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 ABSTRACT 

 Using appropriate shape functions and distribution of nodal points in 

local domains and sub-domains and choosing an approximation or 

interpolation method has an effective role in the application of 

meshless methods for the analysis of computational fracture 

mechanics problems, especially problems with geometric discontinuity 

and cracks. In this research, computational geometry technique based 

on Voronoi diagram and Delaunay triangulation is used to distribute 

nodal points in the sub-domain of analysis. Therefore, with this 

technique, the nodal points used in the MLS approximation to apply 

the MLPG method with enriched polynomial base functions are 

optimally increased in different steps. By doing this process, the 

problems caused by too closeness of nodal points in computationally 

sensitive areas that exist in general methods of nodal point distribution 

are also solved. Comparing the effect of the number of sentences of 

basic functions and their order in the definition of shape functions, 

performing the Mono-objective PSO algorithm to find the penalty 

factor the coefficient, convergence, arrangement of nodal points 

during the three stages of Voronoi diagram implementation and the 

accuracy of the answers found indicates, the efficiency of V-E-MLPG 

method with Ns=7 and 0.0075  to estimation of 3D-SIFs in 

computational fracture mechanics.                
                                   © 2023 IAU, Arak Branch.All rights reserved. 

 Keywords : Meshless method; 3D-extend-enriched base functions; 

Computational geometry; Optimal nodal point distribution; Mono-
objective PSO. 

1    INTRODUCTION 

OR the mathematical simulation of any physical phenomenon, Partial Differential Equations (PDEs) governing 

it must be determined. Usually, many problems and phenomena are geometrically complex, there is no analytical 

solution for them. Therefore, simplifying assumptions or numerical solutions are used to solve them. In numerical 
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methods, variable fields are calculated using different methods of approximation or interpolation [1].  In addition to 

applied numerical methods such as the Finite Element Method (FEM), Finite Difference Method (FDM), Finite 

Volume and the Boundary Element other numerical methods have been introduced to analyze solid mechanics 

problems, among which the meshless method can be mentioned [2]. These methods, which is introduced by different 

names, has shown its effectiveness in analyzing moving boundary problems, problems with large deformation and 

crack growth. Many studies have been conducted using these methods in various topics and fields of mechanical 

engineering [3-9]. To solve and discretize PDEs, if strong solution is used, because there is no need to integrate and 

calculate nodal integral equations, the computational cost of this method is reduced compared to  the Element Free 

Galerkin(EFG) method, Meshless Local Petrov-Galerkin (MLPG), Point Interpolation Method (PIM) and Radial 

Point Interpolation Method (RPIM)[10-12]. Another difference that can be expressed in the applying of meshless 

methods, are the method of discretization of the equations governing the analysis, the type of base functions for 

generating shape functions and weight function, using background cells to distribute nodal points, regular or 

irregular distribution of nodal points in domain analysis and the selection of a suitable method for approximation or 

interpolation [13-20]. Shape functions are interpolation functions that calculate the value of the field variables at any 

point of the analysis domain, in terms of the values of nodal points. In fact, shape functions play an important role in 

the relationship between the known values of variables field and the unknown values at arbitrary points in domain 

[21]. There are different methods to find shape functions such as: Lagrange's method, Direct method, Superposition 

Principle method, Lines Product method, Maximum Entropy, Radial Base Function, Moving Kriging, Collocation 

Discrete Least Square method and Moving or Mixed Discrete Least Square method (MLS and MDLS). But the 

common feature of these methods is the production of shape functions that have; convergence in solution, 

compatibility condition, differentiability from the order of m or m-complete condition and possessing the Dirac 

Delta property [22-25].Therefore, the selection of Basic Functions(BFs) and their combination, the correct selection 

of the values of the existing shape parameters in some meshless methods, discretization and appropriate distribution 

of nodal points in the domains are very important in the production of shape functions[26-33]. 

