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 ABSTRACT 

 This is the first study on the free vibrational behavior of sandwich panels with flexible 

core in the presence of smart sheets of oil which is capable of the excitation of 

magnetic field. In order to model the core, the improved high order theory of sandwich 

sheets was used by a polynomial with unknown coefficients first degree shear theory 

was used for the sheets. The derived equations based on Hamilton principle with simple 

support boundary condition for upper and lower sheets were solved using Navier 

technique. Accuracy and precision of the theory were investigated by comparing the 

results of this study with those of analytical and numerical works. In the conclusion 

section, effect of the intensity of magnetic field and other physical parameters including 

ratio of sheet's length to width, ratio of sheet's length to thickness, ratio of core 

thickness to sheet's overall thickness, and ratio of oil layer thickness to sheet's overall 

thickness on natural frequency was investigated. 

                                               © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N recent years, magneto-rheological materials (smart oil with a variable behavior with magnetic field) have 

played a significant role in the construction of smart structures and materials. A magneto-rheological material is a 

type of smart fluid which is composed of micro-magnetic particles with a fluid that is generally oil. When applying a 

magnetic field, viscosity of the liquid is fairly increased to form a viscoelastic solid. The surprising point is that, 

when the liquid is at its active state, yielding stress of the liquid can be precisely controlled by changing the intensity 

of the magnetic field. Jacob Rubino is the discoverer and explorer of the primary studies on these fluids [1]. 

Fluids with rheological-controlling property, like magneto-rheological property, have numerous applications in 

automobile industry,  suspension system and structures [4-2]. 

Sun et al. [5] used oscillation rheometry technique to obtain the relationship of magnetic field and complex shear 

module of magneto-rheological materials before yielding stress region. Both theoretically and experimentally, they 

studied dynamic properties of a sandwich beam with magneto-rheological core for different values of field intensity. 

Yalsintas and Day [6] investigated response of a sandwich beam with magneto-rheological core using energy 

method and compared the results with other experimental results. Rajamohan et al. [7] modeled a sandwich beam 

with a magneto-rheological core by considering the shearing effects of the sheet restraining the magneto-rheological 
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inside the core and also the equivalent shear module. They used finite element analysis for solving the problem and 

investigated effects of the intensity of magnetic field on vibrational properties for different boundary conditions and 

forced loadings. Also, they estimated the magneto-rheological liquid complex module using the model introduced 

by Choy et al. [8] and presented relationships as second degree polynomial which depended on the intensity of 

magnetic field. Nayak et al. [9] examined the response of sandwich beam with magneto-rheological core under an 

axial load and used Galerkin and Hamilton methods to derive the equations. Also, they could define the instability 

region of the sandwich beam for different boundary conditions. Yeh [10] investigated vibrational behavior of a 

sandwich plate with magneto-rheological core using finite element analysis. Moreover, they studied the effects of 

magnetic field and geometrical parameters. Manorahan et al. [11] investigated the dynamic behavior of a composite 

sandwich plate with magneto-rheological core and examined effects of magnetic field, fiber angles, and various 

supports and geometrical parameters. 

Rao et al. [12] developed an analytical method for calculating natural frequencies in multi-layered composites 

and sandwich beams based on higher order theories. Each layer was assumed to have a two dimensional orthotropic 

property and be based on plane stress. Hamilton principle was used to derive the equilibrium equations. Kant and 

Swamnatan [13] presented a formulation and analytical solution for analyzing the free vibration of composite multi-

layer sandwich sheet based on higher order improved theory. In the presented theory, deformation of the multi-layer 

was calculated by considering effects of transversal shear deformation, stress and transversal normal strains, and 

non-linear variables for the in-plane displacement. Muniear and Shenwi [14] investigated shear deformation and 

effects of damping on dynamic response of sandwich structure-based improved theory. Nayak et al. [15] introduced 

a new method based on higher order theory and finite element analysis for calculating natural frequencies in 

composite multilayer sheets and also composite sandwich sheets. They studied effects of various parameters 

including geometry and material properties on natural frequencies of the structure. Frostig and Thompson [16] used 

the improved higher order theory in sandwich panels for the analysis of free vibration of sandwich panels with a 

flexible core. Malekzadeh et al. [17] presented the improved higher order theory in sandwich panels based on higher 

order theory introduced by Frostig and Thompson [16] to analyze free vibration in sandwich panels. In this theory, 

effect of plane forces acting on upper and lower sheets of the sandwich sheet and equivalent damping factor for the 

sandwich panel were calculated and damping of the system was studied in the analysis of the vibration. Setkovic and 

