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 ABSTRACT 

 An approximation technique is considered for computing transmission and reflection coefficients 
for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic 
pulse through a planar slab is derived from first principles using straightforward time-dependent 
method. The paper ends with calculations of enhancement factor for the elastic plane wave and it 
is shown that it depends on the velocity ratio of the wave in two different media but not the 
incident wave form. The result, valid for quite arbitrary incident pulses and quite arbitrary slab 
inhomogeneities, agrees with that obtained by time-independent methods, but uses more   
elementary methods.                                                 © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE wave travelling through an elastic solid with finite velocity is known as elastic wave. If a body contains a 
sufficiently large number of molecules, so that the distance distances between two neighbouring molecules are 

negligible in comparison with the dimensions of the body, then the body is said to be the continuous body and it 
behaves in accordance with the law of mechanics. To simplify mathematical analysis, it is convenient to disregard 
the actual discrete molecular structure of the body, and treat the matter as uniformly and continuously distributed in 
the region of space without voids occupied by the body. There are mainly two themes to perform the study of 
mechanics of continuous matter: (a) Derivation of fundamental equations and (b) Derivation of constitutive 
relations. Fundamental equations for continuous body are based upon universal laws of physics such as conservation 
of mass, momentum and principle of energy etc., while the constitutive relations characterize the material properties 
of the matter, e.g., mechanical and thermal properties. These equations are in fact, the key points around which the 
various studies in the field of continuum mechanics proceed. Mathematically, the fundamental equations of the 
continuum mechanics are developed in two separate but essentially equivalent formulations. One, the integral or 
global form, derives from a consideration of the basic principles being applied to a finite volume of the material. The 
other, a differential or field approach, leads to equations resulting from the basic principles being applied to a very 
small (infinitesimal) element of volume. Under the continuum assumption, the field quantities such as density and 
volume which reflect the mechanical or kinematical properties of continuum bodies are expressed mathematically as 
continuous functions or at worst as piecewise continuous functions of space and time variable. Mathematical theory 
of continuous media is built upon the basic concepts of stress, motion and deformation, the law of conservation of 
mass, linear momentum, moment of momentum, energy and on the constitutive relations.  

The problems of wave propagation through continuous bodies have been a subject of keen interest since long. 
The theory of wave propagation in elastic solids was developed during 19th and 20th centuries by Poisson [1], 
Kelvin [2], Rayleigh [3-5], Stoneley [6], Spencer [7], Love [8], Biot [9] and many others. Wave is a mode of energy 
transfer from one place to another, in a medium, often with little or no permanent displacement of the particles of 
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the medium, i.e., little or no associated mass transport; instead there are oscillations around almost fixed positions. 
The mechanical waves require a medium to travel, while the electromagnetic waves can travel through the vacuum. 
Thus, in wave propagation, the particles in the medium do not change their original positions but they oscillate about 
their mean positions and usually periodic in nature with a finite velocity, e.g., water waves, sound waves, elastic 
waves. It is interesting to note that all wave motions have two important characteristics in common. First, energy is 
propagated to distant point. Second, the disturbance travels through the medium without giving the medium, as a 
whole, any permanent displacement. Each successive particle of the medium performs a motion similar to its 
predecessors but later in time returns to its original.  

Wave propagation in inhomogeneous medium is a challenge for both theoretical research and engineering 
practice. With the rapid development of science and technology, wave motion study of the heterogeneous medium 
(atmosphere, ocean, earth-crust, functionally graded materials and cycle grid structure, etc.) seems much more 
important. Epstien [10] investigated reflection wave in an inhomogeneous absorbing medium by solving wave 
equation with variable coefficient based on hypergeometric function. The procedure represented that the reflection is 
always very insignificant, except the case when conductivity is small and where we have conditions very near to 
total reflection, which is the same as mechanism of transmission of acoustic or electromagnetic wave in earth 
atmosphere. Researchers had discussed the theory of plane waves Sinha [11] studied the transmission of elastic 
waves through a homogenous layer sandwiched in homogenous media. Tooly et al., [12] discussed reflection and 
transmission of plane compressional waves. Gupta [13] solved the problem of reflection of elastic waves from a 
linear transition layer. Agemi [14] studied the problem on the global existence of nonlinear elastic waves.  

