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 ABSTRACT 

 In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by 
linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of 
motion is derived using Newton’s equations. Approximate analytical solutions are obtained 
using multiple time scales (MTS) method. For free vibration, the approximate analytical 
results are compared with the numerical integration results. Forced vibrations of the system 
in primary and secondary resonant cases are studied and the effects of different parameters 
on the frequency-responses are investigated. Moreover, bifurcation of the system is studied 
considering different control parameters.  

                                                    © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

MECANICAL system with single degree-of-freedom including linear and nonlinear springs in series has 
technical applications. When in a system linear springs are connected to each other in series or parallel, they 

can be easily replaced by their equivalents [1, 2]. Sometimes one of the springs in parallel may be linear while the 
other is nonlinear. This system is named mass grounded system. This case results in an equivalent nonlinear spring 
which has a larger coefficient for its linear portion. On the other hand, if a linear spring is connected with a 
nonlinear one serially, obtaining an equivalent spring becomes complicated. In order to find a better insight into the 
behavior of such a system, some researchers tried to find its behavior. 

Telli and Kopmaz [3] derived the equation of motion of a mass grounded system with linear and nonlinear 
springs in series and found an approximate periodic solution using the Linstedt–Poincare (LP) and the classical 
Harmonic Balance (HB) methods. They showed that the obtained analytical solution, depending on initial deflection 
of nonlinear spring, may have large deviations from numerical solution. Sun and Wu [4] explained that this 
difference is occurred because the LP method applies to a weakly nonlinear system and also the HB method is 
applicable under special assumptions. They also studied mass grounded systems in both hardening and softening 
spring cases and stabilized a qualitative analysis to find various singular points. They found that these systems have 
symmetric and asymmetric oscillation, depending on the value of system parameters. Wu and Li [5] proposed a 
linearized harmonic balance to obtain approximate analytical periods for a class of nonlinear oscillators. Lai and 
Lim [6] applied the method of Wu and Li to the mass grounded systems.  

In this paper, vibration analysis of a mass-grounded system including linear and nonlinear springs and a 
nonlinear damper is carried out using multiple time scales method. Forced vibrations of the system in primary and 
secondary resonances are studied and the effects of different parameters on the frequency-response are investigated. 

______ 
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Moreover, bifurcation of the system is studied using different control parameters. To the authors' knowledge, 
damping and bifurcation analysis of nonlinear mass grounded systems has not been reported yet.  

2    EQUATIONS OF MOTION 

Consider the mass-grounded system shown in Fig. 1 in which linear and nonlinear springs in series and a nonlinear 
damper are connected to a mass. In this system, k1 is the stiffness coefficient of the linear spring and k2 and k3 are the 
linear and nonlinear stiffness coefficients of the nonlinear spring. Also c2 and c3 are the linear and nonlinear 
damping coefficients of the damper. Let y1 and y2 denote absolute displacements of the mass and the connection 
point of the two springs, respectively. Equations of motion of the system may be written as:  

 
 

 

 
 
 

Fig. 1  
A mass-grounded system with springs and a nonlinear 
damper. 
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where 2 1 y y u   

Equations of motion can be reduced to a single non-dimensional equation as: 
 

2 2 2 2 3 3
0 0(6 3 ) 0          u u u uu u u u u        (3) 
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In this study, a parameter   is added to the governing equation of motion (3) to show the hardening and 

softening cases. 

3    FREE VIBRATIONS  
3.1 Analytical solution 

Multiple time scales method is used to solve Eq. (3). Two term expansion of u in MTS method is used as [7]: 
 

0 1 u u u  (4) 

 
and time scales as: 
 

0 1, T t T t  (5) 

 
The first and second derivatives of u with respect to time t would be: 
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 0 1
0 1

 
   
 

du u u
D D u

dt T T
   

 
(6a) 

 
2 2 2 2

2 2
0 0 12 2 2
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2 2  

    
  

d u u u u
D D D u

T Tdt T T
    

 
(6b) 

 
Substituting Eqs. (4) - (6) into Eq. (3) and equalling the same coefficients of  0  and  1  to zero yields: 
 

0 2 2
0 0 0 0 : 0 D u u   (7a) 

    2 31 2 2 2 2 2 3
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 : 2 6 3       oD u u D D u u D u u D u u D u D u         

(7b) 
 

A general solution of Eq. (7a) is: 
 