Vaksanoic [18] presented bending, free vibration, and buckling of the sandwich sheets using layered displacement 

model. In the presented model, in-plane and linear variations of displacement components and transversal 

displacement were considered to be fixed. Using the assumed displacement, ratio of strain-displacement, single 

layered 3D constitutive equations, and motion equations were derived using Hamilton principle. Buckling and 

vibration of multilayer composite sheets were investigated by Yaoko et al. [19] using finite element analysis for 

different spacing of the fibers. Formulation of location- dependent stiffness matrix was derived using the properties 

of non-homogeneous materials. 

In this article, for the first time, free vibrational behavior of a sandwich panel with flexible core and composite 

sheets with the addition of smart magneto-rheological between the layers was investigated. Frostig second order 

theory in the form of a polynomial with unknown coefficients for the displacement of core and first shear 

deformation theory for the sheets was used in this analysis. The derived equations were solved based on Hamilton 

principle with the assumption of a simple support in upper and lower sheets as boundary conditions using Navier 

technique. Accuracy and precision of the results were compared with the analytical and numerical results of other 

articles. In the results section, effects of magnetic field and physical parameters like ratio of sheet's length to width, 

ratio of sheet's length to thickness, ratio of core thickness to sheet's overall thickness, and ratio of oil thickness to 

sheet's overall thickness on the system frequency were also investigated. 

2    MATHEMATICAL FORMULATIONS    

Studied sandwich panel was assumed to be rectangular with multi-layer composite sheets with layers of magneto-

rheological between the sheets and flexible core. Layers of magneto-rheological and layers of composite sheets 

maintaining the oil is denoted by indices 2 and 1, respectively, and indices t and b which represent top and bottom 

sheets respectively. Composite sheet denoted by index 3 along with indices t and b is base composite sheets of 

sandwich panel connected to the core. Length and width of the panel are "a" and "b", respectively, and coordinate 

axis is shown in Fig.1. For the dynamic analysis of the panel, small-scale deformation and elastic analysis were 

studied. Sheets and core were completely attached to each other and strain functions were continuous at the 

attachment surface of the sheets. 
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Fig.1 

Geometry and dimensions of the sandwich plates. 

2.1 Kinematic relations 

In this article, first order shear theory was used to model displacement field in sheets: 
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In the above relations,  0 , ,iu x y t ,  0 , ,iv x y t , and  0 , ,iw x y t  are unknown components of the displacement 

of sheets' middle plane at x, y, and z directions, respectively, and ,i i

x y   are unknown components of rotation of 

sheet's transverse part around x and y axes, respectively. Zi is the normal axis directed downward with respect to the 

upper and lower sheets. 

Displacement field regarding the core for in-plane displacements and normal displacement is in the form of 3
rd

 

order polynomial and 2
nd

 order polynomial, respectively [16].  
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(2) 

 

Coefficients of Zc are unknown and must be determined. 

