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ABSTRACT
In this study, the analysis focuses on a transient thermoelastic 
problem in an isotropic homogeneous elastic plate that is exposed to 
heat loading within the framework of the fractional-order theory. 
The sectional heat supply is applied on both the front edge and the 
farthest edge of the rectangular plate. The integral transformation 
was considered as a means to solve the main governing equations. 
The Mittag-Leffler function is utilized to express the analytical 
solution for temperature change, displacement, and stress response. 
The investigation also encompasses the study of thermoelastic 
behaviors in a plate featuring a central crack. The stress intensity 
factors at the fracture tip are determined numerically using the 
weight function method in this proposed solution. The findings are 
depicted using numerical computations, considering the material as 
a media, and visually represented in graphical form. 
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1    INTRODUCTION

OLID objects are frequently employed as structural components in several engineering disciplines, including 
civil, mechanical, and aerospace engineering. Various structural elements can potentially be subjected to 

seismic, mechanical, hydrodynamic, blast, aerodynamic, and thermal loads. The utilization of fractional-order 
equations in scientific and technical domains has witnessed a notable rise. These equations serve as effective models 
for dynamical systems, enabling the representation of memory and heredity characteristics exhibited by diverse 
substances. Therefore, mathematically representing real-world situations results in formulating fractional differential 
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equations and other challenges that involve special functions of mathematical physics and their expansions and 
generalizations in one or more variables. Several writers have researched fractional derivatives within thermoelastic 
analysis in recent scholarly literature. The essence of their work can be succinctly described as follows: Povstenko 
[1] introduced a theoretical framework for quasi-static uncoupled thermoelasticity, which is founded on the heat 
conduction equation incorporating a time-fractional derivative. In his study, Povstenko [2] also investigated the 
temperature distribution and thermal stresses within an unbounded medium, including a spherical cavity. This 
investigation employed a quasi-static uncoupled theory of thermoelasticity, which relied on the heat conduction 
equation incorporating a time-fractional derivative. Youssef and Al-Lehaibi [3] employed heat conduction principles 
in deformable bodies and the Riemann-Liouville fractional integral operator to establish a novel framework for 
fractional order generalized thermoelasticity. In their study, Sherief et al. [4] proposed a fractional calculus approach 
that incorporates coupled and generalized thermoelasticity theory, specifically focusing on a single relaxation 
period. Ezzat and El-Karamany [5] attempted to employ these findings in the context of two-temperature 
thermoelasticity in the presence of a magnetic field. In their study, Youssef and Al-Lehaibi [6] developed a 
mathematical model based on the idea of fractional order generalized thermoelasticity to represent a cylindrical 
hollow elastic material. Povstenko [7] conducted a study on axisymmetric thermal stresses in a cylinder by 
employing the heat conduction equation in conjunction with the Caputo time-fractional derivative. Sur and Kanoria 
[8] developed a theoretical framework for a two-temperature generalized thermoelasticity model that incorporates 
fractional-order heat conduction.

The study conducted by Wang et al. [9] examined the thermoelastic processes associated with thermal inertia in 
the context of both macro- and microscale heat conduction. In their study, Zenkour and Abouelregal [10] derived the 
thermoelastic displacement, stress, conductive temperature, and thermodynamic temperature within an infinite 
isotropic elastic body, including a spherical hollow. The study conducted by Yadav et al. [11] employed the 
framework of generalized thermoelasticity with fractional order strain to investigate the behavior of one-dimensional 
disturbances in a viscoelastic solid subjected to a moving internal heat source and mechanical stress. The topic at 
hand pertains to the field of Green-Naghdi thermoelasticity, specifically focusing on incorporating energy 
dissipation. In their study, Gupta and Das [12] employed the Laplace transform and the eigenvalue technique to 
address the deformation of an unbounded transversely isotropic material within the fractional order generalized 
thermoelasticity framework. In their study, Sheoran and Kundu [13] conducted a comprehensive evaluation of 
pertinent literature to elucidate the role of fractional calculus in the field of thermoelasticity. This paper provides an 
overview of the generalizations of the standard heat conduction equation and the concepts of fractional 
thermoelasticity.

