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 ABSTRACT 

 In this paper, a continuum model based on the nonlocal elasticity theory is developed for 

vibration analysis of embedded orthotropic circular and elliptical micro/nano-plates. The 

nano-plate is bounded by a Pasternak foundation. Governing vibration equation of the 

nonlocal nano-plate is derived using Nonlocal Classical Plate Theory (NCPT). The 

weighted residual statement and the Galerkin method are applied to obtain a Quadratic 

Functional. The Ritz functions are used to form an assumed expression for transverse 

displacement which satisfies the kinematic boundary conditions. The Ritz functions 

eliminate the need for mesh generation and thus large degrees of freedom arising in 

discretization methods such as Finite Element Method (FEM). Effects of nonlocal 

parameter, lengths of nano-plate, aspect ratio, mode number, material properties and 

foundation parameters on the nano-plate natural frequencies are investigated. It is shown 

that the natural frequencies depend on the non-locality of the micro/nano-plate, especially 

at small dimensions.                                          
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1    INTRODUCTION 

 UPERIOR mechanical, chemical and electrical properties of nanostructures cause their wide usage in 

different nano-devices such as nano-sensors, nano-actuators and nano-composites. For this reason, proper 

physical and mechanical analysis of these structures encompasses numerous advantages. After the invention of 

Carbon Nano-tubes (CNTs) [1] and graphene sheets [2], both experimental and theoretical studies on micro- and 

nano-engineering of nanostructures have been accelerated. However, experimental measurements are hard to 

develop and depend on the development of devices for manipulation of nano-sized objects. Numerical techniques 

based on semi-empirical approaches [3, 4] such as molecular dynamic simulation, density functional theory, etc, 

provide a balance between accuracy and efficiency. 

Although these numerical methods produce results which are in good agreement with experimental results, a 

large amount of computational capacities are needed, especially when the dimensions of the considered structure 

increase. Therefore, developing an appropriate mathematical model for analysis of nanostructures is an important 

issue. Recently, continuum modeling of nanostructures has been the subject of much attention [5-10]. As dimensions 
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of a system reduce to the micro/nano scale, they become comparable to the inter-atomic or inter-molecular spacing 

of the system, and therefore, the material can no longer be modeled as a continuum. Moreover, at micro/nano scale, 

the influence of long-range inter-atomic and inter-molecular cohesive forces on the static and dynamic properties 

tends to be significant and cannot be neglected. These are known as “Quantum” or “Small scale” effects. Classical 

continuum models are unable to account for quantum effects. Therefore, there is a need to modify the classical 

continuum theories to account for these effects. 

Modified continuum models that benefit from the computational efficiency of classical continuum models, at the 

same time, produce accurate results comparable to atomistic models [11].  These models can be effectively used to 

simulate very small to very large systems. A well-known class of modified continuum models is based on the 

concept of the nonlocal elasticity theory introduced by Eringen [11, 12]. In classical (local) continuum theories, it is 

assumed that stress state at a point in the continuum depends uniquely on strains at that point. In contrast, according 

to the nonlocal elasticity theory, it is assumed that stress state at a point depends on strains at all points of the 

continuum especially on those which are included in effective neighboring domains [12]. 

Vibration analysis of nanostructures is an important issue for proper design and usage of many NEMS devices 

such as oscillators, sensors and actuators. There exist numerous studies on the use of nonlocal continuum models for 

vibration analysis of CNTs and similar micro/nano-beams [13-19].  In spite of the importance of structural analysis 

of micro/nano-plates, few works have been reported on their theoretical modeling, as compared to the explorative 

studies on micro/nano-beams.  

Circular and elliptical micro/nano-plates belong to a class of nano-plates which have special application in 

vibrating micro/nano-structures such as MEMS and NEMS [20].  Similar to CNTs, nano-plates possess superior 

mechanical properties [21-24]. Pradhan and Phadikar [25, 26] reported transverse vibration analysis of embedded 

single- and multi-layered graphene sheets. Aydogdu and Tolga [27] investigated the effect of different boundary 

conditions on buckling and vibration of nonlocal plates by Levy method. Jomehzadeh and Saidi [28, 29] studied 

three dimensional vibration of single-layered and large amplitude vibration of multi- layered graphene sheets. In all 

of these works it is suggested that for accurate prediction of dynamic response of micro/nano-plates, the Eringen 

nonlocal elasticity theory should be included in the continuum modeling. 