2.2 Compatibility conditions of the displacements 

In this article, base sheets were ideally attached to the core. Therefore, all the three displacement components of the 

base of upper and lower sheets as well as the core were equal at their intersections. So, displacement compatibility 

conditions at the intersection of each sheet with core can be defined as: 
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(3) 

 

By substituting Relations (1) and (2) in Relation (3), compatibility equations can be written as: 

 

 



                                                                                                                                                           G. Payganeh et al.                   15               
 

 

© 2016 IAU, Arak Branch 

2 3 2 3
3 3 3 33 3

0 1 2 3 0 0 1 2 3 0

2
3

0 1 2 0

2 3 2 3
3 3 3 33 3

0 1 2 3 0 0 1 2 3 0

2
3

0 1 2 0

,
2 2 2 2

2

,
2 2

4 8 4 8

4

2 4 8 4

42

8 2

t t t tc c c t c c c t
x y

tc c

b b b bc c b c c c b
x y

bc c

c

h h h h h h h h
u u u u u v v v v v

h h
w w w w

h h h h h h h
u u u u u v v v v v

h h
w w w

h

w

 

 

        

  

       

  



 

           

    

 

 

 

 

(4) 

 

Using compatibility Eq. (4), the relationship between displacement-dependent parameters of the middle core can 

be derived as: 
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(5) 

 

Using Relation (5), unknown values of the problem can be decreased. 

2.3 Strains 

Strains in upper and lower sheets were obtained using the following equations: 
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(6) 

 

And the relationship regarding the core strain can be written as: 
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(7) 

2.4 Strain-stress relationship of magneto-rheological layer 

In order to model the magneto-rheological layer, the following cases were assumed: 

1. It was assumed that a no-slip condition existed between the layers and magneto-rheological layers. 

2. Transverse displacement (w) and normal rotational degrees ( y and x ) were considered to be the equal on 

a hypothetical cross-section on the sandwich panel’s sheets. 
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3.  No normal stress existed in magneto-rheological layer. 

4.  Magnetorheological material was modeled as a linear viscoelastic material in the pre-yield condition. 

Components of transverse strain in the core were as follows: 
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By substituting Relations (9) in (8), components of strain in megnetorheological layer can be obtained: 
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Finally, the relationship between transverse strains and stresses in megnetorheological layer can be expressed as: 
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where 2G  is viscoelastic shear modulus related to megnetorheological layer. 

 
  

 

 

 

Fig.2 

Compatibility relation of systems. 

 

Since the magneto-rheological material behaved like a viscoelastic material in the pre-yield region, thus shear 

modulus was complex and depended on the intensity of the magnetic field. For this, the relation proposed by 

Rajamohan et al. [20] for defining the relationship between complex shear modulus of a magneto-rheological fluid 

and intensity of the magnetic field was used. Complex shear modulus for a viscoelastic material was as follows [20]: 
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where G   and G   are storage and loss modulus, respectively, and described as a polynomial function of magnetic 

field, B (in Gauss), for a magneto-rheological material [20]: 
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2.5 Motion equations 

Minimum potential energy principle was used to calculate the governing motion equations. Based on this principle: 
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where U and T are potential and kinetic energies, respectively,   is first order variation operator, and t2-t1 is the 

integration interval. 

Equations for the first order variation of potential energy were defined as: 
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Indices t and b denote upper and lower sheets made of composite material, indices 2t and 2b demonstrate 

magneto-rheological layer in upper and lower parts of the panel, and index c shows the core. Equations for the first 

order variations of kinetic energy were described as: 
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In the above equations,   is the mass density and  3 /12
MR MR MR
I h  is inertia moment of magnetorheological 

layer. Following integrals were regarded as stress results within sheets (layers) and core: 
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And density integrals in layers and middle core were as follows: 
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After all the above mathematical processes and substituting resulting stress, density integrals and also integration 

by parts and factoring unknown values of displacement field, motion equations can be developed as: 
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The number of unknown coefficients was 19 which was the sum of displacements of sheets and middle core. 19 

unknown values included: 

 

 1 1 3 3 1 1 3 3
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0, , , , , , , , , , , , , , , , , ,t b t b t b t b t b t b t b c c c c c

x x y yu u u u v v v v w w u u v v w      

2.6 Fundamental equations for force within the sheets 

Since each single layer has isotropic properties with respect to the symmetry axis of its own material and according 

to Hooks' law, fundamental equations for the sheets can be derived as: 
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(20) 

 

where i
mnA , i

mnB and i
mnD  are tensile, coupling, and bending stiffness matrices with 3×3 size, the elements of 

which are obtained by the following relations: 
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(21) 

 

N is number of single-layered sheets and  
i

mnQ  is stiffness of single-layered sheets. 