In the study conducted by Abbas [14], an investigation was carried out to analyze the effects of thermal shock 
loading on the inner surface cavity in an infinite medium with a cylindrical hollow. The study focused on examining 
the temperature, displacement, and stresses induced by this phenomenon using the framework of fractional order 
generalized thermoelasticity theory. The magneto-thermoelastic response of a homogeneous isotropic two-
dimensional rotating elastic half-space solid was investigated by Bachher and Sarkar [15]. The study employed 
generalized thermoelasticity, specifically utilizing the Caputo time-fractional derivative. The study conducted by 
Povstenko et al. [16] examined the regulation of thermal stress in an infinite cylindrical body. The researchers used 
the time-fractional heat conduction equation with the Caputo derivative to analyze the temperature distribution. 
Xiong and Niu [17] devised a fractional-order thermoelastic diffusion model in anisotropic and linear diffusive 
media. This analysis focused on the dynamic response of a semi-infinite medium subjected to thermal and chemical 
potential shocks at one of its ends, employing the Laplace transform. Chirilă and Marin [18] researched dipolar 
thermoelastic materials within multipolar continuum mechanics. In their study, Abbas [19] examined the impact of 
fractional order derivatives on a two-dimensional thermal shock problem with varying conductivity levels, namely 
weak, normal, and strong conductivity. The investigation involved utilizing Laplace, exponential Fourier transforms, 
and eigenvalues to analyze the problem. In their study, Lata [20] investigated the thermal response of a thick circular 
plate with uniform isotropic properties within the context of the two-temperature thermoelasticity hypothesis. In 
their research, Mondal et al. [21] investigated transient events in a cylindrical cavity of a fiber-reinforced medium 
subjected to an induced magnetic field. They employed the three-phase-lag model of generalized thermoelasticity 
and introduced a novel derivative of the Caputo-Fabrizio type in the heat transport equation. Mittal and Kulkarni 
[22] employed fractional thermoelasticity within the framework of the two-temperature theory to examine the 
thermal fluctuations occurring within a confined spherical region. In their seminal work, Mondal [23] proposed an 
innovative mathematical model to investigate transient phenomena in a rod inside the Lord-Shulman thermoelastic 
framework based on Eringen's nonlocal elasticity theory. 

This research presents the development of a transient heat conduction model utilizing time-fractional equations 
to investigate the thermoelastic response within a fractured plate. The Laplace and finite Fourier sine transform 
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technique is utilized in the solution of fractional equations. The analytical solution is derived with the assistance of 
the Mittag-Leffler function. The weight function approach is utilized to determine the stress intensity factor for an 
edge crack in a thin elastic plate via fractional-order framework. This study examines the impacts of the 
temperature, moisture, stress response, and stress intensity components.

2   BASIC ASSUMPTIONS AND GOVERNING EQUATIONS

In our study, we employed a hypothesis based on time-fractional thermoelasticity. The thermal impact on elastic 
stresses and deformation is considered, but conversely, elastic deformation does not exert an influence on 
temperature. The mathematical expression for the time-fractional heat conduction equation is given by:
i. The classical Fourier's law of heat conduction [24]

( , ) ( , )q x t k T x t                                                                                                                        (1)

in which ( , )q x t is the heat flux vector, t is the time, x is the position of any point on solid, k is the conductivity, 

 is the gradient operator, and T  is the temperature gradient, respectively. The primary flaw of the conventional 
Fourier's law is that it generates a parabolic equation for temperature, which leads to infinitely fast thermal wave 
propagation and renders it useless in its present form.
ii.    The single-phase-lag model was proposed by Maxwell-Cattaneo as a means to address the inconsistency 
observed between the mathematical model [25,26] and experimental results [27]. This modification transforms the 
original parabolic equation into a hyperbolic equation.

