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 ABSTRACT 

 Due to their continuous material variation and eliminating the 

mismatch stress field in the thickness direction, Functionally 

Graded Materials (FGMs) have found wide applications in 

aerospace and mechanical engineering. This article presents 

closed-form solution for thick functionally graded plate based on 

three-dimensional elasticity theory. To this end, first, the 

characteristic equation of FG plate is derived and general closed-

form is obtained analytically. Both positive and negative 

discriminant of characteristic equation is considered and solved. 

The presented method is validated with finite element results by 

considering isotropic thick plate. Several parametric studies are 

carried out to investigate the effect of geometric and material 

parameters. The aim of this research is to present analytical 

solution form for thick FG plate and work out the problem of 

inconsistency for corresponding displacements field. The 

presented solution can be used to examine accuracy of various 

plate theories such as first-order, third order shear deformation 

theories and other equivalent plate theories. 

                               © 2023 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

UNCTIONALLY Graded Materials (FGMs) can be defined as a composite type in which the mechanical 

properties varied gradually between two points. Due to the continuously varying material properties in space on 

the macroscopic scale, FGMs are usually superior to the conventional fiber-matrix materials in mechanical behavior, 

especially under thermal loads. Functionally graded materials reduce the mismatch between the material properties 

at the adjacent layers in layered composite that renders stress concentration between layers. FGMs are usually 

superior to the conventional fiber-matrix materials in mechanical behavior because of the continuously varying 

material properties. Due to their distinct properties, FGMs are widely used in aerospace and biomedical field. 

Numerous theories exist for modeling and analysis of functionally graded beams [1]–[4] and plates [5]–[8]. In these 
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investigations, the displacement field is commonly simplified in the thickness direction due to relative smaller 

thickness compared to other dimensions. Compared to these theories, some researchers employed different solutions 

to obtain an analytical solution for three-dimensional (3D) stress analysis based on 3D elasticity theory for FGM 

thick plates. Swaminathan et al. [9] presented a brief review on the stress, vibration and buckling analysis of FGM 

plates including effects of variation of material properties through the thickness, type of load case, boundary 

conditions, edge ratio, side-to-thickness ratio and the effect of nonlinearity on the behavior of FGM plates. Three-

dimensional elasticity solution for a rectangular laminated plate with pinned edges published with Pagano [10]. He 

assumed the exponential variation in the thickness direction and determined the unknown coefficients. Pagano's 

solution is extended by Pan [11] for functionally graded anisotropic elastic composite laminate. Li et al. obtained an 

elastic solution for a circular FGM plate subjected to pure bending [12] and transverse load [13]. They considered an 

arbitrary function in the thickness coordinate for elastic compliance coefficient. Zenkour [14] considered the effect 

of both transverse shear and normal deformations to solve the 3D elasticity equations for the bending analysis of 

simply-supported FGM plates. Also, He presented a trigonometric theory for thick exponentially graded plates and 

showed that the obtained displacements and stresses are more accurate when compared to the higher-order shear 

deformation plate theory. 3D analytical solutions have been derived for a transversely isotropic functionally graded 

circular plate subject to concentrated edge forces and couples by Liu et al. [15]. They used a displacement field 

solution that satisfies the 3D equilibrium equations and the traction boundary conditions on the top and bottom 

surfaces of the plate. Perturbation method is applied for a non-uniform pressurized functionally graded cylinder with 

variable thickness by Khoshgoftar et al. [16]. They used energy approach and first-order shear deformation theory 

for deriving governing equations. Also, a second-order theory as a higher-order theory is developed for 

axisymmetric thick shell by Khoshgoftar [17]. He applied a second-order polynomial function in thickness 

coordinate as non-linearity function for thick thickness. Omidi bidgoli et al. [18] studied bending behavior of a FG 

rotating cylindrical shell exposed to both pressure and surface shear stresses due to friction. They considered power 

law distribution for thermomechanical material properties and employed energy method and Euler equation for 

constitutive differential equations of the rotating shell. Kumari [19] developed a closed-form solution using 

extended Kantorovich method for a three-dimensional analytical solution for a functionally graded plate with 

longitudinally varying material properties. Lu et al [20] presented a semi-analytical 3-D elasticity solution for 