2.7 Fundamental equations for force within the core 

In isotropic cores, similar to foam with flexible properties, elasticity modulus, cE  and shear modulus, cG  are 

constant value and relations between stresses and strains are defined as: 
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(22) 
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By substituting relations regarding strains in core (7) in Eq. (22) and considering Relations (5) and (17), 

equations relating to resultant stresses can be described as: 
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3    DYNAMIC RESPONSES DUE TO FREE VIBRATION OF PANEL WITH SIMPLE SUPPORT  

Boundary conditions for each of the 4 edges of sandwich panel were considered as simple support. The following 

relations, called Navier response, met the boundary conditions. Constant coefficients present in these series can be 

obtained by equilibrium equations: 
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(24) 

 

By substituting Relation (24) in motion equations in (19) and considering Relations (20) and (23) and their 

simplification, equation of motion can be simplified as: 
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 Is constant vector of mode shape, K is stiffness matrix, M is mass matrix, and ω is frequency of the panel. 
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4    VALIDATIONS OF RESULTS       

Since no similar equation exists in other articles in order to validate the derived equations in this study, therefore by 

omitting terms for the properties of layer of smart oil, natural frequency of the panel was compared with the results 

of other studies. 

4.1 Validation of results for free vibration of sandwich panel with foam core 

The case study of this article was a sandwich panel with simple support which had composite sheets made of glass 

fibers in polyester substrate and a core made of PVC foam called HEREX C70.130. Properties of composite sheets 

and PVC foam are presented in Table 1. [21]. 

 
Table 1 

Material parameters of the sandwich plate. 

Core 3

1 2 3 12 13 23E E 0.10363 GPa, G G G 0.05 GPa, 0.036, 130 Kg / mE           

Face sheets 3

1 2 3 12 13 23 12 13 23E 24.51GPa , E E 7.77 GPa, G G 3.34 GPa, G 1.34GPa , 0.078,  0.49,  1800 kg / m              

 

In order to determine validity of the model, a layer of MR was placed between the base and support composite 

sheets. Also, sheet layers were considered 1 ,1 2 ,2 3 ,31 , 0, 3t b t b t bh mm h h mm    and properties of MR layer 

(density and shear modulus) were assumed to be zero. Four dimensionless frequencies 2 1/2( )c ca E h   [21] 

for a square sandwich panel with dimensionless ratios of 0.1h a   and 0.88ch h   are presented in Table 2. and 

then compared with the results in [15, 21, and 22]. The sandwich panel was composed of 7 layers with 

(0 / 90 / 0 / / 0 / 90 / 0)core  arrangement. 

 

Table 2 

Comparison of non-dimensional frequencies   of (0 / 90 / 0 / / 0 / 90 / 0)core  sandwich plate with 0.1h a   and 0.88ch h  . 

Mode Numbers Present [15] [21] [22] 

(1,1) 14.64 15.34 14.27 15.28 

(1,2) 26.38 30.18 26.31 28.69 

(2,1) 27.22 31.96 27.04 30.01 

(2,2) 35.02 40.94 34.95 38.86 

 

According to Table 2. , results obtained from the present method were in good agreement with the results of 

Rahmani et al. [21]. Little difference between the results for dimensionless frequency in the present method and the 

work by Rahamni et al. [21] could be due to different selections of displacement field for the core. In the present 

method, displacement field was considered as a polynomial with unknown coefficients based on Frostig's second 

model. However, in [21], displacement field for the core was obtained based on Frostig's first model assuming 

uniformity in shear stresses in thickness direction and using elasticity relations. 

Analytical results obtained from finite element method based on Redi's higher order theory by Nayak et al. [15] 

are presented in Table 2. Results of the present article had maximum difference of 14% with those in [15], which 

was due to considering an extra degree of freedom related to core flexibility in thickness direction. 