0
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                                                                                          (2)

One recovers the classical Fourier's law with an infinitely fast propagation as a limiting case when 0 0  . In 

this context, the flux undergoes relaxation with a designated characteristic time constant, denoted as 0 , 

representing the heat flux's phase lag or relaxation time. As a result, the velocity of propagation is limited. In current 
literature, a generalization of Eq. (2) involves substituting the conventional integer-order derivative with a 
fractional-order derivative. This concept is discussed in reference [28] and the sources cited inside.
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with the solution  as
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in which the fractional Caputo derivative of order  with a lower limit zero
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whereas ( )f t is a Lebesgue integrable function and the Riemann-Liouville fractional derivative is taken as
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                                               (6)

wherein Eq. (3), without losing the generality (1 )  appearing in the Taylor series is merged in 0 terms,  is 

the gamma function,  is introduced to keep the dimension in order, and / t   is the fractional time derivative 
based on Caputo fractional definition [29]. 
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By combining Eq. (3) with the continuity equation, which is given as

( , )
( , )v

T x t
C q x t

t
 

   


                                                                                                           (7)

leads to the hyperbolic heat conduction equation

01 ( , ) ( , )T x t T x t
t t



 
  
     

                                                                                                 (8)

in which / vk C  is the thermal diffusivity coefficient,  is the density, vC is the calorific value and 
2      is the gradient operator, respectively. 

For the limiting case: 

(i) Taking 0 0  or 0  , Eq. (8) reduces to classical Fourier heat conduction,  

(ii) Taking (0,1]  , Eq. (8) is identified as a fractional generalization of the Cattaneo approach,

3   FORMULATION OF THE PROBLEM

3.1 Time fractional heat conduction equation in the single-phase-lag model

For our investigation, we consider the transient response of the fractional heat conduction in a plate of thickness h
that has a crack along one of its edges. It is decided to use the Cartesian coordinate system O xyz , with the plate 

having an infinite extent in the y and z directions but having a finite extent in the x direction (i.e., 0 x h  ). 

Fig. 1
Infinite plate with a crack at its edge subject to uniform thermal loading.

As seen in Figure 1, the edge fracture situated in the plane 0y  may be found at the coordinates 

0 ,x c y      in which c as crack length, and is perpendicular to the plate's free surface. 0T denotes 

the temperature reference at the beginning of the process. Eq. (8) can be rewritten in the dimensionless form as a 
time-fractional conduction equation in the single-phase-lag model with its corresponding boundary conditions after 
dropping primes for convenience. 
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subjected to conditions
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1 2(0, ) ( ), ( , ) ( )t H t h t H t                                                                                                   (11)

where 1 and 2 are prescribed heat constants, e is the strain dilatation along the x direction, ( )H t is the 

Heaviside unit step function and the following non-dimensional variables are used 

1 ,x c x  1 ,y c y  1 ,u c u  2
1 ,t c t  2

0 1 0 ,c   1/ / ,vC k   

2
1/ ,ij ij c    2

1 ( 2 ) / ,c     2
0 / ( 2 ) ,T k     

2
0 1( ) / ,T T c    (2 3 )t    

with t is the coefficients of linear thermal expansion of the material,  and  are the Lame constants, 0T is the 

reference temperature, respectively. Here, to simplify, the equations in subsequent sections are converted to 
dimensionless form, and later on, the single quote mark is removed for simplicity's sake.

3.2 The thermal stress function

To calculate the thermoelastic response of the plate with an edge fracture, we will assume that both of the plate's 

surfaces 0x  and x h , do not experience any traction as 

(0, ) 0, ( , ) 0, (0, ) 0,

( , ) 0, (0, ) 0, ( , ) 0

xx xx xy

xy xz xz

t h t t

h t t h t

  

  
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                                                                                            (12)

Now, suppose the temperature ( , )x t   is the excess of temperature over 0 , the absolute temperature of 

the plate in a state of zero stress and strain; then, the thermal stress ( , )yy x t  is connected with u and  by 

the relation 
e                                                                                                                                      (13)

where quantity 0 / ( 2 ),T     E denotes Young's modulus, t the linear expansion coefficient, and yy is 

the strain component which can be obtained using compatibility condition
2 2/ 0yy x   that gives