0 0 0 0
0 1 1 0 0( ) ( ) ( )   i T i Tu A T e A T e acos T     (8) 

 

where A is a complex function of 1T  and A  denotes complex conjugate of A. Substituting Eq. (8) into Eq. (7b) and 

eliminating the secular terms leads to: 
 

2 2 2 3
0 0 0 02 3 (1 ) 3 0     i A A A i A i A A       (9) 

 
where in the above equation and rest of the paper prime denotes derivative with respect to 1T . It is convenient to 

write A in polar form as: 
 

1
2

 iA ae   
 

(10) 

 
where a  and   are real quantities. Substituting Eq. (10) into Eq. (9) and separating the real and imaginary parts 
yields: 
 

3 2
0 0

3Re : ( 1) 0
8

  a a     
 

(11a) 

 

3 3
0 0 0

3Im : 0
2 8

   a a a
    

 
(11b) 

 
The solution of Eq. (11a) is: 

 

1( ) 2
0

4
8 3 

 
  

  
B T

a
e 




 
 

(12) 

 
Substitution of Eq. (12) into Eq. (11b) leads to: 

 

 1( ) 2
0 1

0
0

(1 ) 8 3

2

    
  

B TLn e T  
 


 

 
(13) 

 
and 0  are constants. By substitution of Eqs. (12) and (13) into Eq. (8) one obtains: 
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e





    


 

 
(14) 

3.2 Numerical Solution 

Numerical integration of Eq. (3) is carried out by the 4th-order Runge-Kutta method. Numerical solutions for 
different initial conditions such as (0) 0.5, (0) 1, (0) 2  u u u  with (0) 0u  are obtained and compared with their 

analytical solutions, Eq.(14). Results are obtained with 1m , 0.5 , 2 3 2 c c  and 0.1,1  which shows 

different levels of system nonlinearities.  
From Fig.2 and Fig.3 it can be observed that for 0.1 1   and (0) 1u , the numerical and analytical solutions 

are in good agreement. Fig. 4 shows that by increasing the damping coefficient  , the deflection of the nonlinear 

spring reduces faster. Fig. 5 shows that increasing the non-dimensional damping ratio   reduces the deflection of 

nonlinear spring. It can also be noted that the linear damping coefficient   can reduce system response more 

effectively. 
 
 
 

 

(a) 

 
 

(b) 
  

 
 

(c) 

 
 

 
Fig. 2  
Deflection of the nonlinear spring u with time for 0.5 , 2 3 2 c c , 0.1 ( 1 250, 5 k k ), 00.0909, 2.132   . (a) 

u(0)=0.5, (b) u(0)=1, (c) u(0)=2. 
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(a) 

 
 

(b) 
  

 
 

(c) 

 
 

 
Fig. 3 
Deflection of the nonlinear spring u with time for 0.5 , 2 3 2 c c , 1 21( 5)  k k , 00.5, 1.5811.    (a) u(0)=0.5, 

(b) u(0)=1, (c) u(0)=2.  
 
 
 

 

 
 
 
 
 
 

Fig. 4  
Variations of deflection of the nonlinear spring u with time 
for different v  alues of   and 0.5,  

1 20.1( 50, 5),  k k  

00.909, 2.132, 1.      

 
 

 

 
 
 
 
 
 
 
Fig. 5  
Variations of deflection of the nonlinear spring u with time 
for different values of   and 1 20.5, 0.1( 50, 5),   k k   

00.909, 2.132, 0.25.      

4    FORCED VIBRATIONS  

Let an external harmonic excitation P(t) be exerted to the mass of the system as:  
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   ΩP t Pcos t  (15) 

 
Equation of motion is derived as:  
 

2 2 2 2 3 3
0 0(6 3 ) cos( )           u u u uu u u u u P t        (16) 

 
Two types of excitations, primary and secondary resonances (hard excitations) will be discussed here and the 

effects of the system parameters on the frequency-response will be investigated. 

