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 ABSTRACT 

 In this study, the buckling response of homogeneous circular plates with variable thickness 

subjected to radial compression based on the first-order shear deformation plate theory in 

conjunction with von-Karman nonlinear strain-displacement relations is investigated. 

Furthermore, optimal thickness distribution over the plate with respect to buckling is presented. In 

order to determine the distribution of the prebuckling load along the radius, the membrane 

equation is solved using the shooting method. Subsequently, employing the pseudospectral 

method that makes use of Chebyshev polynomials, the stability equations are solved. The 

influence of the boundary conditions, the thickness variation profile and aspect ratio on the 

buckling behavior is examined.  The comparison shows that the results derived, using the current 

method, compare very well with those available in the literature. 

© 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

TABILITY analysis and studies on the buckling behavior of plates have been always considered as one of the 

important subjects in structural analysis (Timoshenko and Gere [1], Almroth and Brush [2], and Turvey and 

Marshall [3]). On the other hand, variable thickness plates have always been attractive for designers, and a lot of 

researches have been done on this subject [4-6]. The most conspicuous usage of variable thickness plates is to 

lighten structures, especially when used in high-speed aircrafts. With an accurate design of the thickness 

distribution, one can make an increase in buckling capacity of the plate compared to its uniform thickness 

counterpart. Wang et al. [7] investigated the elastic buckling of tapered circular plates using the shooting method 

and the Rayleigh-Ritz approach. Asymmetric vibration and elastic stability of polar orthotropic circular plates of 

linearly varying thickness subjected to hydrostatic in-plane force are discussed on the basis of classical plate theory 

using Ritz method by Gupta and Ansari [8]. Dumir and Khatri [9] studied axisymmetric postbuckling of fiber-

reinforced cylindrically orthotropic thin tapered circular plates subjected to an in-plane radial compressive and 

investigated the effect of orthotropic parameter and taper ratio for clamped and simply-supported plates. Özakça et 

al. [10] carried out the buckling analysis of tapered circular and annular plates using the finite element method. A 

family of variable thickness, Mindlin-Reissner axisymmetric finite elements has developed which include shear 

deformation and rotary inertia effects. Shufrin and Eisenberger [11] studied the buckling behavior of thick elastic 

rectangular plates with variable thickness, applying both the first-order and high-order shear deformation plate 

theories, using the extended Kantorovich method.  

Circular plates are one of the most important elements in structural design. On the other hand, optimum design is 

a big concern especially in applications such as aerospace, where reducing the structural members’ weight is 
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essential. Therefore, in this study, the buckling analysis of moderately thick circular plates with variable thickness 

under radial compression is investigated for clamped and simply supported boundary conditions. The equilibrium 

and associated stability equations are derived based on the first-order shear deformation plate theory in the von-

Karman sense. 

2    PROBLEM FORMULATIONS 

2.1 Geometry 

Consider a circular plate of radius b which is mid-plane symmetric, as shown in Fig. 1. The plate is under radial 

compression P. The origin of the cylindrical coordinates system lies on the center of the mid-plane where r and z 
define the radial and thickness directions, φ defines the rotation about the circumferential axis, and u and w are the 

displacements in r and z directions, respectively. The plate thickness is a function of r as follows 
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where h1 and h2 are the thicknesses of the plate at the center and the edge, respectively, and p defines the profile of 

the thickness. Although the formulation and the method are general for circular plates with any kind of profile 

through the thickness, the analysis is performed only on plates with linear and parabolic profiles. Considering a plate 

of constant volume, V, the relationship between the geometrical parameters is given by 
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where h0 is the thickness of its uniform thickness counterpart, and  is the taper parameter ranging from 0 to 1, 

defining the volume distribution of the plate in the radial direction. =0, and 1 correspond to maximum thickness at 

the center and the edge of the plate, respectively, while =0.5 corresponds to a plate of constant thickness. Some 

plate sections with various taper parameter and their corresponding h1 and h2 values for equal plate volume is 

presented in Fig. 2. 

2.2 Equilibrium and stability equations 

In order to consider the nonlinear effects of the buckling problem, the axisymmetric strain-displacement relations 

are written based on von-Karman plate theory 

 

0 0, , ,r r r rz rk z k z w         (4) 

 

in which the mid plane strains, 
0r  and 

0  
are given by 

 

 

 

Fig. 1 

Geometrical definition of a circular plate with variable 

thickness. 
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Fig. 2 

Plate sections for various values of taper parameter 

  

and corresponding values of h1 and h2. 
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and the curvatures, 
rk  and k  are defined as 
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where 
,( ) r

 indicate the differentiation with respect to r. The relations between stress and strain are based on Hook’s 

law. 
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where 
r and 

  are normal stresses in r- and θ- directions, respectively; and 
rz  is the shear stress acting on 

r=Constant plane and in z-direction. The resultant forces and moments of the stresses are given by 
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where K is the shear correction coefficient in the first-order shear deformation plate theory, which is set to 5/6. 