1 2( )yye x C x C                                                                                                                        (14)

where 1C    and 2C are coefficients to be determined from the boundary conditions of the plate structure. Thus, for 

the thermoelastic medium in plane strain, using generalized Hooke's law, the thermal stress in the absence of crack, 
as shown in equation (13), can be rewritten as

1 2C x C                                                                                                                         (15)
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4   THE SOLUTION TO THE PROBLEM

Following Liang et al. [30], if 0  , [ ] 1n   , and functions ( ),f t ( ),f t ( ),f t … ( 1) ( )nf t
are continuous 

in [0, ) and of exponential order, while 0 ( )CD f t with order   is piecewise continuous on  [0, ) , then 

Laplace transform of Caputo fractional derivative of ( ),f t is defined as follows
1
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L D f t s L f t s f  
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In view of the above theorem, assuming
2
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                                                                                      (17)

Using Eqs. (13) and (14), applying the Laplace transforms to the Eqs. (9) and (11), bearing Eq. (15) in mind, one 
obtains

2
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subjected to conditions

1 2(0, ) / , ( , ) /s s h s s                                                                                                          (19)

where s is the parameter and f stands for the Laplace transform of f, respectively.

To obtain the solution to Eq. (18), we recall the following property of the finite Fourier sine transform in the 

domain 0 x h 
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where f stand for the finite Fourier transform of ,f and / ,n n h  1,2,...k  respectively. 

Performing the finite Fourier sine transform of both sides of Eq. (18) subject to conditions (19), one obtains  
2
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where 12 1 2( 1) ,n      1
0s s    and 1

1 2( 1) [1 ( 1) ]n nC h C      .

Then, we perform the inverse finite Sine-Fourier transform to both sides of Eq. (21)
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Using Eqs. (16) and (17), applying the Laplace transforms to the dimensionless governing Eq. (15), the 
transformed equations are given as

1 2 ( , )yy C x C x s                                                                                                           (23)

If the plate is only subjected to thermal shock without constraint along its boundaries, then the unknown 

constants 1C and 2C can be solved from the following conditions

0 0

( , ) ( , ) 0
h h

yy yyx s dx x s xdx                                                                                                  (24)
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which may be used to determine two constants 1C and 2C . Thus, Eqs. (22)−(24) describe the analytical solutions 

of thermal parameters  and  , respectively, in the Laplace domain.

5   THE THERMAL STRESS INTENSITY FACTOR

Following [31], the crack problem considered, we require that equal and opposite axial stress will be superposed to 

ensure crack faces are free. Using the weight function method, the stress intensity factor (SIF) IK near the central 

crack tip can be calculated by the following integral [32]: 
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                                                                                    (25)

Here, 1 ,c c c  1( , )F x c is a non-dimensional weight function is given as
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It is noted that the above integral computation is effective for a positive (tensile) stress since a negative or 
compressive stress does not give rise to crack opening but closing. Of course, from another point of view, a negative 
stress intensity factor may be understood as a shield effect to prevent the crack from advancing. Here, for simplicity, 

the SIFs are normalized by 0 0 / (1 )K hE T     . 

6   THE NUMERICAL INVERSION OF THE LAPLACE TRANSFORMS

Consider the Gaver-Stehfest algorithm [33-35], which aims to approximate ( )f t by a sequence of functions, can be 

given as

1

1
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1,n  0t                                                                       (26)

where [ .]F is the Laplace transform of ( )f t . 