In almost all of the studies conducted on frequency analysis of nano-plates, the shape of nano-plates has received 

less attention. Duan and Wang [30] reported exact solution for axisymmetric bending of circular graphene sheets 

based on the nonlocal elasticity theory. Farajpour et al. [31] reported axisymmetric buckling of circular graphene 

sheets using nonlocal continuum plate model. Further, Babaie and Shahidi [32] studied small scale effects on the 

buckling of quadrilateral nano-plates using the Galerkin method. Malekzadeh et al. [33, 34] investigated thermal 

buckling and free vibration of orthotropic arbitrary straight-sided quadrilateral nano-plates using the nonlocal 

classical and first order plate theories.  

It is recognized that exact analytical solutions of plate vibration are only possible for plates with simple shapes 

like rectangle or circle, under certain boundary and loading conditions. For frequency analysis of plates with 

arbitrary shapes, numerical methods such as finite difference, finite element or finite strip method [35] are usually 

used. Although these methods provide a general framework for vibration analysis of nano-plates, they need large 

computational capacities. In FE analysis, for instance, due to the large number of discretization nodes, a large 

computational capacity is needed for an adequate approximation of the curved boundaries [36]. However, these 

inconveniences and approximations of boundary conditions via discretization do not arise when using the well-

known Ritz method. Being a numerical approximate method, it eliminates the need for discretization by viewing the 

entire plate as a single super element. The Ritz method has been applied in different studies including static or 

dynamic, linear or nonlinear analysis of the plates with arbitrary geometry and edge conditions [37, 38].  Adali [39, 

40] reported the variational principle for vibration of multi-layered graphene sheets based on the nonlocal elasticity 

theory without considering the foundation effects. Variational formulation for finite element analysis of nonlocal 

nano-plates was also reported by Phadikar and Pradhan [41]. Most recently, the nonlocal elasticity theory has been 

widely used for vibration analysis of micro/nano-plates and grapheme sheets [42-47]. 

In the present, work a nonlocal continuum model is developed for frequency analysis of embedded orthotropic 

circular and elliptical micro/nano-plates based on the Classical Plate Theory (CPT). A plate with elliptical shape is 

considered due to its relatively complicated shape. The effect of elastic foundation is also considered in the 

quadratic form for the micro/nano-plate. The principle of virtual work is used to derive the governing vibration 

equation and an approach similar to [41] is taken to obtain the weak form of the equation. Quadratic functional for 

vibration of the embedded nano-plate is obtained by the Galerkin method. Using the quadratic functional, natural 

frequencies can be found for nano-plates with an arbitrary shape. This procedure is similar to the Rayleigh-Ritz 

method in the local plate theory. Effects of the nonlocal parameter, nano-plate lengths, aspect ratio, mode number, 
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material property and elastic foundation on the non-dimensional frequencies are illustrated. The results show 

noticeable effect of non-locality on the frequencies of small sized micro/nano-plates.  

2    FORMULATION    

The discrete and nonlocal continuum models of an embedded elliptical nano-plate are shown in Fig. 1 In order to 

obtain the governing equations, the Cartesian coordinate system is chosen with the origin fixed at the center of the 

mid-plane. The x, y and z coordinate axes are taken along the major axis, minor axis and thickness of the plate, 

respectively.  

 

 

 
(a) 

 
 

(b) 

Fig. 1 

Schematic of an embedded elliptical nano-plate: (a) Discrete model, (b) Nonlocal continuum model. 

 

 

According to the CPT, the displacement fields at time t are as follow 
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where 0 0,u v  and  w denote the displacements of the point ( , ,0)x y along x ,y  and  z  directions, respectively. 