Kakar and Kakar [15] discussed propagation of Love waves in a non-homogeneous elastic media. In this work, 
we shall derive the solution of Navier’s equations by using time-dependent methods. We shall consider first the case 
of homogeneous slab then inhomogeneous slab. The velocity is constant for homogeneous case but it is continuously 
varying for non-homogeneous case. The time-dependent methods are applied to solve the transmitted and reflected 
pulses. These methods are much easier than the earlier methods used. 

2    GOVERNING EQUATIONS 

The forces per unit area set up inside the body to resist deformation are called stresses. The deformation of the body 
accompanying stress is called strain. Thus stress and strain occur together. The strain set up in a body in such a way 
that there is a change in volume but no change in shape, is called dilatation. There are two kinds of dilatation: 
compression, in which volume is reduced; and rarefaction, in which the volume is increased. The second type of 
elastic deformation is a change of shape without a change in volume and is called shear. Consider a surface element, 
S  situated either in the interior or on the boundary of a medium, and let the force acting on this surface element be 
T S .  

0
lim ( : )

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 i

T S
x

S
  

 
(1) 

 
where the vector T is called stress vector and represents the surface force per unit area of the surface element acting 
at the point ( )ix  whose orientation is specified by a unit normal vector,  .The stress force depends not only on the 
position of the surface element but also on the orientation of the surface element. The state of stress at any point of a 
medium is completely characterized by the nine quantities, called stress tensors, ij  (sokolnikoff [16]). In more 

precise form, if T  be the stress vector acting at a point of a surface to which   is normal, then the stress tensor can 
be written as: 
 

 ij jT  
                         

( , 1, 2,3)i j  (2) 

 
where, ij  is the jth component of the stress vector acting on a surface element to which ix axis is normal.  

The relation of the strain tensor ije with the components of displacement vector (u,v,w) for a continuous 

deformable medium, is given by (sokolnikoff [16]) 
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In the classical theory of elasticity, the relation between the stress components, ij and the strain components, 

ije for an elastic solid continuum is given by Hooke’s law. It states that, within the elastic limit, the stress is a linear 

function of strain. That is: 
 

ij ijkl klc e
            

( , , , 1, 2,3)i j k l  (4) 

 
where ijklc are the elastic constants or elastic moduli, which characterize the elastic properties of the body. These 

constants are 81 in number. If the elastic constants vary from point to point of the medium, i.e., the elastic constants 
are the functions of the position, the body is said to be elastically non homogeneous or inhomogeneous. On the other 
hand if the elastic constants are same for all points of the medium, then the body is called elastically homogeneous 
The equation of motion for a homogeneous elastic body, in the presence of body forces 
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For a homogeneous isotropic elastic medium, the coefficient ijklc can be expressed by only two elastic constants 

  and   called Lame’s parameters and the stress-strain relation (Hooke’s law) is given by: 
 

   
2 , ij kk ij ije e   

              
 (6) 

 
where ij is Kronecker delta. 

Substituting Eq. (3) and Eq. (6) in Eq. (5), we get 
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where, 
2 2 2

2
2 2 2

  
   

  x y z
 is a Laplacian operator. 

Using the vector identity 2 . ( )    u u u  in Eq. (7), we get 
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(8) 

3    FORMULATION OF THE PROBLEM 

Consider an infinite absolutely rigid plane plate (screen/surface), which is well wielded contact with the surrounding 
elastic medium. Let x-y-plane coincide with the plate (where central part of the plane is shown). The z-axis is taken 
normal to the plate in the upward direction. As horizontal section of the interface is shown and the media are taken 
in the x-y-plane (-∞<x<∞, -∞<y<∞). If we disturb the plate sufficiently rapid in such a manner that it remains 
parallel to itself (plane parallel moment; horizontal plane), then at any instant of time the displacement of any point 

of the interface will be same. The displacement vector iu  is taken to be independent of x and y. Rapid the medium 

in front of the interface will of course be compressed, while behind it, on the negative z-axis will be stretched. The 
state will be transmitted in the medium in directions parallel to z-axis. The problem is formulated by assuming the 
following assumptions. 
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Media are taken to be continuous at the interface due to perfect welded contact, with surrounding elastic 
medium, during the transmission of motion through the interface. The media do not slip relative to each other, so 
that at the interface resultant horizontal motions above and below are equal in pairs. 