The coefficients an depend only on the number of expansion terms n , defined as

/2min( , /2) (2 )!/2( 1) ,
( / 2 )! !( 1)!( )!(2 )![( 1)/2]

Ln L k kn Lan L k k k n k k nk n

  
    

1,n  1 L n                             (27)

The convergence of Gaver-Stehfest algorithm for numerical inversion of the Laplace transform was developed 

by Kuznetsov [36]. It is well proved that the approximations ( )f tn converge to ( )f t , if f is continuous at t and of 

bounded variation in a neighbourhood of t. Mathematical evidence has been provided to illustrate that the 
convergence of the series can be achieved by considering a substantial number of terms from the sequence. Due to 
the comparative thickness of the plate, the solution proposed in this study will exhibit convergence. In summary, the 
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convergence claim posits that by considering a significant number of distinct terms, the solutions to the series will 
ultimately converge toward the exact answer, and the magnitude of error will approach zero universally. In 
alternative terms, reducing the magnitude and size of the phase will result in a substantial enhancement in the 
convergence rate. In order to ensure the convergence of the infinite series inside the solution and satisfy the 

necessary criteria imposed by the functions at an arbitrary point, it is necessary to approximately substitute  in 

the temperature and its stresses with .20   

7   NUMERICAL RESULTS, DISCUSSION AND REMARKS

To demonstrate the accuracy of the present model, we will try to provide a realistic illustration in the next section. 
The results can also be organized systematically to make it easier for other researchers to compare and confirm their 
findings' accuracy. We adopted the copper material constants as follows to make numerical studies easier as shown 
in Table 1:

Table 1  
Values of the constants [5]

k 386 N/Ks, t  1.78 x 10-5K-1, Cv  383.1m2/K, 0  0.002s,  8954kg/m3,

 3.86 x 1010 Nm-2,  7.76 x 1010 Nm-2, 0T  293 K, 0.0168, 1c  415 m/s

For calculation simplicity, we set the sectional heat supply as a constant function as 1 350K  and 2 0  . 

Here we perform the numerical calculation with the help of MATHEMATICA software. The thermal variations are 
investigated using the numerical values of the thermal properties of the heat conductor while taking into account 
several distinct orders (α) of fractional differential coefficients in time-varying variables. It should be noted that the 
fractional heat conduction model reduces to the classical Fourier heat conduction model when α = 0 or τ = 0, and to 
the hyperbolic heat conduction model when α = 1 are discussed numerically. Figs 2 to 4 illustrate the transient 
temperature distributions shown for different values of fractional order 1.0 ,0.7 ,0.4 ,0 =ߙ. With the fractional-order 
increasing from 0 to 1.0, the temperature responses increase near the mid part, while the temperature responses 
decrease to minimum at both ends. 
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Fig. 2 
3D temperature profile along ݔ  and t   for various  .

Fig. 3
The temperature distribution along the thickness ݔ  when t = 0.8.
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Fig. 4
The contour plot of temperature profile with fractional-order = 0.7.

In Figure 2, the three-dimensional temperature curves are presented that illustrate the changes in temperatures in 
the isotropic homogeneous elastic plate when the ambient temperature is specified. With increasing dimensionless 
time and length x, the temperature increases to the peak at x = 0.3, and gradually declines to the end of plate. Fig. 4 
shows the contour plot of the various temperature distributions presented in Figs. 2 and 3 which clearly indicates 
that continuous heating due to the sectional heat source on the plate surface increases the temperature gradually 
concerning time and location. 

Fig. 5
3D thermal stresses distribution along ݔ  and t   for various  .
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Fig. 6
The thermal stresses distribution along the thickness ݔ  when t = 0.8.

Fig. 7
The contour plot of thermal stresses with fractional-order  = 0.7.

In Fig. 5, the dimensionless stress distribution is plotted against the dimensionless thickness x as well as time t
with various values of the order of the fractional derivative α. The different values of the parameter α in the wide 
range (0 < α ≤ 1) cover the two cases of conductivity; (0 < α < 1) for weak conductivity and (α = 1) for normal 
conductivity. In the aforementioned figures, we noticed the difference in all value of fractional parameter α (0 < α ≤ 
1). It is noted that the stress with increasing dimensionless thickness first exhibits a minimum value x = 0 due to 
compressive force and then a maximum tensile force at x = 0.75, before tending to minimum at the end x = 1. To 
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find the effect of dimensionless time   on the thermal stress yy , the evolution of the thermal stress at x = 0.75 is 

shown in Figure 6. It is noted that it has a maximum tensile stress at the outer edge so the maximum tensile stress is 
occurring, and its absolute value increases with time for different values of α, which may be due to the accumulation 
of thermal energy dissipated by sectional heat supply. The dependence of the position of the peak value of thermal 
stress intensity factors on the fractional order α can be observed. Fig. 7 shows the contour plot displaying the 
distribution of stress due to the thermal load experienced in the plate and the same is well observed in Figs. 5 and 6.