The strain components are calculated as: 
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According to Eringen [11, 12], the nonlocal constitutive equation of a Hookean solid can be introduced by the 

following differential equation 
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where 
( ) , ,l S   and   denote local stress tensor, nonlocal stress tensor, elasticity tensor and strain tensor, 

respectively, defined as: 
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In Eq. (3)   represents the nonlocal effect that depends on a characteristic length ratio i el l   in which il   is an 

internal  characteristic length (lattice parameter, size of grain, granular distance, distance between atomic bonds) and 

el  is an external characteristic length (wavelength, size or dimension of a sample of the system). The parameter 0e  

is a constant that its value should be determined based on the material properties of the nano-plate [17]. It is obvious 

that for the well-known classical constitutive equation, 0  . Moreover, the following stress resultants are used  
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where h denotes the nano-plate thickness. 

According to Eq. (3), the nonlocal effect enters through the constitutive relations. The principle of virtual work 

[48] which is independent of the constitutive relations can be applied to derive the equilibrium equations for 

nonlocal plates in the form of  
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where wk  and pk  denote Winkler and Pasternak coefficients of the elastic foundation, respectively. The Winkler 

modulus represents the foundation as a set of linear springs; however, the Pasternak coefficient represents the shear 

effect of the elastic foundation. In Eqs. (6), 0m  and 2m  are mass moments of inertia defined as: 
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where   denotes the nano-plate density. 

Using Eqs. (2-5), the moment resultants can be expressed in terms of displacements as: 
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2   M M Dk     (8) 

 

Here,  
2

0 ie l   is the nonlocal parameter, D is the bending rigidity matrix and k  is the curvature matrix of the 

nano-plate defined as follow 
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Using Eqs. (6c) and (8) and assuming a modal solution as ( , , ) ( . ) i tw x y t W x y e  , the following general 

governing equation will be obtained for a nonlocal plate in terms of displacements [27, 39, 40]  
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where W  is a continuous function which represents the deflection of the nano-plate middle surface and   denotes 

the natural circular frequency.  

3    SOLUTION PROCEDURE 

3.1 Weak form formulation 

The weighted residual statement corresponding to Eq. (10) can be written as: 
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where x denotes the weight function. 

By breaking the integration in Eq. (11), the weak form will be obtained as: 

 

( ) ( , ) ( ) 0nl

R R

x y dxdy s ds



      
   

(12a) 

( ) ( , ) ( , ) ( , ) ( , ) ( , )nl x y U x y T x y V x y Q x y      (12b) 

 

where 

 
2 2 2 2 2 2 2 2 2 2

11 12 22 332 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

( , ) 4

2w p

W W W W W
U x y D D D D

x y x yx x x y y x y y

W W W W W W W
k W k

x x y y x x y y x y x yx x y y

    

      
  

          
     

            

                
                            

 
 
  

 

 

 

(12c) 

 



18                   A. Anjomshoa et al. 

© 2015 IAU, Arak Branch 

2

2 2 2 2 2 2

0 2 2 2 2 2

( , )

2

T x y

W W W W W W W
m W m

x x y y x x y y x y x yx x y y



      
  

 

                   
                                   

 

 

 

(12d) 

                                                                                                                                                                     

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

( , ) xx yy

xy

W W W W W W
V x y N N

x x x y x y y y x y x yx x y y

W W W W W W
N

x y y x x y x y x y x yx x y y

     
 

     


                 
                                     

           
     

              

 
   
   

 

 

 

(12e) 

 

2 2

0 2 2
( , )Q x y q

x y

 
 
   

         

 
 

(12f) 

 

3 3 3
2 2

11 2 12 2 123 2 2

3
2 2 2

33 2 22 2 23

2
0

( )

( ( )) ( ( 2 )) (

4 ( 2 )) ( ( )) (

( )) (

x
p xx x p yy xy y

y

y

p xx xy x p yy y p xx
x

y

xy w x p
x

s

nW W W
D k m N n D k m N N n D

nx x y x y

n W W
D k m N N n D k m N n k m N

n xy

n W
N k m n k

n y

    

    

 

 

  
        

    

 
           




   



2 2 0 0
2 0

2 2
2 2

11 2 33 22

2 2
2

12 0 22 22 2

( ))

( ( )) (4 ( ))

( ) ( (

x
xy yy w y x y

y

y x
p xx xy x p xx xy y

x y

x p xy

n q q
m N N k m n n n

n x y

n nW W
D k m N N n D k m N N n

x n x y nx

W W
D n q D k m N

yy y

   


   


  

  
        

   

  
         
  

    
     

   

2
2

2

2

12 02

)) (

)) ( )

yx
yy y p xy

y x

yy x y

nn W
N n k m N

n x y n

W
N n D n q

x

 




   

 

 
   

 

 

 

 

 

 

 

 

 

 

 

(13) 

 

Here, ,x yn n  represent the components of the unit normal vector on the boundary R  of the nano-plate (see Fig. 