In this research, to improve the accuracy of calculations in MLPG method with MLS approximation, mono-

objective Particle Swarm Optimization (PSO) algorithm to find the Penalty Factor Coefficient and Voronoi Diagram 

(VD) has been used to optimally distribute nodal points in sub-domains. Before each step of drawing new cells of 

the VD in domain analysis, calculations based on nodal data are performed and the error is checked. In the cells with 

more errors, the nodal points are again increased by running the VD. This operation prevents from increasing the 

size of the matrix of unknown coefficients and the cost of their calculations. Comparing the results of MLPG 

method to calculate the 3D-Stress Intensity Factors(3D-SIFs) in cracked shaft under Uni-axial cyclic loading, after 

three steps of the VD in Extended-Enriched MLPG method (V-E-MLPG) implementation, it led to an increase in the 

accuracy of calculations. Finally, It will be studied the effect of increasing Linear and Second-order Polynomial 

Base Functions (PBFs) sentences extracted from the Khayyam-Pascal’s pyramid in the definition of Enriched-PBFs 

(E-PBFs) to produce Shape Functions in V-E-MLPG method. 

2    THE MLPG MESHLESS METHOD WITH MOVING LEAST SQUARE (MLS) 

The Meshless Local Petrov-Galerkin method (MLPG) with Moving Least Square (MLS) can be used to discretize 

the Weak-form of partial derivative differential equations. In MLS approximation, displacement values of the nodes 

are estimated by summation of the Least Square of the discrete time steps. The approximated displacement function 

by is estimated by the following relation: 

 

h T

i i

1

u (x) p (x)a (x)= (x) (x) x Ω
l

i 

   p a  (1) 

     

In this equation, “ hu (x)  ” , “ai (x)” are the approximated value of “ u(x) ”  and the vector of unknown 

coefficients respectively. The vector of Polynomial Base Functions (PBFs) which is selected based on the “m
th

 ” 

order polynomial from Khayyam-Pascal’s pyramid consists are : 

 

Linear Monomial:    T (x)= 1 x y zp       Ns= 4 ,  m=1 

Quadratic:  T 2 2 2(x)= 1 x y z x y z xy xz yz  p   Ns= 7 ,  m=2 
(2) 
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Quadratic:   T 2 2 2(x)= 1 x y z x y z xy xz yz  p     Ns=10 , m=2 

 

Additionally, to find the best coefficients “ ai (x) ” , first it will be defined vector “ J(xi) ” as;  

 
l

2
T

i i i i i

i=1

(x )= w (x ) (x ) (x)-u  J p a  (3) 

 

Now, by minimizing the relation (3), in order to approach the approximated value to the actual  values can be 

weitten as follows: 

 

0





J

a
 (4) 

 

Solving the resulting system of linear equations, the unknown coefficients are obtained. In Eq.(3), “u i” stands for 

the unknown displacement value of the “i
th

” node and “Wi(xi)”is the weighting functions in MLS approximation 

which are considered in terms of exponential functions as; 

 

2

i i

c ei

d
w (x )=exp -( ) 1,2,3,..., , 0 ,

α r

 
     

 
i ei ii L d r r x x  (5) 

 

where “rei” corresponds to the i
th

 radius of influence of the domain for nodal points approximation [33]. 

Sometimes,the weight function is defined based on cubic-spline weights function: 
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where in: ei

m

r
d=

d
. 

In relation(6), “dm” is the radius effect of  the nodal point. The linear relationship between the unknown 

displacement values “ui” and the approximated displacement values of  “u
h
” are calculated based on the following 

expression: 

 
l

h

i i

i=1

u (x)= (x)uΦ  (7) 

 

where in the shape functions “ iΦ ” are calculated based on the following expression: 

 
l

-1

i j i i i ij
i=1

(x)= (x ) (x) (x )  Φ p A Q T -1

i= (x)( (x) (x))p A Q  (8) 

 

where; 

 
l l

T T

i i i i i i i

i=1 i=1

(x)= w (x) (x ) (x )= (x ) (x ) A p p Q p  (9) 
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In problems with field singularity, to eliminate this singularity, one can use the Extended-Enriched Base 

Functions (E-BFs) or “ *T (x)p ” which are selected as the following. 