Fig. 8
The effects of crack length c on the SIFs 0ܭ⧵ܫܭ for various  .

Fig. 9
The effects of crack length c on the SIFs 0ܭ⧵ܫܭ along the   when x = 0.2.
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Fig. 10
The effects of crack length c on the SIFs 0ܭ⧵ܫܭ along the time .

Figures 8-10 illustrates the temporal progression of the thermal SIFs at the crack tip for a plate containing an 
edge crack. The figures exhibit the evolution history of the SIFs for both the classical solution with 0 0  or

0  , the CV solution with 1  ,  and between other fractional orders 0.4, 0.7   . Figure 8 shows that as 

the length of the crack increases, there is an initial increase in the maximum magnitude of dynamic thermal stress 
intensity factors. Moreover, the classical and CV solutions exhibit a similar pattern in which the transient thermal 
stress intensity factors (SIFs) initially grow until reaching a maximum value, indicating that the thermal stresses 
impede crack propagation. Subsequently, the SIFs take a considerably longer time to dissipate completely. The 
rationale behind this phenomenon is that the fractional diffusion equation serves as an intermediary between the 
conventional heat conduction equation and wave equation when the value of ߙfalls within the range of 1 to 2. 
Furthermore, these curves demonstrate the highest magnitude compared to the response curves for classical and CV 
solutions scenarios. As seen in Figure 9, the normalized stress intensity factors SIFs KI /K0 for the situation of a 
central cracking embedded in a plate that is being heated sectionally are shown for different values of   with crack 
length c = 0.2 on the SIFs 0ܭ⧵ܫܭ along the increasing period. The line curves ascend to their maximum values with a 
rising parameter 0  for  ≤ 1. It has also been learned that a central crack that is exposed to sectional heat supply is 
likely to progress and can go up to its length c, which may be at least half of the layer's thickness or even farther. 
The following observations have also come to our attention: (i) In the scenario involving the case (0 < α ≤ 1), the 
contours of the curves are smoother, as shown in Figure 10. (ii) The fractional order α substantially impacts every 
field. (iii) When the value of the parameter α is increased, the result is a corresponding rise in the speed of the waves 
that propagate the thermal stresses. (iv) As a result of the finding, there is now a reason to research conducting 
thermoelastic material as a new kind of thermoelastic material that may be used.
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8   COCLUSION

The present work employed a fractional heat conduction model to examine the behavior of an isotropic 
homogeneous elastic plate subjected to a sectional heat source. This model's fundamental basis lies in utilizing the 
equation for heat conduction, using the Caputo fractional derivative of a certain order. The solution can be obtained 
by utilizing the Laplace integral transform and the finite Fourier sine transform. A numerical inversion technique 
used for the Laplace transform acquired the numerical outcomes in the time domain. The weight function technique 
was employed as the preferred methodology to obtain the numerical values for the thermal stress intensity 
parameters. This paper presents the graphical representation and computational analysis of numerical results 
pertaining to temperature, stresses, and the stress intensity factor. The subsequent content presents a succinct 
overview of the investigation conducted on the outcomes: (i) The influence of the fractional parameter on the 
outcome is significantly affected by the values of all the field variables. (ii) The temperature and stress distributions 
at any given point exhibit an increase when the value of α grows within the range of 0 to 1, inclusively. (iii) 
Furthermore, it is seen that the traditional Fourier heat conduction theories and a fractional extension of the Cattaneo 
approach can be derived as specific instances for further investigation. The findings of this investigation indicate 
that the utilization of the theory of generalized thermoelasticity with fractional order heat transfer provides a more 
precise depiction of the behavior shown by the constituent particles comprising an elastic body, in comparison to the 
theory of generalized thermoelasticity with integer order.
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