Analytical method adopted by Muniear et al. [22] was based on higher order shear theory (HSDT) and the 

assumption of equivalent single layer (ESL). According to the above results, frequency values of the current study 

were less than those of [22] and this difference increased in higher modes. 

In order to study the effects of MR layer on natural frequency of the panel, properties of oil layer with thickness 

of 1 mm in Eq.(12) were considered as: density 33500 /MR kg m   and magnetic field intensity 150B Gauss . 

Arrangement of layers were considered as (0 / 90 / / 0 / / 0 / / 90 / 0)MR core MR and 3 ,3 1 ,12, 1t b t bh h mm  . 

Comparison of results in this case and previous case is presented in Table 3. 
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Table 3 

Effect of MR layer on the frequency sandwich plate. 

Mode Number (0 / 90 / 0 / / 0 / 90 / 0)core  (0 / 90 / / 0 / / 0 / / 90 / 0)MR core MR  

(1,1) 14.64 20.54 

(1,2) 26.38 13.72 

(2,1) 27.22 33.22 

(2,2) 35.02 23.31 

 

According to Table 3. , addition of MR oil layer between composite layer increased stiffness of the sheet and, by 

applying magnetic field with the intensity of 150 Gauss, frequency values increased in (1,1) and (2,1) modes, while 

frequency values decreased in (1,2) and (2,2). 

4.2 Mode shapes of sandwich panel with MR layer and foam core 

Dimensionless displacement mode of the core ( 0 0maxc cw w ), a square sandwich panel, with dimensionless ratios 

of 0.1h a  , 0.88ch h   are shown in Fig. 3. Density and intensity of magnetic field for MR oil layer with the 

thickness of 1 mm were 33500 /MR kg m   and 150 ,B Gauss  respectively. Arrangement of layers was 

considered as: (0 / 90 / / 0 / / 0 / / 90 / 0)MR core MR and 3 ,3 1 ,12, 1t b t bh h mm  . 

4.3 Effect of magnetic field intensity on dimensionless frequencies of sandwich panel with MR layer and foam core 

In order to study effects of magnetic field intensity on dimensionless frequency, a square sandwich panel with a 

simple support, dimensionless ratios of 0.1h a   and 0.88ch h  , and sheet and core properties similar to case 2 

were considered. Then, by increasing intensity of the applied magnetic field on MR oil layer, values of 

dimensionless frequencies, * 2 1/2( ) ,
c c

a E h    were obtained [21]. 
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Fig.3 

First four free vibration mode shapes of a sandwich plate (0 / 90 / / 0 / / 0 / / 90 / 0)MR core MR . 
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Fig.4 

Dimensionless frequencies changes with increasing 

magnetic field. 

 

According to Fig. 4, when MR layer was not under a magnetic field (B=0 Gauss), magnitude of dimensionless 

frequency, 
*

1,1  was the least value; as magnetic field was applied, this frequency increased to reach its maximum 

value
*

1,1 23.39  . Then, by increasing intensity of magnetic field, 
*

1,1  decreased with a slight slope; when 

intensity of magnetic field was in the range of 400 to 1000 Gauss, 
*

1,1  remained almost constant (
*

1,1 18.5  ). By 

further increase of intensity, 
*

1,1  had another increase to reach 
*

1,1 20.42   and then started to decrease. 

Behavior of dimensionless frequencies 
* * *

2,1 1,2 1,1, ,    was similar to that of 
*

1,1  with the exception that, in 

diagram of
*

1,1 , by applying magnetic field, there would be an increase in frequency, while in
* * *

2,1 1,2 1,1, ,   , in 

the presence of magnetic field, first there would be a slight decrease in frequency and then it started to increase. 

Also, the amount of variation of dimensionless frequency due to increased intensity of magnetic field in modes (1, 

2) and (2, 2) was more extreme than other modes. 

Furthermore, at a closer look, it is noted that base frequency of the system did not necessarily occur in mode 

(1,1) and, in specific value of magnetic field intensity, dimensionless frequency of modes (1,2) and (2,2) was less 

than other modes. 