1). 

3.2 Ritz functions 

The Ritz functions are made from the product of a basic function and a set of orthogonal polynomials the degree of 

which may be increased until the desired accuracy is achieved. The basic function is defined by the product of 

equations of the specified boundary shape of the plate which are raised to the power of either 0, 1 or 2 corresponded 

respectively to the free, simply supported and clamped edges. The basic function ensures automatic satisfaction of 

the kinematic boundary conditions at the outset without the need to use Lagrangian multipliers (as in the Lagrangian 

multiplier method) [36]. In the present study the pb-2 type of Ritz functions is used which denotes polynomials, 

boundary expression and two dimensional. The pb-2 Ritz functions eliminates the tedious task of choosing the form 

of the infinite series or trigonometric or algebraic functions to suit the conditions of support along the edges.  

Accordingly, transverse deflection of the nano-plate mid-surface can be defined as: 
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In which, iC  are the unknown coefficients to be varied and the Ritz functions, i , are defined as: 
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Here, the term 
2 21 ( / ) ( / ) 0x a y b    is the equation of the boundary which is an ellipse with a and b as its 

semi-major and semi-minor axis, respectively. In Eq. (15), k  is the power of the geometrical shape equation which 

is set to satisfy kinematical boundary conditions. Note that for clamped edges 2k  . Also, i  are polynomial 

functions in the form of 

 

( , ) q r r
i x y x y   (16) 

 

where 

 

( 1)( 2)

2

q q
i r

 
   

 

(17) 

 

In Eq. (14), p is the degree of polynomial set that may be increased until the desired accuracy is achieved. 

3.3 Quadratic Functional 

Principle of minimum total potential energy is valid under the assumption that stresses at a point can be uniquely 

defined in terms of the strains at that point [41]. However, it is found from differential form of the nonlocal elasticity 

that stresses at a point cannot be obtained unless stresses at the neighborhood of that point are known. Therefore, an 

explicit relation between stress and strain components cannot be found. In the case of integral form of the nonlocal 

elasticity theory, the variational principle is introduced by Eringen [12] for a homogeneous and anisotropic 

thermoelastic material. Furthermore, a variational formulation has been derived for FE analysis of the nano-plates by 

Phadikar and Pradhan [41]; but it lacked the effect of rotational vibration and elastic foundation. The pb-2 Ritz 

method has some advantages which were reported by Leiw and Wang [36]. Here, an inverse approach similar to the 

work of Phadikar and Pradhan [41] is taken to obtain a quasi quadratic form of the total potential or complementary 

energy based on the differential form of the nonlocal constitutive equation.  

Using the Galerkin method, i.e. ix   , it can be seen that all of the terms in the expression of  ( ) ( , )nl x y  are 

either bilinear and symmetric or linear. Therefore, the following relation can be concluded 
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(18) 

 

By integrating Eq. (18) and neglecting the boundary term ( )s  in Eq. (12a) for a clamped plate, the quasi 

expression for the total nonlocal “Quadratic Functional” of orthotropic nano-plates, according to CPT, can be found 

as: 
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(19a) 

( ) ( , ) ( , ) ( , ) ( , ) ( , )nl x y U x y T x y V x y Q x y      (19b) 

 

in which 
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In the previous studies [15, 25, 41] , it has been shown that the results obtained through nonlocal analysis depend 

on the boundary conditions and in some cases, like bending analysis of clamped nano-beams and nano-plates, lead 

to unexpected values.  