The condition of the interaterrestrial contacts for the vertical motions are analogous, there can be neither 

exploitation nor formation if intermediately cavities at the interface during motion, then 1 2 0, w w where 1w  and 

2w are the resultant vertical motions in the lower and upper media respectively. 
The solutions of Eq. (8) are given by: 

  
   1 2 1 2

                       
z z

z z
w f t f t or w f z at f z at

a a
   

 
(9) 
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(10) 

 

The first term    1 1 1 1, , ,
         
   

z z
f z at f z bt f t f t

a b  
in the above expressions represents the transmission 

of waves in the positive z-direction i.e. outgoing wave or advance wave and the second term 

   2 2 2 2, , ,
         
   

z z
f z at f z bt f t f t

a b  
represents the transmission in the negative z-direction i.e. incoming 

wave or retarding wave. Here , ,u v w  are the components of  iu   and they vary with time but they differ only in the 

cosine of angles made by iu with the axis of co-ordinates , ,x y z   . For sake of convenience, the coefficient of 

 ’s  , ,x y z    are taken to be unity as they do not affect the general behavior of the field variables. Since the 

terms of the above solution functions are arbitrary therefore they have bounded derivatives up to second order. 
In case of the present problem, the displacements are assumed as: 

Incident wave;  z a  in the medium 1M  , ,      z a x y :  0 I IW W z c t
  

where c0 is the velocity of propagation in medium M1 

Reflected wave;  z a  in the medium 1 ,M
    0 R RW W z c t  

Transmitted wave into the slab S
  , ,     a z b x y :  1  W W z c t  

where, c0 is the velocity of propagation in  M2 

Wave reflected from the upper boundary  z b of slab into the slab:  1  W W z c t  

Wave transmitted into the medium 2M  from slab:  0 T TW W z c t
  

i.e. medium 1M  is similar to 2M  

4    CASE OF SINGLE-LAYER SLAB 

We shall assume that the slab lies perpendicular throughout to the z-axis in 3  , with faces at 0 z a  and 

 z b a , and is isotropic in the horizontal x and y directions for slab ' 'S   , , .     a z b x y  The incident 

wave has finite energy and propagates in the positive z-direction, normal to the slab and incident from below. Under 
the above assumptions, the problem essentially becomes one directional. The propagation velocity is 0c  outside the 

slab and 1c  inside the slab, where 0c and 1c  are constants with 1 00  c c  (see Fig.1) . The general form of the 
solution is taken as: 
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Fig. 1  
Single layer slab. 

4.1 Solution of the problem 

The field variables ,RW ,W W and TW  for the given value of IW can be found from the displacement and stress-

boundary conditions at the interfaces. But in this case, we have taken the coefficient of  ’s  , ,x y z    equal to 

unity. Therefore, we apply the displacement boundary conditions coupled with travel-time of wave and using the lag 
in time for the waves travelling in the same direction with different velocities of propagation.  

At the interfaces, z a   and z b   we assume that  ,W z t  is continuous at all times t. Therefore, at z a  this 

leads to: 
 

  
       0 0 1 1

0 0 0 0

1 1 1 1
       I RW z c t W z c t W z c t W z c t

c c c c
 

 
(12) 
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       I RW z c t W z c t W z c t W z c t

c c c c
 

 
(13) 

 
Adding Eq. (12) and Eq. (13), we get 
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(15) 

                                                                 
Subtracting Eq. (12) and Eq. (13), we get 
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0 1 1
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2
 

 
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(16) 

or 
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(17) 

 
Combining Eq. (15) and Eq. (17), we get 
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Now Eq. (15) and Eq. (18) must hold at all times t. therefore put 1 , u a c t  then   1 t a u c  and Eq. (15) 

becomes: 
 