 

*T T θ θ θ θ
(x)= (x)+ rcos rsin rsin sinθ rcos sinθ

2 2 2 2

 
 
 

p p  (10) 

 

Here, “r” stands for the radial distance of each node from the point which its surrounding field is singularized 

[35]. 

3    APPLICATION OF MLPG TO 3D-LINEAR ELASTIC PROBLEMS   

In three-dimensional solid mechanic problems for a general domain “Ω” with general boundary “Г”, the equilibrium 

equations and natural and essential boundary conditions are written as: 

 

ij,j i

ij J I t

i I u

ζ +b +0 in Ω

ζ n =t on Γ

u =u on Γ

 (11) 

 

where “
ijζ ” are the stress components, “

ib ” are the body force components, “
It ” are the surface tractions on the 

natural boundary, “
Iu ” are the displacement on the essential boundary, “

Jn ” are the normal perpendiculars vector 

on the natural boundary, “
tΓ ” is the natural boundary, and “

uΓ ” is the basic boundary. The weak form of the 

equilibrium equation which is obtained for each node containing Local domain “Ωq” and local boundary “Гq”. By the 

residue integral method is: 

 

I ij,j i
Ωq

w (ζ +b )dΩ=0  (12) 

 

Using integration by parts and neglecting the body forces, the discrete equations for each nodal point is;  

 

i

I ij,j I ij J
Ωq

Γ

w ζ dΩ- w ζ n dΓ=0  
(13) 

 

Now, we are ready to apply the natural boundary conditions. For this purpose, one must realize that if the surface 

of local volume crosses the geometric boundary surface, then the equations can hardly satisfy the boundary 

conditions. Therefore, for application of the essential boundary conditions, using the benefit of penalty factors, 

Eq.(13) is modified with an additional surface integral term which is introduced in Eq. (14).  

 

i qui

I ij,j I ij J p I i I
Ωq

Γ Γ

w ζ dΩ- w ζ n dΓ- α w (u -u )dΓ=0  
(14) 

 

In this equation, “ pα ” is the Penalty Factor which is selected by the trial and error in modeling and arrangement 

of the nodes ( pα
E

D
, and 0.01 0.0001). In this study, to get more accurate results by running the Mono-

objective PSO algorithm. If Eq. (14) is discretized and solved based on the displacement fields, and if the 

approximate displacement function is defined based on shape functions Eq. (8), then, the stress matrix is equal to; 

 
h= = ( u )= ( u)= uσ Dε D L DL Φ B  (15) 
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In Eq. (15), “L” , “D” and “B” are, the differential operator matrix, the matrix of material properties and the 

strain matrices ( B DLΦ ). Moreover, the traction vector is written as; 

 

x

y

z

t

t= t =n u

t

 
 
 
 
 

DB  (16) 

 

Substituting for the traction forces and stress values, the weighting functions “
Iw ”and their derivatives “ T

Iw ” 

in Eq.(14), the stiffness matrix “ k
i
” and the force vector “ (f)i  ” for each node are equal to: 

 

i qu

T T T T

i ,I I I p I

Ωq Γq Γqu Γ

( ) = w dΩ- w n dΓ- w n dΓ+α w dΓk DB DB DB Φ  
(17) 

 

qu

T T T

i I I p I

Γqt Γqu Γ

( ) = w tdΓ+ w dΩ+α w udΓf b  
(18) 

 
In the above relations, “Гqi ”, “Гqt ”and “Гqu ” are, un-subscriber section of  Гq with Г, subscriber section of  Гq  

with Гu and the conterminous section  of  Гt and Гu, respectively. Superimposing the stiffness and force matrices to 

get the global equations K
*
 U

*
 = F

*
, the unknown global displacements are obtained according to the reduced matrix 

Eq. (19).  