It can be found from Eqs. (12) and (13) that for the clamped boundary condition the variational principle is 

independent of the term related to the boundary of the nano-plate, i.e. similar to the local plate, it can be calculated 

only in the region of the plate. Also, it should be noted that for other constraints the boundary term in Eq. (13) 

should be considered [41].  

Potential/complementary energy for the local orthotropic plates (Kim, 2003) can be found by putting 

0w pk k     in Eq. (19). Also, for 0w pk k  , the variational principle reported by Adali [40] will be 

obtained.  Similar to the Rayleigh-Ritz method for classical (local) plates, the quasi potential energy in Eq. (19) can 

be used for the analysis of the clamped nano-plates with an arbitrary shape. The word “quasi” is employed here 

because the potential form in Eq. (19) is obtained from Eq. (18) and not directly through calculating the energy 

terms.  

For generality and convenience, the coordinates are normalized by 
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Substituting Eq. (14) into Eq. (19) and minimizing with respect to the coefficients iC , i.e. 
( )

0
nl
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
, for 

vibration and buckling analysis the following set of simultaneous linear equations will be obtained 
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where    ,K M  and  B are stiffness, mass and buckling matrices of the nano-plate, respectively, defined in 

Appendix A. The scalar indicators   take on 1 21, 0    for vibration analysis and 1 20, 1    for buckling 

analysis.Non-dimensional frequency and buckling parameters are expressed as 2
11/a h D   and 

2
11| | /b xxN a D   , respectively. Eq. (22) is a standard eigenproblem which can be solved for the fundamental 

frequencies or buckling loads of the orthotropic circular and elliptical nano-plates. The corresponding eigenvector 

 C  represents the vibration or buckling mode shape of the nano-plate. The calculated frequencies are illustrated as 

modified non-dimensional frequency parameter
24 /    . It should be noted that the Gaussian quadrature 

technique is used for numerical integration of Eq. (22). 

4    RESULTS AND DISCUTIONS 

4.1 Validation and convergence studies 

In order to establish the validation of the current work, the natural frequencies of an orthotropic square graphene 

sheet are compared with those obtained by using DQ solution [27] and FE method [41] in Table 1.  Material and 

geometrical parameters of the nano-plate are: Young’s moduli 1765xE Gpa , 1588yE Gpa , shear modulus 

678.85xyG Gpa , mass density
32.3 /g cm  , Poisson’s ratios 0.3x  , 0.27y  ,  thickness 0.34h nm  and 

length 10.2L nm . It can be seen that the results calculated by using Eq. (22) for 10p  are in good agreement with 

those obtained by DQ solution [27] and FE analysis [41]. To choose a sufficient degree for polynomial set, a 

convergence study is performed and the results are shown in Table 2.  Here, an isotropic elliptical nano-plate with 

Young’s moduli 1.06x yE E Tpa  , mass density
32300 /kg m  , Poisson’s ratios 0.3x y    and thickness 

0.34h nm  is considered. A desired agreement can be seen between the obtained results and those reported by 

Wang and Wang [48] and Lam et al. [49]. Results of another convergence study including the nonlocal effect are 

presented in Table 3 where the semi major axis is taken as 5 nm. From Tables 1, 2 and 3 it is found that a set of 

degree 10p   is sufficient for the convergence of the results and this value will be used to generate all the results 

presented herein.  

 

 
Table 1 

Comparison of frequency parameter 2 2/ xL E h   for an orthotropic square graphene sheet  

Nonlocal Parameter 

 

 

 

Present work DQM [Aydogdu, Tolga, 2011] FEM [Adali, 2009] 

P=4 P=8 P=10 

0    10.5951    10.5941    10.5941 10.5941 10.5533 

1      9.5466     9.5457     9.5457 9.5456 9.5125 

2      8.7535     8.7526     8.7526 8.7526 8.7242 

3      8.1275     8.1267     8.1267 8.1267 8.1016 

4      7.6177     7.6169     7.6169 7.6169 7.5949 

 
Table 2 

Results of convergence study of  for a local ( 0  ) elliptical nano-plate, / 2a b   

      Degree of polynomial set (p) 

 

