with Clamped-Free boundary 

condition are obtained by numerical solution method. The present frequencies are in good agreement with results of 

Simsek [38] and Pradhan & Chakraverty[39]. 

 
 

Table 1  

Material properties of the FGM constituents [simsek]. 

Properties unit Aluminum Alumina( 2 3Al o ) 

E Gpa 70 380 
  3Kg/m  2702 3960 

v - 0.3 0.3 
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Table2 

Comparison of the non-dimensional fundamental frequency for a C-F FG beam with various gradient indexes. 

Power-law Exponent /L h   Present Simsek[38](2010) Pradhan&Chakraverty[39](2014) 

 Analytical Lagrange's equations Rayleigh-Ritz 

p=0 5 1.88995 1.89479 1.9021 

20 1.93367 1.94957 1.9501 

p =0.2 5 1.75994 1.76637 1.7717 

20 1.80425 1.81456 1.8147 

p =0.5 5 1.60374 1.61817 1.6233 

20 1.65367 1.66044 1.6612 

p =1 5 1.44874 1.46300 1.4688 

20 1.48197 1.50104 1.5025 

p =2 5 1.30147 1.33376 1.3396 

20 1.31789 1.36968 1.3715 

 

In Tables 3, 4 and 5., a comparison between natural frequency of the clamped-free FG Nano beams with carried 

concentrated mass are presented for various values of the gradient index (p=0,0.2,0.5,1,2,), nonlocal parameters 

( 0,1,2,3  ) , different mass (
6(0,2,4,8)*10tipmassm kg and three different values of aspect ratio ( / 40,50,60L h  ) 

based on analytical solution method. Clamped-free boundary condition predicates the edge conditions at 0x  , 

x L of the beam. As seen in tables, by fixing the nonlocal parameter and varying the material distribution 

parameter, the fundamental frequencies decrease. By increasing the power law exponents from zero changes the 

composition of the FG beam from a fully ceramic beam to a beam with a combination of ceramic and metal. In other 

words, the percentage of metal phase increases by increasing power index. So this Occurrence leads to the increment 

in flexibility of the FG beams by smaller value of Young's modulus. Thus, as also known from mechanical vibrations, 

natural frequencies decrease as the flexibility of a structure increases. However, the increasing of nonlocal parameter 

causes the decreasing in fundamental frequency, at a constant material graduation index. The first dimensionless 

natural frequency of the nano beam with the tip mass and clamped-free boundary condition has been presented at 

Table 3. 

 
Table 3 

Material graduation and nonlocality parameter effects on the natural frequency of a C-F FG Nano beams carried concentrated 

mass ( / 20L h  ). 


 tipmassm  

Gradient index 

0 0.2 0.5 1 2 

0 0 1.93367 1.80425 1.70567 1.60097 1.49989 

 2 1.87476 1.77007 1.54012 1.55458 1.30876 

 4 1.71421 1.692014 1.50587 1.40134 1.29998 

 8 1.647954 1.52154 1.47895 1.38745 1.18785 

1 0 1.4224 1.38745 1.24784 1.14789 0.98745 

 2 1.35547 1.24789 1.12475 0.97854 0.87985 

 4 1.21458 1.19145 1.00094 0.92134 0.78794 

 8 1.12574 1.02145 0.98745 0.88954 0.67489 

2 0 1.00478 0.97854 0.78945 0.67498 0.60789 

 2 0.98745 0.9320 0.71245 0.58746 0.50756 

 4 0.88746 0.80654 0.61465 0.49899 0.46987 

 8 0.75847 0.70946 0.59587 0.428963 0.37896 

3 0 0.78921 0.687455 0.57841 0.456978 0.40741 

 2 0.647895 0.547984          0.44546 0.400124 0.39640 

 4 0.54711 0.456987 0.38748 0.354120 0.30078 

 8 0.45814 0.404568 0.35467 0.301460 0.29870 

 

By studying the results of Table 3, it is observed that fundamental frequency will be decreased by increasing 

nonlocal parameters for every gradient index. This decrease in frequency value emphasizes on the importance of 

size effect. Also it is obvious from this table that increasing mass density yields decreasing of natural frequencies for 

every types of gradient indexes; thus mass density has a significant effect on the dimensionless natural frequencies. 

As we know, increasing of the power indexes lead to rise the percentage of metal phase and thereupon FG beams 

will be more flexible and fundamental frequency values reduce. 
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Also, Table 4. contains the effect of nonlocal parameters, gradient indexes and mass density  on natural 

frequencies of the FG Nano beams of clamped-free boundary condition with different gradient indexes for 

( /L h =50). It is obvious that increasing gradient index and nonlocal parameters yields to decrease natural frequency 

values. 