4.4 Effect of increase in a/b ratio on dimensionless frequencies of sandwich panel with MR layer and foam core 

In order to study effect of variations of aspect ratio, a/b, on dimensionless frequency, the sandwich panel with 

simple support and dimensionless ratios of 0.1h a  and 0.88ch h   sheet and core properties similar to those in 

case 2 was considered. Natural frequencies of the panel were non-dimensionalzed by Equation 
* 2 1/2( )c cb E h    [21] and variations of 

* * *

2,1 1,2 1,1, ,    and 
*

2,2 , due to increase in aspect ratio, was 

investigated. In order to compare behavior of different vibrational modes, variations of dimensionless frequencies, 
* * *

2,1 1,2 1,1, ,    and 
*

2,2 , due to increase in a/b  ratio at B=0,100 Gauss are presented in Fig. 5.  

 

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

a/b


*

 

 

Mode (1,1), B=0 Gauss

Mode (1,2), B=0 Gauss

Mode (2,1), B=0 Gauss

Mode (2,2), B=0 Gauss

Mode (1,1), B=100 Gauss

Mode (1,2), B=100 Gauss

Mode (2,1), B=100 Gauss

Mode (2,2), B=100 Gauss

 

 

 

 

 

 

 

 

 

Fig.5 

Dimensionless frequencies changes with increasing a/b. 

 

According to this figure, when intensity of magnetic field was zero, dimensionless frequency 
*

1,1 slightly 

increased by increasing a/b ratio (24%) and then became constant. By increasing a/b ratio, dimensionless 

frequencies in other modes first decreased and then took a constant value. At a/b=1, dimensionless frequency 
*

2,1  

had almost the same value as
*

2,2 , while by increasing a/b ratio, it took a constant value near 
*

1,1  frequency. Also, 
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variation diagrams of 
* *

1,2 2,2,   due to increase in a/b ratio were similar to each other and they finally took the 

same constant value. 

Furthermore, according to Fig. 5, when intensity of magnetic field was 100 Gauss, by increasing a/b ratio, 

dimensionless frequencies 
* * *

2,1 1,2 1,1, ,    and 
*

2,2 decreased and then became constant in spite of the increase in 

a/b ratio. The important point is that values of frequencies 
* *

1,1 2,1,  tended to take the same constant value by 

increasing a/b ratio; this point was also true for frequencies 
* *

1,2 2,2,   with the exception that values of 

dimensionless frequencies were lower in this case. 

Then, in order to study better the effect of increase in aspect ratio on dimensionless frequency, diagram of 
* is 

presented in Fig. 6 for constant values of magnetic field intensity for each case. 

According to Fig. 6, except for the case when magnetic field intensity was zero, as the sheet became thinner, 
*

1,1 decreased; then, at a/b=4 and more, 
*

1,1 did not increase anymore. At ratios of more than 4 (a/b>4), 
*

1,1  had 

its maximum value for B=100 Gauss, while its minimum value occurred at B=500 Gauss. At all frequencies except 
*

1,1 , by increasing thinning ratio and when intensity was zero, frequency decreased. In other words, in the first 

mode, effect of applying magnetic field on natural frequency of mode (1,1) was more than other modes and this 

point is clearly demonstrated in Fig. 6. 

At higher aspect ratios, dimensionless frequencies 
* *

1,2 2,2,   at B=500 Gauss took higher values, while 

dimensionless frequencies 
* *

1,1 2,1,   had higher values at B=100 Gauss for all aspect ratios. 
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Fig.6 

The effect of increasing a / b for B = 0,100,500. 

4.5 Effect of ch h  on frequency of sandwich panel with MR layer and foam core 

In this section, natural frequency of the first 4 modes of sandwich panel shown in Fig. 7 is obtained for the case 

when core thickness ratio ( ch h ) is increased. It was assumed that magnetic field intensity was 200 Gauss. 