Mode numbers 

1 2 3 4 5 6 

4 11.096 16.047 22.829 28.379 35.906 35.934 

5 11.096 16.008 22.829 28.314 31.620 35.934 

6 11.096 16.008 22.690 28.314 31.620 35.695 

7 11.096 16.008 22.690 28.312 31.222 35.695 

8 11.096 16.008 22.686 28.312 31.222 35.684 

10 11.096 16.008 22.686 28.312 31.206 35.684 

Wang and Wang, 1994 

Lam et al, 1992 

11.097 

11.136 

16.005 

16.008 

22.684 

22.687 

28.317 

28.312 

31.203 

31.225 

35.681 

35.684 
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Table 3 

lts of convergence study of  for different nonlocal parameters, 5a nm , / 2a b   

             Degree of polynomial set (p) 

  

Nonlocal parameter 

0 1 2 3 4 

4 11.0958 8.5034 7.1427 6.2749 5.6608 

5 11.0958 8.5034 7.1427 6.2749 5.6608 

6 11.0957 8.5033 7.1425 6.2746 5.6605 

7 11.0957 8.5033 7.1425 6.2746 5.6605 

8 11.0957 8.5033 7.1425 6.2746 5.6605 

10 11.0957 8.5033 7.1425 6.2746 5.6605 

4.2 Nonlocal effect 

In this section, the small scale effect for different nano-plate geometries and mode numbers is investigated. The 

semi-major axis of the nano-plate is varied between 5 nm and 30 nm and the aspect ratio is increased from 1 to 4. 

The nonlocal parameter of the nano-plate is assumed to vary between 
20nm   and 4 nm

2
.  

The effects of the major axis length and the nonlocal parameter on the frequency parameter are shown in Fig. 2 

for 2a b  . From this figure, it is found that the natural frequencies of the nonlocal nano-plate are smaller than 

those of the local (classical) plate. In addition, for each value of the semi-major axis by increasing the nonlocal 

parameter the frequency decreases. The reason is that when the nonlocal parameter increases, the small scale effect 

increases as well and this leads to a reduction in the nano-plate stiffness [25-31]. Also, as the length of major axis 

increases, the frequency parameter increases as well. This implies that by increasing the external characteristic 

length of the nano-plate (here the length of major axis) the small scale effect decreases (the internal characteristic 

length is assumed to be unchanged). In fact, the size dependency in the nonlocal elasticity theory enters through the 

second term in the left side of the nonlocal constitutive equation (Eq. (3)). By normalizing Eq. (3) and using Eq. 

(21), the size-dependency will be better understood and dimensional parameters will appear in the term includes 

Laplacian of the stress tensor. This can also be seen in terms related to the nonlocal effect in Eq. (22) (see Appendix 

A). The dimensional parameters have a decreasing effect on the non-locality of nano-structures [25-31]. By further 

increasing the major length, the curves approach towards the local one. Approximately for 25a  nm all curves 

converge to those obtained by classical assumption ( 0  ). With 4  nm
2
, the relative error percents due to 

ignoring the nonlocal effect for a =10 nm and a =30 nm are % 23.36 and % 3.66, respectively. Here and afterwards, 

the relative error percent is defined as: 

 

Relative error percent
|Local Result -Nonlocal Result|

100
|Local Result|

   
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Variations of the frequency parameter with semi-major 

axis length for different nonlocal parameters. 

 

 

Fig. 3 shows the variations of the nano-plate frequency parameter against aspect ratio ( a b ) for various nonlocal 

parameter values. The semi-major axis of the elliptical nano-plate is taken as 5 nm. From this figure it is found that 

for greater aspect ratios, the nonlocal effect is more prominent. An interpretation for such behavior is that for a 
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specific length of semi-major axis and nonlocal parameter, while the aspect ratio increases, the nano-plate becomes 

smaller and this leads to the increase of the small scale effect (size dependency). The relative error percents due to 

ignoring the nonlocal effect for 4  nm
2
 and aspect ratios 1a b   and 4a b  are % 31.35 and % 69.35, 

respectively. Obviously, it can be concluded that for higher aspect ratios the nonlocal theory should be used.  

 

 

 

 

 

 

 

 

 

 

Fig. 3 

Variations of the frequency parameter with aspect ratio for 

different nonlocal parameters. 