orthotropic multi-directional functionally graded plates using the differential quadrature method (DQM). They 

studied the effects of the material gradient for the in-plane variation in addition to the thickness direction, on the 

static response of multidirectional FGM plates. Habibi et al. [21] determined Stress Intensity Factor foe thick FG 

cylindrical vessel that have an internal semi-elliptical surface crack. They assumed that the FG material has 

exponentially varying properties and determined KI by using the BEM and FEM. Kardomateas et al [22] in their 

good paper presented three-dimensional elasticity solution for sandwich beams. They derived corresponding 

solution for the more complex case of positive discriminant of characteristic equations. 

In this article, the closed-form solution is derived for thick functionally graded plate based on three-dimensional 

elasticity theory. The characteristic equation of FG plate is derived and solved analytically. Both positive and 

negative discriminant of characteristic equation is considered and solved. The coupled differential equations are 

solved for simply supported boundary condition by using Euler solution form. The aim of this research is to present 

analytical solution form for thick FG plate and work out the problem of inconsistency for corresponding 

displacements field. Furthermore, the solution form for isotropic thick plate as a special case of FG plate is provided. 

The corresponding stress field is derived for every solution form.  In addition, the effect of some important 

parameters such as material index and thickness is investigated on the bending of the plate. The presented solution 

can be used to determine accuracy of various plate theories and numerical methods. 

2    ELASTICITY SOLUTION  

2.1 Functionally graded material  

A thick rectangular flat plate made from FGM is considered in Cartesian coordinate (x,y,z) (Fig. 1).  

 

 

 

 

 

Fig.1 

Schematic representation of functionally graded thick plate. 
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The Young modulus in the thickness direction varies in a smooth and continuous manner through exponential 

low: 

 

  0 e zE z E     (1) 

 

where 0E  is Young modulus of the plate at the bottom (metal rich). α is the FG index corresponding to exponential 

law which is usually positive real number. Based on the three-dimensional elasticity theory, the constitutive relations 

of elastic FG material can be written as [23]: 

 

    C     (2) 

 

where  denote stress vector   
T

x y z yz xz xy       ,  denote strain vector   
T

x y z yz xz xy         

and [C] is 6×6 matrix that represents the material constants and can be calculated in terms of Lamé constants λ and µ 

as follow [24]: 

 

11 22 33

12 13 23

44 55 66

2C C C

C C C

C C C

 





   

  

  

   (3) 

 

And other Cijs are zero. It is evident that Lamé constants are functions of z-coordinate: 

 

 

 

 

  
,

2 1 1 1 2

E z E z
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   (4) 

 

The Poisson’s ratio is considered to be constant [25]. Three equilibrium mechanical equations are 

 

, , ,

, , ,

, , ,

0,

0,

0.

x x xy y xz z

xy x y y yz z

xz x yz y z z
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  

  

  

   (5) 

 

where ,i j  indicate the partial derivative with respect to j. The relationship between strain components and 

displacements are 

 

, , ,

, , , , , ,

, , ,

, , .

x x y y z z

zy y z zx x z xy x y

u v w

w v w u v u

  
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  

     
   (6) 

 

where u, v and w are the displacements of an arbitrary material point at the x, y and z direction, respectively. To 

present closed-form solution, simply supported boundary condition is considered as follow: 

 

0, 0, 0,xv w       at  x=0,a  

0, 0, 0,yu w      at  y=0,b  
(7) 

 

By using separation of variables the following solutions for displacement components are assumed to satisfy the 

above boundary conditions; 
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where ,
n m

p q
a b

 
   and      , ,nm nm nmU z V z W z  are functions of z coordinate that should be determined. 