4.1 Primary resonance  

In this case, it is assumed that the frequency of excitation,   is close to the linear frequency of the system, 0 .  A 

detuning parameter   is used to show closeness of   to 0  as: 

 

0Ω     (17) 

To obtain a uniformly valid approximate solution, the excitation must be in the same order of nonlinear terms. So 
in Eq. (16) excitation amplitude is considered as:  

 

0P P  (18) 

 
Multiple time scales method is used to solve equations of motion (16). The two term expansion of u in MTS 

method is used as [7]: 
 

0 1 u u u  (19) 

 

Substituting Eqs. (18), (19) and (6) into Eq. (16) and separating the same coefficients of 0   and  1  yields:  
 

0 2 2
0 0 0 0 : 0 D u u   (20a) 

 
 

2 2 2 2 3
1 0 0 0 0 0 0 0 0 0 0 01 2 2

0 1 0 1 3
0 0 0 0

2 6 3
 : 

( ) cos

       
    

oD D u u D u u D u u D u
D u u

D u P T

   
 


 

 
(20b) 

 
To determine secular terms in Eq. (20b), the excitation term can be written as:  
 

        0 0 1 0 0 10 0Ω Ω0 0
0 0cos Ω

2 2
     i T T i T Ti T i TP P

P T e e e e     
 

(21) 

 
A general solution of Eq. (20a) is: 

 
0 0 0 0

0 1 1( ) ( )  i T i Tu A T e A T e   (22) 

 

where A is a complex function of 1T  and A  is the complex conjugate of A. Substituting Eqs. (21) and (22) into 

Eq. (20b) and eliminating the secular terms leads to:  
 

12 2 2 3
0 0 0 0 0

12 3 (1 ) 3 0
2

      i Ti A A A P e i A i A A       
(23) 

 
Substituting the polar form of Eq. (10) into Eq. (23) and separating the real and imaginary parts yields: 
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3 3
0 0 1 0 0

1 3Im : sin( ) 0
2 2 8

     a P T a a
      

 
(24a) 

3 2
0 0 0 1

3 1Re : (1 ) cos( ) 0
8 2

     a a P T        
 

(24b) 

 
The term 1T  can be eliminated by transforming Eq. (24) to an autonomous system considering:  

 

1 T    (25) 

 
Substituting Eq. (25) into Eq. (24) leads to:   
 

3 20
0

0

1 1 3sin
2 2 8

   
P

a a a   


 
 

(26a) 

30
0

0

1 3cos ( 1)
2 8

    
P

a a a     


  
(26b) 

 
The point at which 0 a   and 0   corresponds to the singular point of the system that shows the steady-state 

motion [7]. The steady-state condition may be given as:  
 

3 3
0 0 0

3sin 0 
4

  P a a      
 

(27a) 

 2 3
0 0 0

3cos 1 2 0
4

   P a a     
 

(27b) 

 
Using Eqs. (27a) and (27b), the frequency-response equation is obtained as: 

 

 
2 2

2 3 3 2 3
0 0 0 0 0

3 3 1 2
4 4
             

P a a a a        
 

(28) 

 
Eq. (28) shows the relation between parameters 0 , , , , , ,P a      and   in the steady-state solution.  

     Fig. 6 shows the effects of the parameters , , ,P     and   on the steady state-amplitude against the detuning 

parameter  .  

4.2 Super-harmonic resonance   

When   is away from 0 , the excitation will have small effect unless its amplitude is hard. So in this case P is 

considered of order one [7]. A detuning parameter is introduced to show closeness of   and 
0

1
2
  as:  

 
03Ω     (29) 

 
Applying MTS method in Eq. (16) and separating the terms with the same orders of   as discussed before, one 

obtains:  
 

 

 0 2 2
0 0 0 0 0 : cos Ω D u u P T   (30a) 

  21 2 2 2 2 2 3 3
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 : 2 6 3 ( )       oD u u D D u u D u u D u u D u D u         

(30b) 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 

 
Fig. 6 
Effects of the system parameters on the amplitude with respect to the detuning parameter   for 0 1 , (a) effects of nonlinearity 

for 0.5, 0.1, 0.1, 3   P   , (b) effects of    for 20, 0.1, 0.1, 3   P   , (c) effects of the amplitude of excitation for 

20, 0.5, 0.1, 3       , (d) effects of   for 020, 0.1, 0.5, 3   P   , (e) effects of   for 020, 0.1, 0.5, 0.1   P   . 