Substituting Eq. (7) into Eq. (8) results in the following relations between resultant forces and moments and the 

strains 
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Equilibrium equations of the circular plate with axisymmetric deformations can be obtained using stationary 

potential energy method as follows [2] 
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Substituting Eqs. (4)-(6) and (9) into Eq. (11) gives the equilibrium equations in terms of the displacement 

components 
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One can obtain all the configurations of the plate from the above equation. There are two types of equilibrium 

configurations possible for a plate under in-plane loading, which are undeflected and buckled configurations. When 

buckling happens, the plate configuration will turn from the undeflected configuration into the buckled one. The 

intersection of these two equilibrium configurations is called the bifurcation point. This point can be obtained by 

solution of linear differential equations of stability. The linear equations of stability necessary for this process may 

be derived from the nonlinear equilibrium equations, Eq. (12), by use of a perturbation technique in which the 
displacement field, (u, w, φ), is replaced by (u0+u1, w0+w1, φ0+φ1), where (u0, w0, φ0) represents an equilibrium 

configuration in the undeflected state, and (u1, w1, φ1) is a small increment. This method is called adjacent 

equilibrium criterion (from Almroth and Brush [2]). Therefore, the stability equations can be expressed as 
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The stability equations are homogenous and linear and have solutions only for discrete values of the applied 

load, which refers to an eigenvalue problem. The smallest eigenvalue is termed the critical buckling load Pcr. It 

should be noticed that Eq. (13a) is decoupled from the Eqs. (13b) and (13c).The boundary conditions for the stability 

equations are 
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In Eq. (13) Nr0 is the prebuckling load, which must be obtained from the equilibrium equations of the plate. But 
since the plate is in its undeflected configuration, w0 and φ0 are equal to zero, and the equilibrium Eq. (12) can be 

revised into the following equation called the membrane equation 
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Solving the above equation, u0 may be obtained and therefore, Nr0 can be calculated from Eq. (9a).The boundary 

conditions for membrane equation can be expressed as 
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3    NUMERICAL SOLUTION METHODS 

3.1 Shooting method 

The shooting method, consisting of the well known Runge-Kutta method in conjunction with a  

Newton-Raphson iterative formulation, is employed to numerically solve the membrane equation, Eq. (15). Taking 

Eq. (16a) and assuming an initial value for u0,r, the membrane equation is solved using Runge-Kutta method. The 

Newton-Raphson formulation is then applied to iterate the initial value of u0,r in a way that the answers satisfy the 

boundary condition, Eq. (16b), at the edge of the plate. 

3.2 Pseudospectral method 

The pseudospectral method is employed to numerically solve the eigenvalue problem, Eqs. (13) and (14). The basic 

idea in this method is to assume that the answer of the differential equations can be approximated by a sum of finite 

number of basic functions with unknown coefficients. The pseudospectral method demands that the differential 

equation be exactly satisfied at a set of points known as the collocation points. Usually when the solution is not 

especially periodic, Chebyshev polynomials are the best choices as basic functions (from Boyd [12]). Chebyshev 

polynomials are of great use for eigenvalue problems of plates e.g. [13]. These polynomials can be expressed by the 

following recursive equation 
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To approximate the answers with Chebyshev polynomials, the solution range should be changed from [0, ]r b  

to [ 1,1]x . For this purpose, r is substituted with x based on the following equations 
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The following dimensionless parameters are introduced to make the stability equations dimensionless 
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where x1 and x2 are dimensionless transverse displacement and rotation about the radial axis, respectively. Therefore, 

the stability equations, Eq. (13), and the boundary conditions, Eq. (14), can be rewritten in the following form, 

where ( ) shows the derivative with respect to x 
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where x1 and x2 are approximated by a sum of n+1 Chebyshev polynomials as follows 
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where indexes i and j refer to the i
th

 collocation point and the j
th

 Chebyshev polynomial, respectively, and aj and bj 

are unknown coefficients. In order to solve the equations, 2n+2 algebraic equations are needed. The boundary 

conditions, Eq. (21), provide four of the required equations. Besides, satisfying Eqs. (20a) and (20b) in n-1 

collocation points supplies 2n-2 remained algebraic equations. To minimize the error, based on the Gauss-Lobatto 

interpolation points, the optimal collocation points can be selected as follows 
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The results are represented in dimensionless form using the buckling load factor λ defined by 
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4     NUMERICAL RESULTS AND DISCUSSIONS 