Substitution of relations (8) into Eqs. (6) and then considering constitutive Eq. (2) and by substitution of the results 

into Eqs. (5), one can obtain the following ordinary differential equations 
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The above governing equations are coupled ordinary differential equations. To solve the mentioned equations, 

exponential form of solution is considered for any term of solution: 
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By substituting Eqs. (10) into Eqs. (9), the following homogeneous algebraic equations are obtained: 
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where     2 2 21 2 2s qpS s   . A nontrivial solution of homogeneous Eqs. (11) exists if the determinant 

of the coefficient matrix vanishes. Hence, the characteristic equation of the FG plate obtained by setting the 

determinant zero: 
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The characteristic equation is a sixth-order equation in terms of s. this equation can be separated to 

multiplication of a quadratic and quartic equation. The corresponding roots of the quadratic equation is obtained as: 
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1,2 1
2

s 


    (13) 

 

where 

2
2 2

1
2

p q
 

   
 

.These two roots are always real and distinct ones; The second equation is a quartic 

equation and cannot be solved directly. Let we consider 
2

s s


   , thus the quartic characteristic equation can be 

written in term of s  : 
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 , which is a biquadratic equation in term of s  . The solution 

for 2s   is 

 
2s P R     (15) 

 

It should be noted that for usual engineering materials, the Poisson’s ratio is smaller than 1; thus R is always 

positive and the obtained solutions in relation (15) are complex numbers. Thus we can rewrite the solution in form 

of Euler polar formula: 
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. By solving Eqs. (16) in polar form for s  , the corresponding roots of the 

quartic equation is determined as follow:  
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where 2 3cos , sin
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r r
 

   . By considering all the roots, the resultant solutions for displacement field can 

be written as follow: 
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(18) 

 

where , , , , 1 6ija i u v w j   are unknown coefficients that should be determined. The above relations can be 

written in polar form as follow: 
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where 1 2 3 2 2 3,i i           and i  is complex conjugate of i . Note that the coefficients ,ija  in relations 

(18) is differ from relations (19) and depends to the selection of solution form. Of the 18 coefficients ija , only six of 

them are independent and other dependent coefficients can be obtained in terms of independent ones. For the first 

two displacement terms 1 2 1 2 1 2, , , , ,u u v v w wa a a a a a by considering 1,2s  in Eq. (13) and replacing the solution in 

matrix Eq. (11) we obtain that: 
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The first two equations in above matrix are same and so the determinant of coefficient is zero. But on the other 

hand, by considering one of first two equations with the last equation, we found that the system of matrix equation is 

inconsistent. The only solution that leads to consistent solution is 0.5   i.e., rigid body. By substituting the 

corresponding terms of solution consist of 1 2 1 2 1 2, , , , ,u u v v w wa a a a a a  in governing equation the relation between 

coefficients is obtained as: 
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By using the constitutive relations, stress components will be obtained 
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 and i=1,2. By considering the second two displacement terms for 3,4s  in Eq. (17), the 

3 4 3 4 3 4, , , , ,u u v v w wa a a a a a  are determined:  
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where 
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And  20 22 2 , 2 1r r R       . The corresponding stresses can be obtained as follow: 
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(24) 

 

where 
2

2**

z
z

eC




 
 

 . Other remaining coefficients , , , , 5,6ija i u v w j   obtained in similar manner by 

replacing 2  with 2 . 
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2.2 Isotropic material 

Thick rectangular plate made of isotropic material is considered in this section. In fact, this case is a special case of 
FG material by setting α=0. But the solution form is changed. By vanishing parameter α from Eqs. (9) and 

substituting the solution form (10) in this equation, the following homogeneous matrix equation are obtained: 

 

  2

2

2

2

2 2

0

1 2

S p pq p

pq S q q s

p

s U

V

Ws

S p

s s

s q

q S



   
   

   
      

 

 

 

 

 


 (25) 

 

where   2 2 21 2S s p q   . Following same procedure described in previous section, the characteristic 

equation is determined as: 

 

 2 2
3

2 0s p q    (26) 

 

where is sixth-order equation and has real plus-minus root: 

 

 2 2
1,2 1s p q       (27) 

 

Corresponding to these two repeated real roots, the displacement functions are: 
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(28) 

 

Of the unknown coefficients , , , , 1 6ija i u v w j   only six of them are independent and because the 

characteristic equation has repeated roots, all the displacement terms in the above relations should be considered. To 

determine the unknown independent coefficients, the relations (27) substituted in governing Eqs. (5). Solving the 

obtain equations and after some manipulation the following results can be obtained: 
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0, , , , 5,6ija i u v w j    

(29) 

 

where 1 2 3 4 1 2, , , , ,w w w w u ua a a a a a  are independent coefficients. Constituting the relations (27) into constitutive Eqs. 