  
0 0 11

0 1 1 0 1

2
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(19) 

 
Since this holds for all u, we can put 1 u z c t and get 
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2
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(20) 

 
Similarly, if we put 0 , v a c t  then   0 t v a c  and Eq. (18) becomes: 
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(21) 

 
when 0 v z c t , we get 
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0 1 0 1 0

2
( ) (2 ) ( )
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(22) 

 
Eq. (20) and Eq. (22) give RW  and W  in terms of IW  and W It must be noted that all the above relations are 

hold for values of z and t

 Similarly, at the other interface ,z b  we get 
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1 1
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(24) 

 
Giving W  and TW  in terms of W  for all z and  t

 Now if we combine Eq. (20) and Eq. (23) we get 

  

2
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1 0 1 1

0 1
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(25) 

where 
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Eq. (25) can be solved for W  by iteration, we get 

 
Also, Eq. (23) can be solved for W  by iteration, we get 

 
Using, Eq. (27) and Eq. (28) to find TW

 
from Eq. (19) and RW  from Eq. (17) 

4.2 Discussion 

If the incident wave is WI  bounded, then W0 in the Eq. (26) is also bounded, and hence series in Eq. (27) and in Eq. 

(28) are convergent. 
If the incident wave IW  is a periodic having time period 0(2 2 ) /b a c  then 0W  will also be periodic with time 

period 1(2 2 ) /b a c . Hence, Eq. (27) reduces to: 

 

 

The factor 
2

0 1
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( )

4
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in Eq. (29) is called an amplitude enhancement factor. The enhancement factor depends on 

the ratio of 1 0/c c  but not the incident wave form. Hence, enhancement factor can be written 

as:
2 2
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
c

c


                                                                                                                               
As,

 

1

0


c

c
   increases, the amplitude enhancement factor decreases and vice-versa.

 
Using Eq. (29) and Eq. (24), the transmitted wave is: 
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Using Eq. (29) and Eq. (22), the reflected wave is: 

We observe that the transmitted wave has the same amplitude as that of the incident wave but it lags in time due 

to the width of the slab. The amplitude of the reflected wave is zero. This means that the slab is transparent to any 

pulse train with resonant time period. 

5    CASE OF MULTIPLE-LAYER SLAB 

We now consider a multiple-layer slab having n  layers with interfaces ia , 0 10     na a a  and 

propagation velocity jc  in the thj  layer. 

The general form of the solution is taken as: 
 

 
     
     

     

0 0 0

1

1 2

,   



     

     

    





 

I R

j j
j j j j

T T n n

W z c t W z c t if z a

W z t W z c t W z c t if a z a

W W z c t if a z for M

   (33) 

5.1 Solution of the problem 

The solution has been found in the same way as it is done in the previous case for single layer; here we just piece 

together the solutions of previous section. Now from Eq. (25) we have  

 

 

     1 1 1
1 1 1 1

1 1

2
( ) ( ) ( ( )).  

      
 

  
         

  

k k kk k k k
k k k k k k k

k k k k k

c c c c
W z c t W a z a c t W a z a c t

c c c c c
   (34) 

 

A similar expression gives  1


kW  in terms of  2


kW
 
and   1


kW  if we combine the expressions obtained for 

 


jW (1 ) j m and set   0
  IW W , we get 

 

 

 

1 2
1 0 0

0 1
1 100

1 1
1

1 1
11

2
( ) ( )

2
( ) .

 


 
 

 


  
  

  
             

    
                   



 

m m
m i

m I i m m
i i i mii

mm m
j i j jji

j i m m
i i j j i i mj i ji j

c c c
W z c t W a a z a c t

c c c c

c c cc
W a a z a c t

c c c c c c

   (35) 

 
Here, we have 1  j j ja a a and 1  j j jc c c  and for simplicity we put  0

 m i
l m . In the same way, we have 

 

     1 1 1

1 1

2
( ) ( ) ( ( )).  