In the following, numerical results of the buckling behavior of clamped (C) and simply supported (SS) circular 

plates with variable thickness under radial compression are presented. Thickness variation is considered to be either 

linear or parabolic taper. As the determination of prebuckling load distribution along the plate radius is a 

prerequisite for solving the stability equations, the derived results from the membrane equation should be verified at 

first. The results are compared with those presented by Wang et al. [7] in terms of stress function f. The comparison 

would be possible using the relationship between the prebuckling load and the stress function as follows 
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Pb
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in which f  is the dimensionless parameter of the stress function. Variations of f  with respect to the dimensionless 

parameter of radial coordinate r/b for various taper parameters are shown in Fig. 3. It shows that the results are of a 

good accuracy. For the purpose of verifying the buckling behavior, at first a comparison study for thick circular 

plates with constant thickness is made with those obtained by Wang et al. [14] using Rayleigh-Ritz energy approach, 

Raju and Rao [15] using Galerkin’s method, and Özakça [10] applying FEM in Table 1. Then verification is carried 

out for the buckling behavior of circular plates with variable thickness.  

 

  
Fig. 3 

Variations of dimensionless parameter of the stress function f  with respect to dimensionless parameter of radial coordinate r/b, 

(a): Linear taper; (b): Parabolic taper. 
 

 
Table 1 

Comparisons of the present buckling load factors λ with previous results available in the literature 

   h0/b 
Source  

0.2 0.1 0.05 0.001 

12.5724 14.0909 14.5296 14.6819 Present  C 

12.5725 14.0909 14.5296 14.6819 Ref. [14] 

12.5725 14.0910 14.5299 14.6825 Ref. [15] 

12.2843 13.9885 14.5014 14.6819 Ref. [10] 

14.6842 14.6842 14.6842 14.6842 Ref. [1] 

      

4.0056 4.1480 4.1852 4.1978 Present SS 

4.0056 4.1480 4.1853 4.1978 Ref. [14] 

4.0056 4.1481 4.1852 4.1978 Ref. [15] 

3.9938 4.1448 4.1844 4.1978 Ref. [10] 

4.2025 4.2025 4.2025 4.2025 Ref. [1] 



26                   S.K. Jalali and M.H. Naei 

 

© 2010 IAU, Arak Branch 

Figs. 4 and 5 show the variations of the buckling factor λ with respect to taper parameter . The results are 

presented for various values of aspect ratio h0/b and are compared with the results obtained by Wang et al. [7] using 
Rayleigh-Ritz method based on classic plate theory. It is seen that the buckling factor λ decreases with increasing the 

aspect ratio h0/b due to the increasing transverse shear deformation. This phenomenon is not supported by classic 

plate theory. 

 

  
Fig. 4 

Buckling load factor λ with respect to taper parameter   for clamped edge, (a): Linear taper; (b): Parabolic taper. 

  

  
Fig. 5 

Buckling load factor λ with respect to taper parameter  for simply supported edge, (a): Linear taper; (b): Parabolic taper. 

 
Table 2 

Optimal values of taper parameter  and the buckling load factor λ of homogenous circular plates with variable thickness for 

specified values of aspect ratio h0/b 

 
  Wang et al. [7] 

h0/b    

0.001 0.1 0.15 0.2 

C Linear opt 0.374 0.374 0.377 0.382 0.387 

  λ opt 15.2973 15.2978 14.6417 13.8975 12.9755 

 Parabolic  opt 0.446 0.447 0.447 0.447 0.448 

  λ opt 14.8335 14.8337 14.2325 13.5462 12.6893 

        

SS 
Linear opt 0.210 0.210 0.214 0.218 0.225 

  λ opt 5.8082 5.8062 5.6694 5.5080 5.2994 

 Parabolic opt 0.197 0.198 0.204 0.211 0.220 

  λ opt 6.0807 6.0894 5.9090 5.7187 5.4766 
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Furthermore, it is found that there exists an optimal value for taper parameter , for which the buckling factor λ 

is maximum. Optimal values of taper parameter  and corresponding buckling factor λ for clamped and simply 

supported boundary conditions are presented in Table 2. 

5    CONCLUSION 

The buckling behavior of moderately thick circular plates with variable thickness under radial compression based on 

the first-order shear deformation plate theory and nonlinear von-Karman displacement field is studied. Numerical 

solution for both clamped and simply supported boundary conditions and for either linear or parabolic taper is 

presented. For the purpose of verifying the accuracy of the results, the critical buckling load is compared with the 

previous researches for both constant and variable thickness plates. The comparison shows that the results derived 

using the current method compare very well with them. Analyzing the effect of the taper parameter  on the 

buckling load factor λ shows that there exists an optimal value for taper parameter , for which the buckling factor λ 

is maximum. Optimal values of taper parameter  for clamped and simply supported boundary conditions and for 

either linear or parabolic taper are presented. 
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