(2), the stress components can be obtained as follow: 
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(30) 

 

where * 0

1

E
C


 


. 

2.3 Boundary conditions 

To calculate the unknown independent coefficients and complete the solution, six boundary conditions should be 

considered. These conditions are obtained by implementing the consistent top and bottom surface conditions as 

follow:  

1. The bottom surface is traction free so 0, 0, 0zz xz yz     . 

2. The top surface is exposed to only external transverse loading, so  , ,zz Q x y z  and 0, 0xz yz   . 

Considering the above boundary condition, all the coefficients are calculated and the solution will be completed. 

3    NUMERICAL RESULTS AND DISCUSSION    

In this article, first comparison study is provided and then parametric study is provided to investigate the bending 

behavior of thick plate based on elasticity theory.  

The presented method is compared with Pagano [10] solution for isotropic plate and it was consistent with his 

presented solution (Table 1). As a first example, the accuracy of the presented method is examined by comparing the 

displacement and stress components of thick plate with those of the finite element (FE). It is assumed that the plate 
made of aluminum with E=70 GPa and ν=0.3. Furthermore, the plate is square and a=0.1 m, h= 0.02 m. The upper 

surface is exposed to   0, , sin sin
x y

Q x y z
a

q
b

    
    

   
 and q0=-1Pa. The FE results are extracted from 

ABAQUS software with element type C3D8R which is three-dimensional element with 8-nodes. The distribution of 

displacements u and w are plotted in Fig. 2 for both analytical and FE results. u is plotted at x=0,y=b/2 and w is 
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plotted at x=a/2, y=b/2. Due to symmetry of loading the in-plane displacements u and v are equal. The out-of-plane 

stresses ,zz xz   are plotted in Fig. 2(b). The in-plane stresses ,xx xy   are plotted in Fig. 2(c). As one can see, 

the results are in accordance with considered boundary conditions in section 2.3. Very good agreement can be 

observed between results. In another example, FG plate with Em=220 GPa and Ec=380 GPa is considered. The plate 

is divided into 32 sublayers and each sublayer is considered to has average Young modulus corresponding to middle 

coordinate of it (Fig. 3). Again good agreement is seen between results in Table 2. In the next example a thick FG 

plate is considered with top face Young modulus Ec=380GPa. Different values for the bottom modulus are 

considered, namely Em=70, 150 and 230 GPa. The Poisson’s ratio is 0.3. The geometric dimensions are same as the 

first example. Table 3 provide roots of characteristic equation for mentioned FG plate. 

 
Table 1 

Comparison of displacements for isotropic plate with Pagano [10] results.  

a

h
    1 10, , ,0,

2 2 2 2
b aU V   , ,1

2 2
a bW  

 Present Ref. [10] Present Ref. [10] 

2 5.01× 10-12 4.95× 10-12 -1.91× 10-11 -1.74× 10-11 

4 4.12× 10-11 3.88× 10-11 -1.52× 10-10 -1.33× 10-10 

10 6.45× 10-10 6.24× 10-10 -4.34× 10-9 -4.17× 10-9 

20 5.51× 10-9 5.02× 10-9 -6.57× 10-8 -6.47× 10-8 

50 8.02× 10-8 7.86× 10-8 -3.08× 10-6 -2.51× 10-6 

 

Table 2 

Comparison of displacements of FG plate with FE results.  

 umax wmax 

w (analytical) 3.0852×10-13 1.764 × 10-12 

w (abaqus) 3.412×10-13 1.187 × 10-12 

 

Table 3 

The roots of characteristic equation for FG thick plate with different values of Em (a=0.1m, h=0.02m, q0=-1Pa) 

Em (GPa) α γ1 γ2 γ3 

70 84.58 61.3394 64.2572 19.1431 

130 53.63 51.8943 53.8757 14.4769 

190 34.66 47.6886 48.7945 10.3293 

250 20.94 45.6453 46.1202 6.6014 

310 10.18 44.7194 44.8412 3.3015 

 

 
(a) 

 
(b) 

 
(c)  

 

 

 

 

 

 

 

 

Fig.2 

Comparison of displacements and stresses obtained by the 

present method with FE results. 
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(a) 

 
(b) 

Fig.3 

Finite element model of thick FG plate. 
 