  
 

  
         

  

k k kk k k k
k k k k k k k

k k k k k

c c c c
W z c t W a z a c t W a z a c t

c c c c c
   (36) 

 

  

2
0 1 0 1 0 1

0 0 02
0 1 0 10 1

4 ( )
( ) (2 ) (2 ) 0

4( )

  
           

R I I
c c c c c c

W z c t W a z c t W a z c t
c c c cc c

 
 

(32) 
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Similar expression gives  


jW  in terms of  1


jW and  1


kW
 

for  


jW ( ) k j n and combining these 

expressions and setting   1 0
 nW  , we get 

 

   
1 1

1 1

2
( ) ( ) .

 

 
  

    
                   

 
jn k

j j jk ji
k j i k k

i i j j i kj k i kj k

c c cc
W z c t W a a z a c t

c c c c c c
 (37) 

 
 
Put Eq. (36) and Eq. (34), we get 

 

 

 

2
0 0

1 1
10

1 1 1 1
11

1 1

1
1

( ) ( )

( )( )

( ) .



  



   

  

 

 
  

 
        

 
  

         

 
        
 
 





 

m
m

m m I j i m m
i mi

m n
jk i

m k j k
k k i j jk j k

j m
j j jj

j j j m m
i i mi k i k

c c
W z c t C W a a z a c t

c c

cc
C C D D

c c c c

c c c
W a a a z a c t

c c c

 (38) 

 
where 
 

1 1
1 1

1 1
1 10 0

2 2
 

 
 

  

 
  

j j
i i

j j
i i i ii i

c c
C and D

c c c c
 (39) 

 

Eq. (38) can be solved by iteration, as we did for Eq. (25), the solution is very complicated therefore for sake of 

convenience, we developed, as for Eq. (27), the series solution is:  
 

   
2

0

( ) ( )





   mm
m mp

p

W z c t W z c t  (40) 

 
where 

 

 
2

0 0
1 0 10

10

( ) ( )


 


 
        

 

m

m
m m I i m m

i mi

c c
W z c t C W a a z a c t

c c
 (41) 

 
There is no reflection at the interface, and 
 

 

 

1 1 1 12
11

11 1
1

1 12
11 0

( ) ( )( )

2
( ) .


   

  

 


 
   

  
           

 
         
   



  

m n
m jk i

m m k j kp
k k i j jk j k

jj m
m j j j i

j j j m m jp
i i m i ii k i k i

cc
W z c t C C D D

c c c c

c c c c
W a a a z a c t D

c c c c c

 (42) 

 
Involves 2p reflections at interfaces within the slab (see Fig. 2). RW and TW are calculated as done in Eq. (22) and 

Eq. (24). 
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0 0 1
0 0 0

0 1 0 1 0

2
( ) (2 ) ( ) .

 
        

   
R I

c c c
W z c t W a z c t W a z a c t

c c c c c
 (43) 

1 1
1 1

1 1

2
( ) ( ) . 

  
 

 
     

  
n n

T n n
n n n n

c c
W z c t W b z b c t

c c c c
 (44) 

 
 

 

 

 
 
 
 
 
Fig. 2  
Multiple layers slab. 

5.2 Discussion 

If the incident wave IW  is a periodic having time period 0(2 ) / ja c  then thj  layer is resonant, and will appear 

transparent to the waveforms 1


jW and  1


jW  . The delay in each pulse time is: 
 

0 (2 ) /  j ja a c  (45) 

6    CASE OF CONTINUOUS SLAB 

Finally, we take the case of continuous slab in which the wave velocity varies continuously and differentially across 

the slab. 