 
Table 4 

Material graduation and nonlocality parameter effects on the natural frequency of a C-F FG Nano beam with different tip mass 

( / 50L h  ). 

  tipmassm  
Gradient index 

0 0.2 0.5 1 2 

0 0 2.13367 2.10025 1.82464 1.69196 1.51149  

 2 2.01478 1.97485 1.87456 1.64785 1.41478  

 4 1.94578 1.87457 1.79452 1.621457 1.37891  

 8 1.87459 1.74589 1.684753 1.502147 1.33147  

1 0 1.78546 1.76541 1.56310 1.34789 1.28745  

 2 1.68457 1.65410 1.53846 1.308954 1.23541  

 4 1.57489 1.48793 1.45687 1.24587 1.14789  

 8 1.45876 1.38749 1.21458 1.14587 1.09874  

2 0 1.35478 1.27895 1.12458 1.021458 0.98745  

 2 1.21487 1.20005 1.02478 0.98740 0.95014  

 4 1.12547 1.09789 0.98745 0.87459 0.71950  

 8 1.02145 0.94780 0.87456 0.78542 0.67965  

3 0 1.00745 0.91478 0.87459 0.74872 0.72987  

 2 1.03746 0.9.0745 0.84598 0.65459 0.50458  

 4 0.93954 0.87460 0.73458 0.64125 0.40456  

 8 0.84781 0.73412 0.64127 0.59874 0..36874  

 

At last, the fundamental frequency is presented at Table 5. for FG Nano beam carried concentrated mass with 

different power-low indexes, clamped-free boundary conditions for ( / 60)L h  . The conclusions that derived from 

this table for the effect of the tip masses and power index parameters on the natural frequency are similar to two 

previously tables. 

 
Table 5 

Material graduation and nonlocality parameter effects on the natural frequency of a C-F FG Nano beam with different tip mass 

( / 60L h ). 

  tipmassm  
Gradient index 

0 0.2 0.5 1 2 

0 0 2.33367 2.20025 2.12464 1.89196 1.61149  

 2 2.21458 2.145879 2.01236 1.78546 1.45871  

 4 2.12458 2.04587 1.90745 1.65478 1.35484  

 8 1.98745 1.81247 1.74589 1.47589 1.14785  

1 0 1.98745 1.90247 1.80457 1.45876 1.21245  

 2 1.84579 1.77459 1.70489 1.32145 1.12459  

 4 1.65478 1.56984 1.45478 1.23456 0.99878  

 8 1.45879 1.30216 1.24698 1.12365 0.89745  

2 0 1.58745 1.40247 1.30457 1.15876 0.98745  

 2 1.45469 1.321465 1.224587 1.14789 1.01456  

 4 1.325478 1.254134 1.12456 1.09874 0.99544  

 8 1.012354 0.99874 0.87456 0.78450 0.67456  

3 0 1.18745 1.00247 0.97456 0.7891 0.64579  

 2 1.05014 0.98741 0.87452 0.69512 0.54123  

 4 0.98741 0.84452 0.78541 0.54169 0.45690  

 8 0.874165 0.78214 0.65478 0.45621 0.314569  

 

Therefore by comparing the frequency values for FG Nano beams with tip mass for a prescribed material 

properties, mass density and gradient indexes in Tables 3-5., can observe the influence of slenderness on 

frequencies. It is concluded that by increasing of /L h , the natural frequencies will be increased. 
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5    CONCLUSIONS 

In this study, the exact form equations for the analysis of the transverse vibration modes of a FG Timoshenko nano 

beam carrying concentrated mass are obtained. After imposing Hamilton’s principle on the Timoshenko’s beam 

element, equations of motion are attained. Then time variable function is separated from equations of motion. Later, 

two coupled equations of motion are combined, a homogeneous differential equation is extracted with respect to 

transverse displacement, and undefined coefficients method is used to solve differential equation. A numerical study 

of a concentrated mass on Timoshenko nano beam was conducted to investigate mass intensity on the nano beam 

natural frequencies. 

According to the numerical results, it is revealed that the effect of different parameters are investigated, the effect 

of gradient indexes, nonlocal parameters, rotatory inertia, material property gradient index and mass density on 

fundamental frequencies of nano FG beams are investigated. It is concluded that various factors such as nonlocal 

parameter, gradient index, mass density, material properties and aspect ratio play important roles in dynamic 

behavior of FG Nano beams. 

 It is concluded that increasing in gradient indexes is cause of decreasing of fundamental frequency. 

 Also it is revealed that increasing of slenderness aspect ratio yields the increase in fundamental frequencies 

for every value of power indexes. 

 It is illustrated that presence of nonlocality leads to reduction in natural frequency. 

 It is concluded that the mass attached at free end of the beam yields reduction in natural frequencies and by 

increasing in the mass density of the masse the dimensionless frequency will be lower. 
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