 
-1

U = K F  (19) 

4    VORONOI  DIAGRAM  AND REGIONALIZATION  OF DOMAIN ANALYSIS TO DISTRIBUTE 

NODAL POINTS  

Interpolation means finding the values of the function at the points where the value of the function is known in the 

neighborhood of those points. The choice of points, density and distribution of nodal points, the influence domain 

and the radius of its, as well as the selection of the appropriate interpolation method, play an important role in the 

accuracy of calculations. 

The Voronoi Diagrams (VD), by receiving a set of points, divide the space (analysis domain) based on the 

closest point to the desired points. Each of the divided areas is called a cell (cell Pi). In each cell there is a point 

where the value of the function at that point must be interpolated based on the known values of the other points.  The 

selection of the other points within the cell follows the rule of the closest distance to the desired point (Nearest-

Neighbor Interpolation). Therefore, this special nodal arrangement can be used to approximate multivariate 

functions (see Fig. 1). 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The Voronoi Diagram in the distribution of nodal points. 
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The Voronoi cells identify nodal points neighboring the desired nodal point by using Delaunay triangulation. In 

such a way that, after the Voronoi celling and its mesh-gridding by the Delaunay diagram, we draw the 

perpendicular bisectors of the connecting lines between the neighboring nodal points and new points are obtained 

from their intersection. From connecting these nodal points together, new convex shapes are drawn that create new 

Voronoi cells for new points added to the analysis domain (see Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Creation of nodal points and new convex shapes based on the 

Voronoi Diagram method. 

 

This method can be used as an algorithm to increase the distribution of nodal points to analyze displacement 

fields and calculate its approximation function in computational fracture mechanics. Usually, the regular distribution 

of nodal points are used in modeling numerical methods. But in the sections with geometric discontinuity and 

cracks, in order to increase the accuracy of calculations, the density of nodes increases with a certain order (Of 

course, irregular or random distribution of nodal points has also been used). 

The use of this method (Voronoi Diagram in the distribution of nodal points) means using a kind of 

Computational Geometry in adding nodal points with known data among the nodal points, in addition to increasing 

the speed of calculations, it can lead to use the optimal number of the nodal points. In order to increase the 

efficiency, at each stage after running the VD and adding new nodal points, the error caused by the new arrangement 

of nodal points is calculated, then in the areas where more errors are reported, other points are calculated by re-

running of the VD, added to reduce the error. The calculated error for each node is: 

 

i

i T

I
e =

U U
 (20) 

 

where the nodal functional “
iI ” is: 

 
T T

i Ω Ω i P Γ Γ iI =(R R ) +α (R R )  (21) 

 

And the residual of the estimation function of the equilibrium equations governing the analysis is: 

 

Ω i ij kk ij i i ij i,j j,i

1
(R ) =(2Gε +λε δ ) +b and ε = (u +u )

2
 (22) 

 

Also, the residual of the estimation function resulting from applying the boundary conditions governing the 

analysis is: 

 

Γ i i I(R ) = u -uD  (23) 

 

Finally the total error is calculated from the following relationship: 

 
n

tot i

i=1

e = e  (24) 
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5    SHAFT MODELING AND MODE -I  STRESS INTENSITY FACTORS  

The shaft (general domain) with the geometric specifications presented in Fig. 3, is divided into two parts (cracked 

area and non-cracked area) for modeling (by using MATLAB software program) in meshless method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Crack shaft’s cross section’s geometric characteristics [34]. 

 

 

In Fig. 3, “Do”, “D” , “a” and “b” refers to shaft outer diameter, inner diameter (notched cross section), along the 

minor and major diameters of semi initial elliptical surface crack, also “ h ” , “
a

D
  ” and “

*

h


  ” are  the 

projected length of half of the crack line on its major diameter, relative depth and dimensionless relative depth of the 

points on the crack line (edge). Point “A” is the deepest point on the crack line and “C”, “B” are the edge points of 

the crack line at the cross-sectional area of the notched and un-notched [34]. 