 
 
 
The solution of Eq. (30a) can be expressed as:  

 
0 0 0 0 0 0

0 1 1( ) ( ) ( )      i T i T i T i Tu A T e A T e e e    (31) 

 

where 
2 2

02( )



P


 is a real parameter and A will be determined by eliminating the secular terms. Substituting 

Eqs. (29) and (31) into Eq. (30b) and eliminating the secular terms gives:  
 

1

1

2 2 2 2 2 2 3
0 0 0 0 0

2 3 2 2 3 3
0 0

2 3 (1 ) 6 (1 ) ( 9 )

(3 6 ) 0

        

     

i T

i T

i A A A A i A e

i A A A e





         

    
  

(32) 

 
Using Eq. (10) and separating the real and imaginary parts of Eq. (32) leads to: 
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3 3 2 2 3 2 2 2 3
0 0 0 0 1 0 1

3Im : 3 cos( ) ( 9 ) sin( ) 0
2 8

            a a a a T T
                

(33a) 
2 3 2 2 3 2 2 2 3

0 0 0 1 0 1
3Re : (1 ) 3 (1 ) sin( ) ( 9 ) cos( ) 0
8

            a a a T T                 
(33b) 

 
Eq. (33) is transformed to an autonomous system by introducing a new variable as: 
 

1 T    (34) 

Therefore 
 

2 2
3 2 3 2 2 3

0 0
0 0

3(9 ) sin( ) 3 cos( )
2 8

        a a a a
        

 
  

(35a) 
2

3 3 2 3 2
0 0 0

0

3(9 ) cos( ) ( 1) 3 ( 1) sin ( )
8

         a a a a             


  
(35b) 

 
 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 

Fig. 7 
Effects of system parameters on the amplitude with respect to the detuning parameter   for 0  = 1, (a) effects of nonlinearity 

for 0.5, 0.1, 0.002, 100   P   , (b) effects of   for 1, 0.1, 0.002, 100   P   , (c) effects of amplitude of excitation for 

0.5, 1, 0.002, 100       , (d) effects of   for  0.5, 1, 0.1, 100   P   , (e) effects of   for 0.5, 1, 0.1, 0.002   P   . 
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The frequency-response equation corresponding to the steady-state motion is obtained as: 
 

   

 

2 2
2 3 2 2 3 3 2 2

0 0 0 0 0 0

2 22 2 3 3 2
0

3 1 31 3 1   
8 2 8

9

                 

        

a a a a a           

   

 

 
 

(36) 

 
Fig. 7 illustrates the effects of system parameters on the steady state amplitude of the system. 

4.3 Sub-harmonic resonance  

The sub-harmonic resonance occurs when Ω  is near 3 0 . The detuning parameter    is introduced as: 

  

0Ω 3    (37) 

 
The same as the super-harmonic resonant case, by substituting Eq. (37) into Eq. (30) and separating the terms 

proportional to 0 0i Te  , the solvability condition is obtained as:  
 

1

1

22 2 2 2 2 2 2
0 0 0 0 0 0 0

22 3 2 2 2
0 0 0

2 3 (1 ) 6 (1 ) 12 ( ) 3( )

3 ( 2 ) 0

             

     

i T

i T

i A A A A i A A e

iA A iA i A e





            

    

 
 

(38) 

 

where 2 2
02( )




P



 . Letting A in polar form as Eq. (10) and separating the real and imaginary parts of the derived 

equation yields:   
 

3 3 2 2 2 2
0 0 0 0 0 1

2 2 2 2
0 0 0 1

3 3Im : 3 cos( 3 )
2 8 4

1 12 ( ) 3( ) sin( 3 ) 0
4

       

         

a a a a a T

a T

         

       

 
 

(39a) 
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4
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a a a a T

a T

          

       

 
 

(39b) 

 
Eq.(39) is transformed to an autonomous system using: 

 
1 3 T    (40) 

      
In the steady-state motion, 0   and 0   and the frequency-response in this case will be: 

 

   

 

2 2
2 3 2 2 3 3 2 2
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2 2
2 2 2 2 2 2
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4 4
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                 

a a a a a a

a a

           

       

 
 
 

(41) 

 
The amplitudes of the system against the detuning parameter  are shown in Figs. (8) - (10) for different system 

parameters.  
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(a) 

 
(b) 

  

 
(c) 

 
 

Fig. 8 
Effects of system parameters on the amplitude with the detuning parameter   for 0  = 1, (a) effects of nonlinearity parameter 

for 0.5, 0.1, 0.0002, 3   P   , (b) effects of   for 1, 0.1, 0.0002, 3   P   , (c) effects of amplitude of excitation for 

0.5, 1, 0.0002, 3       . 