According to Fig. 7, for all ch h  ratios, 1,1  was the base frequency. By increasing ch h , natural frequency 

decreased in all four vibrational modes; however, decrease in 1,1  and 1,2  was less than that in 2,1 and 2,2 . 
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4.6 Effect of a/h ratio on natural frequency of sandwich panel with MR layer and foam core 

In this section, in addition to thinning the sheet by increasing a/h, dimensionless frequencies 
*

c ch E    are 

obtained for the constant values of magnetic field intensity. For B=0 and 500 Gauss, dimensionless natural 

frequencies 
* * *

2,1 1,2 1,1, ,    and 
*

2,2  were obtained for the case when a/h increased. 

According to Fig. 8, by increasing a/h ratio, which was in fact thinning of the sheet, stiffness of the panel 

decreased and all modes of dimensionless frequencies decreased. In Fig. 9, behavior of dimensionless frequencies of 

the first 4 modes was studied at B=0, 200, and 500 Gauss for the increased a/h ratio. 

According to Fig. 9, for all vibrational modes, by increasing a/h ratio, frequency decreased and the important 

point was that, at ratios of more than 50 (a/h>50), frequencies did not vary with the variation of magnetic field 

intensity. 
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Natural frequencies changes with increasing ch h . 
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Fig.8 

Dimensionless frequencies changes with increasing a/h for B=0, 500. 
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Fig.9 

Dimensionless frequencies changes with increasing a/h for B=0, 200, 500. 
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4.7 Effect of MR layer thickness on natural frequency of sandwich panel with MR layer and foam core 

In this section, by decreasing the ratio of oil thickness to panel overall thickness ( 2 /MRh h ), behavior of natural 

frequency is investigated. The square of sandwich panel with simple support similar to the previous cases was 

considered. Also, behavior of its natural frequencies 2,1 1,2 1,1, ,   and 2,2  was studied for constant values of 

magnetic field intensity, as given in Fig. 10. 

According to Fig. 10, by decreasing M layer thickness, natural frequencies for all 4 vibrational modes decreased. 

When magnetic field intensity was zero, natural frequency 1,1  took its minimum value and thus considered as the 

base frequency of the system. Also, for 2 / 0.045MRh h   and B=500Gauss, mode (1, 2) was dominant and 

frequency 1,2  was at the base level. 
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Fig.10 

Natural frequencies changes with increasing 2 MRh h  for B=0, 500. 

5    CONCLUSIONS 

In this article, free vibrational behavior of a sandwich panel with flexible core and composite sheets in the presence 

of magnetorheological smart oil between the layers was investigated. Frostig's second order theory in the form of a 

polynomial with unknown coefficients was adopted for defining displacement of core and layers; first order shear 

theory was also used for displacement in layers. 

Effects of ratio of sheet's length to its width, ratio of length to thickness, ratio of core thickness to overall 

thickness, and ratio of thickness of oil layer to overall thickness on the system frequency were also studied. Some of 

the major results of this study are as follows: 

1. Addition of MR layer increased frequency of the first and third modes and decreases frequency of the 

second and fourth modes. 

2. By applying magnetic field, base frequency did not necessarily occur in the first mode. 

3. By increasing a/b ratio, dimensionless frequency increased for the first mode and decreased for the 

remaining modes. 

4. By increasing ch h , frequency decreased for all the four modes. 

5. By increasing a/h ratio, stiffness of the panel decreased and frequency of the first 4 modes decreased. For 

ratios of higher than 50 (a/h>50), frequency value did not change due to the variation of magnetic field. 

6. By decreasing thickness of MR layer, frequency of all 4 modes increased. 

REFERENCES 

[1] Rabinow J., 1948, The magnetic fluid clutch, American Institute of Electrical Engineers, Transactions 67: 1308-1315. 

[2] Carlson J.D., Jolly M.R., 2000, MR fluid, foam and elastomer devices, Mechatronics 10: 555-569. 

[3] Yao G.Z., Yap F.F., Chen G., Li W.H., Yeo S.H., 2002, MR damper and its application for semi-active control of 

vehicle suspension system, Mechatronics 12(7): 963-973. 