 

 

The effect of small scale on the frequency parameter in different modes is shown in Fig. 4. It can be seen that in 

all of the modes, as the nonlocal parameter increases, the frequency parameter decreases. Further, the influence of 

the nonlocal effect becomes more pronounced at higher modes, as has been reported for square and circular nano-

plates [26, 27, 31]. For the nonlocal parameter 4  nm
2
, the relative error percents due to ignoring the nonlocal 

effect for the first and fourth modes are % 48.98 and % 68.09, respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. 4 

Variations of the frequency parameter with small scale effect 

for different vibration modes. 

4.3 Effect of anisotropy 

An investigation is performed to account for the effect of anisotropy in the orthotropic case. For this purpose, 

variations of the non-dimensional frequencies with various anisotropy ratios i.e., y xE E  are presented in Fig. 5 for 

different nonlocal parameters. This figure shows that degree of anisotropy has an increasing effect on the natural 

frequencies and the nonlocal effect becomes more prominent for greater degrees of anisotropy.  

 

 

    

 

 

 

 

 

 

 

 

Fig. 5 

Variations of the frequency parameter with degree of 

anisotropy for different nonlocal parameters. 
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4.4 Effect of elastic foundation 

A two-parameter Winkler-Pasternak elastic medium is considered for proper presentation of the foundation effects. 

The foundation parameters can alter the total stiffness of the nano-plate (see Eq. (22) and Appendix A).  Variations 

of frequency parameters with respect to the Winkler and Pasternak parameters are shown in Figs. 6 and 7 for various 

nonlocal parameter values. It can be observed that for all nonlocal parameters, by increasing the foundation stiffness 

either through springy (Winkler coefficient, 16W WK K ) or shear effect (Pasternak coefficient, 4P PK K ), the 

natural frequencies increase.  

Variations of the relative error percent with the Winkler and Pasternak parameters are respectively shown in 

Figs. 8 and 9 for various nonlocal parameters. It may be seen that as the stiffness of the elastic foundation increases, 

the relative error percent decreases. Therefore, for stiffer foundations, the effect of considering nonlocal theory 

diminishes. 

 

 

     

 

 

 

 

 

 

 

Fig. 6 

Variations of the frequency parameter with Winkler parameter 

for different nonlocal parameters. 

  

 

 

 

 

 

 

 

 

 

Fig. 7 

Variations of the frequency parameter with Pasternak 

parameter for different nonlocal parameters. 

  

 

 

 

 

 

 

 

 

 

Fig. 8 

Variations of the relative error percent with Winkler parameter 

for different nonlocal parameters. 
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Fig. 9 

Variations of the relative error percent with Pasternak 

parameter for different nonlocal parameters. 

5    CONCLUSIONS 

In the present study, transverse vibration analysis of the embedded orthotropic circular and elliptical micro/nano 

plates at the small scale is carried out using the NLPT model. The Winkler-Pasternak medium is considered for 

proper modeling of foundation effects. Based on the nonlocal Eringen’s theory, the governing equation for 

transverse vibration of orthotropic nano-plates is derived. The variational formulation and the Galerkin method are 

applied to find the weak forms. The quadratic functional is obtained by considering elastic foundation and rotational 

vibration effects. The Ritz functions are employed to form an assumed expression for the displacement which 

satisfies the kinematic boundary conditions. The present method can be applied for vibration analysis of micro/nano-

plates with any arbitrary shape.  

The following conclusions can be drawn from this study: 

 The small scale has a decreasing effect on the frequencies of orthotropic elliptical nano-plates. 

 The nonlocal effect becomes more prominent when the length of the elliptical nano-plate decreases. 

 The small scale effect increases when the nano-plate aspect ratio increases. 

 In higher modes, the small scale effect is more pronounced. 

 By increasing the degree of anisotropy, the non-dimensional frequencies of an orthotropic circular-elliptical 

nano-plate increase. 

 The nonlocal effect becomes more prominent for greater degrees of anisotropy. 

 The elastic foundation has an increasing effect on the relative error percent either through springy or shear 

effect. 

 Stiffer elastic foundation decreases the nonlocal effects. 
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