The crack area is also divided into two areas, the crack tunnel (Sub-Local domain) and around the crack tunnel 

(Local domain).Therefore, in the general domain, the regular distribution of nodal points will be used, and in the 

local domain, as the crack area approaches, the density and number of nodal points will gradually and regularly 

increase. For this purpose, the Voronoi Diagram technique is used several times. To calculate integral equations, the 

extruded volumes around the nodal points must have a good overlap (see Fig. 4). Then the nodal points in the crack 

tunnel (crack line) are considered as analysis points in the geometrical space and domain analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Distribution of nodal points and boundary overlap of 

extruded volumes around nodal points on the cracked shaft. 

 

The values of 3D-dimensionless Stress Intensity Factors (SIFs) in Mode-I in terms of displacements are: 
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*

I,a

a

2G 2
K = Δv

ζ (1+k) ar
for tensile loading  

*

I,b

2G 2
K = Δv

ζ (1+k) arb

for bending loading  

(25) 

 

In Eq. (25), “ Δv ” is the difference in displacements of the two opposite cross points in planes perpendicular to 

the crack surface at a distant “r” from the crack edge in the direction of x-axis [36]. Also, “
aζ ”, “

bζ ” and “a” are 

the tensile stress, the bending stress and the crack depth, respectively. 

6    DISCUSSION OF NUMERICAL RESULTS   

In order to compare the numerical results deduced from MATLAB software program with those of Ref. [34], the 

estimated 3D-dimensionless Stress Intensity Factors (3D-SIFs)for the points of the crack front on Un-Notched shaft 

have been listed in Table 1, based on the relative depth of the crack in tensile or bending cyclic loading in the 

meshless methods, finite element method and experimental findings. 

 
Table 1 

3D- SIFs at different points in the crack line of the Un-Notched cracked shaft under tensile and bending cyclic load. 

 Method *  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

Tensile 

Cyclic 

Experimental 

[34] 

1.332 1.289 1.258 1.235 1.219 1.202 1.194 1.188 1.185 1.187 

FEM[34] 1.402 1.357 1.323 1.299 1.283 1.265 1.256 1.249 1.247 1.246 

MLPG-Direct 1.626 1.573 1.534 1.507 1.488 1.467 1.456 1.449 1.446 1.445 

 

Bending 

Cyclic 

Experimental 

[34] 

0.771 0.7251 0.733 0.721 0.712 0.703 0.698 0.695 0.694 0.686 

FEM[34] 0.796 0.781 0.771 0.758 0.749 0.739 0.734 0.731 0.729 0.721 

MLPG-Direct 0.924 0.895 0.873 0.858 0.848 0.837 0.831 0.828 0.826 0.817 

 

Table 1, show that the dimensional stress intensity factors calculated from the MLPG-Direct meshless method 

are close to the results of Finite Element method. But they are far from experimental results. Now, in order to 

increase the accuracy of the calculations for finding the optimal value of the Penalty Factor Coefficient 

“ 0.0075  ” in MLPG used implementing the Mono-objective Particle Swarm Optimization (PSO) algorithm (see 

Fig. 5).  

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Mono-objective cost function convergence graph in terms of 

number of iteration in PSO algorithm. 

 

Also, by performing three consecutive stages of the Voronoi diagram method, the optimal arrangement of the 

nodal points on the crack plane was found (see Fig. 6).  
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(a) 
 

(b) 

Fig.6 

The three-Step Voronoi Diagram method execution to find the optimal arrangement of nodal points on the crack plane. a) Un-

Notched cracked shaft. b) Notched cracked shaft. 

 

The reason for the reduction of the error in the second and third stages is that, at the end of the first and second 

stage, the VD technique was implemented only in the cells where the error was higher and the nodal points in those 

cells were increased. 