 

 

Fig. 4(a) shows the distribution of Young modulus in the dimensionless thickness direction z  ( /z z h ). In 

Figs. 4(b-g) dimensionless displacement components ,U W and stress components , , ,zz xz xy xx     are plotted. 

It should be noted that the in-plane displacements and also in-plane stresses are equal due to transversely isotropic 

properties of FG plate.  

As shown in Fig. 4(b-c), by increasing the Young modulus of bottom surface, the displacements reduced. 

Furthermore, the in-plane displacement cannot be neglected compared to transverse displacement. It can be 

concluded that increasing the Em make the plate more stiff and therefore smaller displacements are obtained. In Fig. 

4(d), variation of normal stress 
zz  through the thickness is plotted. As can be seen, normal stress is satisfied 

boundary conditions that should be zero and unit in bottom and top surface, respectively. Variation of  
xz  is plotted 

in Fig. 4(e). It is evident that dimensionless transverse stress at the bottom and top surfaces is zero that satisfied 

external boundary conditions. According to Fig. 4(f-g), one can see that by increasing Em the in-plane 
xx decreased 

contrary to in-plane shear stress xy . However nonlinear variation is evident especially for lower values of Em.  

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 
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(e) 

 
(f) 

  

 
(g) 

 

 

 

 

 

 

 

 

Fig.4 

Variation of displacement and stress components of FG thick 

plate along z-direction for different values of Em. 

 

 

In the next example, the effect of thickness on the bending behavior of FG thick plate is considered. In this 

example it is assumed that Young modulus of top and bottom face is constant, thus the exponential FG index can be 
obtained by using the relation α=(1/h)Ln(Ec/Em). Table 4 shows the roots of characteristic equation for four 

thickness, that is h=10, 15, 20 and 25 mm. As shown in Fig. 5(a), when the plate is thinner the transverse deflection 

increased. Although the thickness increased in equal-step manner, but the W  has no equal-step increase.  

The 
zz  is not affected significantly by changing thickness of FG plate as shown in Fig. 5(b). According to Figs. 

5(c-d), the absolute value of in-plane stresses ,xx xy   and out-of-plane stress 
xz  has an increase when the plate 

becomes thicker. As can be seen in these figures, increasing the thickness leads to smaller and smoother variation of 

stresses.  
 

Table 4 

Roots of characteristic equation for FG thick plate with different values of thickness (a=0.1m, Em =70GPa, Ec =380GPa, q0=-

1Pa) 

h (mm) α γ1 γ2 γ3 

25 67.67 55.8447 58.3368 16.8687 

20 84.58 61.3394 64.2572 19.1431 

15 112.78 71.7890 75.0422 21.8558 

10 169.17 95.5423 98.7378 24.9161 

 

 
(a) 

 
(b) 

  



                                                                                              Closed-Form Formulation for Bending Analysis of ….                   172 
 

Journal of Solid Mechanics Vol. 15, No. 2 (2023) 
                                                                                                                     © 2023 IAU, Arak Branch 

 
(c) 

 
(d) 

  

 
(e) 

 

 

 

 

 

 

 

Fig.5 

The effect of thickness on the variation of transverse 

displacement and stresses, a=0.1m, Em=70 GPa, Ec=380GPa. 

4    CONCLUSION 

In this study, exact solution have been proposed for bending analysis of thick functionally graded/isotropic plate. By 

considering three dimensional governing equations, the characteristic equation of FG plate is derived. The 

characteristic equation is separated to multiplication of a quadratic and quartic equation. Analytical solution for 

quartic equation is presented by means of complex form solution. Then real-value and complex form of solution are 

presented for ordinary differential equation based on Euler solution. A critical study is carried out to obtain 

unknown coefficient of real parts. Other coefficients are derived analytically by using dependency of equations. By 

applying the external boundary conditions, all six independent coefficients are calculated. The presented solution is 

provided for isotropic plate and validated by finite element results. Finally parametric studies are carried out to study 

the effect of geometrical and material parameters. 
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