 

 
 
 

( )

( ) ( )

( )

  

  

  







c a if z a

c c z c z if a z b

c b if b z

 (46) 

6.1 Solution of the problem 

This can be treated as the limiting case of multiple slab of preceding section and it can be solved by replacing ai by 

z, and let n  then 
( )




i

i

c dc z

a dz
, but  0a a

 
and   nb a

 
remain constant. Therefore for limiting case, 

1
0

0

( )

( )





  
zm

i
ii a

c c a
a dz

c c z
 

(47) 

/

1

( )

2 ( )

 



i i

i i

c a c z

c c c z
 (48) 

Also, 
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1

1

1 1

2
1

2




 

 
     

ji

i i i

cc

c c c
 (49) 

Hence, 
 

11 1
1 1

1
1 10 0

1 1 1

1 1 10 0 0

2 1
( ) 1

2

1 1 1
1

2 2 2

 
 


  

  

    

   
          

  
           

 

 

m m
i i

m i
i i i ii i

m m i
ji

i i j
i i i i ji i j

c c
C a

c c c a

cc
a a a

c c a c a

 (50) 

 
For n  Eq. (50) reduces to: 
 

/ / /
1

1

1
/ 2

( ) ( ) ( )
( ) 1

2 ( ) 2 ( ) 2 ( )

1 ( ) 1 ( )
exp exp (log ( ) log ( ))

2 2 ( ) 2 ( )


    

                   

  




z z u

m
a a a

z

a

c u c u c v
C du dvdu

c u c u c v

c u c a
du c z c a

c u c z

 (51) 

 
Similarly, we can find that 
 

1

1

1 1

2
1

2




 

 
     

ji

i i i

cc

c c c
 (52) 

 
From Eq. (51) , it follows that 
 

1
2

1
1

( )
( )

( )



 

  
 

m
c a

D
c z

 (53) 

 
Therefore, Eq. (34) becomes by using Eq. (52) and Eq. (53) 
 

1 1
/2 2( ) ( ) ( ) ( ) ( )

( ( ) ) ( ) ( )
( ) ( ) ( ) 2 ( ) ( ) 

       
             

         
z z z

I
a a y

c a c u c z c y c y
W z c z t W a du c a t duW y du c y t dy

c z c u c y c y c u
 (54) 

and Eq. (36) becomes by using Eq. (52) and Eq. (53) 
 

1
/2( ) ( ) ( )

( ( ) ) ( )
( ) 2 ( ) ( ) 

   
       

    
b x

y y

c y c x c x
W y c y t duW x du c x t dx

c x c x c u
 (55) 

 
Comparing Eq. (54) and Eq. (55) 
 

1
2

1
/ /2

( ) ( )
( ( ) ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) 2 ( ) 2 ( ) ( ) ( )





   
      

   

   
       

   



   

z

I
a

z b x z

a y y y

c a c u
W z c z t W a du c a t

c z c u

c z c y c x c x c x
W x du du c x t dxdy

c x c y c x c u c v

 (56) 
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Eq. (56) can be solved for W by iteration. Hence, we have 
 

1
2

2
0

( )
( ( ) ) ( ( ) )

( )






 
    

 
 p
p

c a
W z c z t W z c z t

c z
 (57) 

 
where 
 

1
2

0
( ) ( )

( ( ) ) ( )
( ) ( )

   
      

   
z

I
a

c a c u
W z c z t W a du c a t

c z c u
 (58) 

 
Involves no reflections, and 

 
1

/ /2

2 2 2
0

( ) ( ) ( ) ( ) ( )
( ( ) ) ( )

( ) 2 ( ) 2 ( ) ( ) ( )






   
         

   
    

z b x z

p p
a y y y

p

c z c y c x c x c x
W z c z t W x du du c x t dxdy

c x c y c x c u c v
 (59) 

 
Involves 2p reflections. 
Eq. (43) and Eq. (44) gives 
 

( ( ) ) ( ( ) )  RW z c a t C z c a t                      if z a  (60) 

 
( ( ) ) ( ( ) )  TW z c a t W z c a t

                   
 if z b  (61) 

7    CONCLUSIONS 

The incident wave IW  is a periodic having time period 0(2 ) / ja c  for multiple slab. The jth layer is resonant in the 

multiple slab, and will appear transparent to the waveforms 1


jW and 1


jW . The delay in each pulse time 

0 (2 ) / .  j ja a c
 
We observe that the transmitted wave has the same amplitude as that of incident wave but it lags 

due to finite width of the slab. The amplitude of the reflected wave is zero. This means that slab is transparent to any 
pulse train with resonant time period.  
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