In this way, after three steps of increasing nodal points in the sub- local domain and local domain, the desired 

nodal arrangement was achieved (see Table 2). 

The implementation of this step-by-step computational geometry technique prevents the increase of nodal points 

and computational cost. 

  
Table 2 

The number of nodal points distributed on the crack plane in different steps of the Voronoi technique. 

 Step Number number of nodal points Total Error 

Un-Notched 

Cracked Shaft 

 

Step I 3739 0.0084 

 Step II 6010 0.0038 

   Step III 7952   0.00068 

Notched 

Cracked Shaft 

Step I 4060 0.0072 

 Step II 5969 0.0013 

  Step III 6106   0.00041 

     

According to the nodal point arrangement found (VD technique) to use the MLS approximation in the 

application of the MLPG method with Extended-Enriched-BFs (V-MLS in E-MLPG),the 3D-SIFs in Mode-I for the 

Un-Notched cracked shaft under tensile and bending cyclic loading will be calculated as Table 3.  

For a better comparison and to determine the effectiveness of the method studied in this research (V-MLS in E-

MLPG Meshless Method; V-E-MLPG), the FEM numerical method is Extended (FEM is upgraded to XFEM [37]).  

The 3D-SIFs found in Table (3), show that the results of XFEM and MLPG-Step-III methods are closer to 

experimental results compared to other methods. 

Now, the effect of the number of sentences of BFs in Khayyam-Pascal’s pyramid “Ns” (see Eq. (2)), on the 

accuracy of calculation of the 3D-SIFs at different points in the crack line of the Un-Notched cracked shaft under 

tensile and bending cyclic loading will also be investigated Table 4.  
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Table 3  

3D- SIFs at different points in the crack line of the Un-Notched cracked shaft under tensile and bending cyclic load  by V- E-

MLPG (Ns=4, 0.0075   ). 

 Method *  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

 

 

Tensile 

Cyclic 

Experimental 

[34] 

1.332 1.289 1.258 1.2351 1.219 1.202 1.194 1.188 1.185 1.187 

FEM[34] 1.402 1.357 1.323 1.2995 1.283 1.265 1.256 1.249 1.247 1.246 

XFEM 1.324 1.281 1.249 1.2272 1.212 1.195 1.186 1.180 1.178 1.177 

MLPG-Direct 1.626 1.573 1.534 1.5069 1.488 1.467 1.456 1.449 1.446 1.445 

MLPG- Step I 1.493 1.441 1.408 1.3832 1.366 1.347 1.337 1.330 1.327 1.327 

MLPG- Step II 1.373 1.326 1.295 1.2725 1.257 1.239 1.229 1.224 1.221 1.220 

MLPG- Step III 1.336 1.289 1.260 1.2379 1.222 1.205 1.196 1.190 1.188 1.187 

 

 

 

Bending 

Cyclic 

Experimental 

[34] 

0.771 0.725 0.733 0.7206 0.712 0.703 0.698 0.695 0.694 0.686 

FEM[34] 0.796 0.781 0.771 0.7582 0.749 0.739 0.734 0.731 0.729 0.721 

XFEM 0.752 0.738 0.728 0.7160 0.708 0.698 0.694 0.691 0.689 0.681 

MLPG-Direct 0.924 0.895 0.873 0.8582 0.848 0.837 0.831 0.828 0.826 0.817 

MLPG- Step I 0.848 0.821 0.801 0.7874 0.779 0.768 0.763 0.759 0.758 0.749 

MLPG- Step II 0.797 0.772 0.753 0.7401 0.732 0.722 0.717 0.714 0.713 0.705 

MLPG- Step III 0.763 0.739 0.721 0.7086 0.701 0.691 0.687 0.684 0.682 0.675 

 
Table 4 

The effect of the number of base function sentences on the accuracy of V-E-MLPG method to calculations of 3D-SIFs in the 

crack line of the Un-Notched cracked shaft. 