 
 

 
      (a) 

 
         (b) 

Fig. 9 
Effects of   on the amplitude for 0.5, 1, 0.1, 3   P   , ( ) 0.0002,( ) 0.001. a b   

 
 

 

 
     (a) 

 
                (b) 

Fig. 10  
Effects of   on the amplitude for 0.5, 1, 0.1, 0.0002   P   , ( ) 0, ( ) 5. a b   
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5 BIFURCATION ANALYSIS 

In section 4, equation of motion of the system with nonlinear damper under a harmonic load is given in Eq. (16). 
By defining state variables as u x and u y , Eq. (16) can be written as: 

 

  2 2 2 3 3
0 0

2

6

1 3


         










x y

Pcos t x xy x y y
y

x

     



 

 
 

(42) 

 
In Eq. (42), the controlling parameters are , , ,P     and the other parameters are set as 3, 0.5, 20,      

0 1 . The 4th-order Runge-Kutta method is used to solve Eq. (42). 

5.1 Effects of the controlling parameter P on the system behavior  

In order to investigate the effect of excitation parameter P on the system behavior, we assume 0.5, 0.1    and 

5 . Bifurcation and phase diagrams, and Poincare map are used to study this case. Fig.11 shows bifurcation 

diagram for the displacement u in terms of the controlling parameter P for 0.5 1.3 P . When  0.5,0.625P , the 

graph has only one branch which indicates the system has a periodic motion with time period T. At P= 0.63 which is 
a bifurcation point, the response bifurcates into three branches where the two lower branches are very close. For 

 0.63,0.66P  a 3T periodic motion is anticipated. At P= 0.66, the three branches merge into one branch. When 

 0.66,0.8P , there is only one branch that relates to a periodic motion with period T. Furthermore, for 
 0.94,1.17P , the system will have quasi-periodic or chaotic behavior. 

 

 

 
 
 
 
 
 
 
 
 

Fig. 11  
Bifurcation diagram for the controlling parameter P. 

 
Fig. 12 shows phase diagram and Poincare map for P= 0.6 where the system has periodic motion with period T. 

For P=0.65, the system will commence a periodic motion with period 3T, as can be seen in phase diagram and 
Poincare map shown in Fig. 13. With the controlling parameter P=0.95, as shown in Fig. 14, the system behavior 
will transform from periodic to quasi-period motion. 

 

 
      (a) 

 
         (b) 

Fig. 12 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.6P . 
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 (a) 

 
    (b)  

Fig. 13 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.65P . 
 
 

 
(a) 

  
  (b) 

Fig. 14 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.95.P  

5. 2 Effects of the controlling parameteron the system behavior 

The effect of the controlling parameter  which is related to the linear parts of the spring stiffnesses, on the system 

behavior is investigated for 5, 0.1, 0.5  P  . In this case, bifurcation and phase diagrams and Poincare map are 

plotted. 
Fig. 15 shows displacement u in terms of the controlling parameter   for 0 0.4  . It is observed that when 

0 0.3  , the number of equilibrium points are limited and the system has periodic behavior. For 0.3 , rapid 

increase of equilibrium points occurs and the system behavior transforms to chaotic motion. When  0,0.065  and 

 0.065,0.19  the system behavior is 3T periodic and quasi-periodic, respectively. In the range of  0.19,0.255 , 

a periodic motion with one equilibrium point exists and at 0.255  the graph branches into two. For  0.255,0.3  

the graph has two branches representing a periodic motion with period 2T. 
 
 

 

 
 
 
 
 
 
 

Fig. 15  
Bifurcation diagram for the controlling parameter .    

 
 
Fig. 16 shows phase diagram and Poincare map for the controlling parameter 0.03 . Since the Poincare map 

has three points in phase space, the system has a periodic motion with 3T period. With increasing , the number of 
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equilibrium points and the system period increase as well. For 0.18 , as shown in Fig. 17, the system has a 

periodic motion with 10T period. Fig. 18 Fig. 19 are plotted for 0.2  and 0.27 , respectively.  It may be seen 

that for 0.2  the period is T and for 0.27  the period is 2T. Fig. 20 that is plotted for 0.365  shows that 

increasing   beyond 0.3 results in chaotic motion of the system. 

 
 

 
      (a) 

 
         (b) 

Fig. 16 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.03.  
 

 
 (a) 

 
    (b)  

Fig. 17 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.18.  
 

 
(a) 

  
  (b) 

Fig. 18 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.2.  
 