[4] Oh H.U., Onoda J., 2002, An experimental study of a semi-active magneto-rheological fluid variable damper for 

vibration suppression of truss structures, Smart Materials and Structures 11(1): 156-162. 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4763772


30                    Free Vibration of Sandwich Panels with Smart Magneto-Rheological…. 

 

© 2016 IAU, Arak Branch 

[5] Sun Q., Zhou J.X., Zhang L., 2003, An adaptive beam model and dynamic characteristics of magnetorheological 

materials, Journal of Sound and Vibration 261(3): 465-481. 

[6] Yalcintas M ., Dai H., 2004, Vibration suppression capabilities of magneto-rheological materials based adaptive 

structures, Smart Materials and Structures 13(1): 1-11. 

[7] Rajamohan V., Sedaghati R., Rakheja S., 2010, Vibration analysis of a multi-layer beam containing 

magnetorheological fluid, Smart Materials and Structures 19(1): 015013. 

[8] Choi Y., Sprecher A.F., Conrad H., 1990, Vibration characteristics of a composite beam containing an 

electrorheological fluid, Journal of Intelligent Material Systems 1(1): 91-104. 

[9] Nayak B., Dwivedy K.S., Murthy R.K., 2011, Dynamic analysis of magnetorheological elastomer-based sandwich 

beam with conductive skins under various boundary conditions, Journal of Sound and Vibration 330(9): 1837-1859. 

[10] Yeh J.Y, 2013, Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping 

treatment, Smart Materials and Structures 22(3): 035010. 

[11] Manoharan R., Vasudevan R., Jeevanantham A.K., 2014, Dynamic characterization of a laminated composite 

magnetorheological fluid sandwich plate, Smart Materials and Structures 23(2): 025022. 

[12] Kameswara Rao M., Desai,Y.M., ChitnisM.R., 2001,  Free vibrations of laminated beams using mixed theory, 

Composite  Structures 52(2): 149-160. 

[13] Kant T., Swaminathan K., 2001, Analytical solutions for free vibration of laminated composite and sandwich plates 

based on a higher-order refined theory, Composite Structures 53(1): 73-85. 

[14] Meunier M., Shenoi R.A., 2001, Dynamic analysis of composite sandwich plates with damping modelled using high-

order shear deformation theory, Composite Structures 54(2-3): 243-254. 

[15] Nayak A.K., Moy  S.S.J., Shenoi R.A., 2002, Free vibration analysis of composite sandwich plates based on Reddy's 

higher-order theory, Composites Part B: Engineering 33(7):505-519. 

[16] Frostig Y., Thomsen O.H., 2004, High-order free vibration of sandwich panels with a flexible core, International 

Journal of Solids and Structures 41(5-6): 1697-1724. 

[17] Malekzadeh K.,  Khalili M.R., Mittal R.K., 2005, Local and global damped vibrations of plates with a viscoelastic soft 

flexible core: an improved high-order approach, Journal of Sandwich Structures and Materials 7(5): 431-456. 

[18] Ćetković M., Vuksanović D.J., 2009, Bending, free vibrations and buckling of laminated composite and sandwich 

plates using a layer wise displacement model, Composite Structures 88(2): 219-227. 

[19] Yao Kuo Sh., Le-Chung Sh., 2009, Buckling and vibration of composite laminated plates with variable fiber spacing, 

Composite Structures 90(2): 196-200. 

[20] Vasudevan R., Sedaghati R., Rakheja S., 2010, Vibration analysis of a multi-layer beam containing magnetorheological    

fluid,  Smart Materials and Structures 19(1): 015013. 

[21] Rahmani O., Khalili M.R ., Malekzadeh K., 2010, Free vibration response of composite sandwich cylindrical shell with 

flexible core, Composite Structures 92(5): 1269-1281. 

[22] Meunier M., Shenoi R.A., 1999, Free vibration analysis of composite sandwich plates,  Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 213(7): 715-727. 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0263822300001628
http://www.sciencedirect.com/science/article/pii/S0263822300001628
http://www.sciencedirect.com/science/article/pii/S0263822300001628