 Method *  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

 

Tensile 

Cyclic 

Experimental 

[34] 

1.332 1.289 1.258 1.235 1.219 1.202 1.194 1.188 1.185 1.187 

XFEM 1.324 1.281 1.249 1.227 1.212 1.195 1.186 1.180 1.178 1.177 

MLPG- 

 Step III(Ns=4) 

1.336 1.289 1.260 1.238 1.222 1.205 1.196 1.190 1.188 1.187 

MLPG- 

 Step III(Ns=7) 

1.335 1.288 1.259 1.237 1.221 1.204 1.195 1.189 1.186 1.186 

MLPG-  

StepIII(Ns=10) 

1.309 1.264 1.235 1.213 1.198 1.181 1.172 1.167 1.164 1.164 

 

 

Bending 

Cyclic 

Experimental 

[34] 

0.771 0.725 0.733 0.721 0.712 0.703 0.698 0.695 0.694 0.686 

XFEM 0.752 0.738 0.728 0.716 0.708 0.698 0.694 0.691 0.689 0.681 

MLPG- 

 Step III(Ns=4) 

0.763 0.739 0.721 0.709 0.701 0.691 0.687 0.684 0.682 0.675 

MLPG- 

 Step III(Ns=7) 

0.776 0.752 0.734 0.721 0.713 0.703 0.698 0.695 0.694 0.686 

MLPG- 

StepIII(Ns=10) 

0.787 0.762 0.744 0.731 0.723 0.713 0.708 0.705 0.704 0.696 

 

Convergence Test of 3D- dimensionless SIFs based on the number of nodal points in the crack plane of un-

notched shaft under uniaxial cyclic load is presented in Fig. 7. 

 

 

 

 

 

 

 

 

 

Fig.7 

Convergence test (Ns=4 and 0.0075  ). 
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In this diagram to finding the suitable number of nodal points and the optimal nodal arrangement, the 

convergence of V- E -MLPG method with linear-BFs and Ns=4 (see Eq. (2) and Eq. (10)) is drawn during the three 

steps of the Voronoi Diagram implementation. 

The graphs in Fig. 7 indicate the convergence with lower ratio values of 3D-SIFs in the third-step of the 

implementation of the VD's geometric-computational algorithm. 

The effectiveness of calculating 3D-SIFs according to the change “Ns” used in the PBFs can be seen in the 

graphs drawn in Fig. 8.  

 

 
Fig.8 

Variations of the 3D-dimensionless SIFs in term of  *
 in an Un-Notched cracked shaft  under tensile and bending cyclic load 

With Ns=4,7,10. 

  

The drawn diagrams in Fig. 8 show that, although the size of the matrix of coefficients and the volume of 

calculations increases with the increase of the sentences of the PBFs, but it becomes more favorable answers. This is 

especially evident in the case of bending loading with Ns=7.Approximation with Ns=10 takes more time than Ns=7, 

but its answers are not cost-effective due to the higher volume of calculations. 

In order to examine the effect of increasing the number of sentences of the base function in the third-step of the 

VD execution on the convergence of the V-E-MLPG method, the diagrams in Fig. 9 have been drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Convergence test in step III (Ns=4,7,10 and 0.0075  ). 

 

According to the desirability of the answers (see Fig. 7 and Fig8 ), convergence with relatively lower values of 

3D-SIFs ( see Fig. 9), the number of suitable sentences to define the base function with Ns=7 was recognized. 
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For a notched shaft with a semi-elliptical surface crack, the 3D-SIFs by V-E-MLPG Meshless method under 

Uni-axial loading are according to Table 5. 

  
Table 5 

3D-SIFs in the crack line of the Notched cracked shaft by V-E-MLPG method under tensile and bending cyclic load. 