 
      (a) 

 
         (b) 

Fig. 19 
(a) Phase diagram, (b) Poincare map for the controlling parameter  0.27.  
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 (a) 

 
    (b)  

Fig. 20 
(a) Phase diagram, ( b) Poincare map for the controlling parameter 0.365.  

5.3 Effects of the controlling parameter   on the system behavior 

In this section, the effect of the controlling parameter   which is a representative of the linear damping coefficient 

on the system behavior is investigated. For this case, the parameters are assumed as: 0.65, 0.5, 5  P   . 

Fig.21 illustrates bifurcation diagram of u in terms of the controlling parameter   for 0 0.4   . It can be seen 

that for  0,0.015  there are multi-equilibrium points. An increase in   is accompanied by a decrease in the 

number of equilibrium points. For  0.015,0.11 , three branches exist. Thus, in this range of the controlling 

parameter, a periodic motion with 3T period is anticipated. At 0.11 , the three branch diagram transforms to one 

branch and beyond this point, the system has only one equilibrium point. Therefore, in this range, a periodic motion 
with period T is expected.  

 
  

 

 
 
 
 
 
 
 

Fig. 21  
Bifurcation diagram for the controlling parameter  . 

 
 
In Fig. 22, phase diagram and Poincare map are plotted for the controlling parameter 0.01 . Since Poincare 

map includes points that produce a closed curve, for 0.01  the system has a quasi-periodic motion. Phase diagram 

confirm such motion. With the increase of  , the number of system equilibrium points decreases and at 0.03  

the system changes from quasi-periodic motion to a periodic motion with a period of 3T. Fig. 23 illustrates system 
diagrams for 0.03 . Fig. 24 shows that for 0.2  the system has a periodic motion with period T. It may be 

concluded that with the increase of   which is directly proportional to the linear damping coefficient, the system 

behavior transforms from a quasi-periodic to a periodic motion. This indicates the stabilizing effect of the system 
damping. 

5. 4 Effects of the controlling parameter   on the system behavior 

Effects of the controlling parameter   which is related to the nonlinear damping coefficient is studied for 

0.65, 0.5, 0.1  P   . Same as the previous cases, bifurcation diagram, phase diagram and Poincare map are used 

for the analyses. 
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Fig. 25 shows bifurcation of the displacement u in terms of the controlling parameter   for 0 15  . It can be 

seen that for  0,5.4  the graph has three branches, so a periodic motion with a period 3T is predicted. At 5.4 , 

the three branch graph transforms to one branch and  beyond this point, the system has one equilibrium point that 
corresponds to a periodic motion with period T. 
 
 
 

 
      (a) 

 
         (b) 

Fig. 22 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.01.  

 
 
 

 

 
 (a) 

 
    (b)  

Fig. 23 
(a) Phase diagram, (b) Poincare map for the controlling parameter 0.03.  
 
 
 

 
(a) 

 
  (b) 

Fig. 24 
(a) Phase diagram, ( b) Poincare map for the controlling parameter 0.2.  

 
 



Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System                   17 

© 2014 IAU, Arak Branch 

 

 
 
 
 
 
 
 
 
 

Fig. 25  
Bifurcation for the controlling parameter .  

 
 

 
      (a) 

 
         (b) 

Fig. 26 
(a) Phase diagram, (b) Poincare Map for the controlling parameter 1.  

 
 

 

 
 (a) 

 
    (b)  

Fig. 27 
(a) Phase diagram, (b) Poincare Map for the controlling parameter 12.  

 
 
Fig. 26 shows phase diagram and Poincare map for 1.  It may be seen that Poincare map includes three 

points, thus the system has periodic motion with a period 3T. Phase diagram confirms this behavior. Furthermore, 
with the increase of  , the number of the system equilibrium points decreases. Fig. 27 shows phase diagram and 

Poincare map for 12.  The Poincare map includes one point and the phase diagram has a closed curve indicating 

a periodic motion with period T. 

6    CONCLUSIONS 

In this paper, vibration of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. In the 
first section, free vibration equation of the system is solved by MTS and numerical methods. It was shown that for 
0.1 1   and (0) 1u  the numerical solution is in good agreement with the approximate analytical solution. For 
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the forced vibrations, the amplitude-frequency equations of the system were derived for the primary, super-harmonic 
and sub-harmonic resonances using MTS method. At the final section, some parameters were considered as the 
controlling parameter and the bifurcation of the system response is investigated using phase diagrams and Poincare 
maps. The types of the system motions and the bifurcation points were identified. 
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