 Method *  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 

 

Tensile 

Cyclic 

FEM[34] 1.5804 1.5305 1.4908 1.4645 1.4463 1.4256 1.4153 1.4083 1.4054 1.4047 

XFEM 1.4925 1.4454 1.4078 1.3830 1.3660 1.3463 1.3366 1.3299 1.3272 1.3265 

MLPG- Step 

III 

(Ns=4) 

1.4488 1.4018 1.3667 1.3426 1.3258 1.3069 1.2974 1.2910 1.2883 1.2877 

MLPG- Step 

III 

(Ns=7) 

1.5507 1.5004 1.4629 1.4371 1.4191 1.3989 1.3887 1.3818 1.3789 1.3783 

MLPG- Step 

III 

(Ns=10) 

1.4546 1.4074 1.3721 1.3479 1.3311 1.3121 1.3026 1.2961 1.2934 1.2928 

 FEM[34] 0.8999 0.8853 0.8716 0.8567 0.8468 0.8354 0.8298 0.9263 0.8246 0.8152 

 

Bending 

Cyclic 

XFEM 0.8500 0.8362 0.8232 0.8092 0.7998 0.7891 0.7838 0.7805 0.7789 0.7700 

MLPG- Step 

III 

(Ns=4) 

0.8574 0.8306 0.8106 0.7968 0.7875 0.7722 0.7720 0.7684 0.7613 0.7581 

MLPG- Step 

III 

(Ns=7) 

0.8719 0.8447 0.8243 0.8103 0.8001 0.7853 0.7851 0.7814 0.7742 0.7709 

MLPG- Step 

III 

(Ns=10) 

0.8841 0.8565 0.8359 0.8217 0.8121 0.7963 0.7961 0.7924 0.7851 0.7817 

     

In order to be able to compare the results of the V- E – MLPG (Step III with Ns=7) numerical  meshless method 

with the MQ – RPIM meshless method (With optimized values of the shape parameters and the size of the support 

domain by Multi -Objective PSO optimization algorithm)under the same loading and geometric conditions, the 

Curves in Fig.( 10) are drawn. 

 

 
(a) 

 
(b) 

Fig.10 

Comparison of the numerical results of calculation (for 3D-SIFs) of two Improved of the extended-enriched meshless methods 

(V -E -MLPG & MQ – RPIM) in the same loading and geometric conditions. a)Un- notched cracked shaft . b) Notched 

cracked shaft. 

 

The curves of Fig. 10  show that performing Mono-objective PSO and the implementation of the computational 

geometry technique of node point distribution for MLPG meshless method and using Multi-objective PSO 

optimization algorithms in MQ-RPIM meshless method, leads to the closeness of the answers of both methods.  
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7    CONCLUSION 

In this research, to improve the accuracy of calculations in MLPG meshless method with MLS approximation to 

solving 3D-Linear elasticity and fracture mechanics problems, Mono-objective Particle Swarm Optimization (PSO) 

algorithm to find the Penalty Factor Coefficient 0.0075   and the Voronoi Diagram (VD) and Delaunay 

triangulation as a computational geometry technique has been used to optimally distribute nodal points in sub-

domains(Crack line and around it on the crack plane). Carrying out this process of computational geometry showed 

that in order to avoid the arbitrary increase of nodal points in the analysis sub-domain, it is better calculations based 

on nodal data are performed and the error is checked. Then in the cells with more errors, the nodal points are again 

increased by running the VD. This operation prevents from increasing the size of the matrix of unknown coefficients 

and the cost of their calculations. Although the increase in the number of linear and second-order PBFs sentences 

extracted from Khayyam-Pascal’s pyramid (Ns =4,7,10) to define PBF caused; the size matrices of unknown 

coefficients, the volume and cost of calculations increased. But performing the convergence test and comparing the 

answers found to calculate the 3D-SIFs in mode-I for a structure with a cracked geometric discontinuity such as a 

cracked shaft under Uni-axial cyclic loading, with the results of the FEM & XFEM methods, MLPG-Penalty with 

Ns=4 and Experimental results showed that the accuracy of the calculations of V-E-MLPG, especially  for  Ns=7 in 

Step III (after three reruns of VD) have improved significantly. 
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