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ABSTRACT
In this article, an analytical solution is provided for the free damped 
vibration analysis of a sandwich plate resting on a visco-Pasternak 
foundation. The plate consists of a magnetorheological elastomer 
(MRE) core reinforced with carbon nanotubes (CNTs) and 
laminated polymer-based face sheets enriched with graphene 
nanoplatelets (GPLs) and glass fibers. The governing equations and 
associated boundary conditions are derived utilizing Hamilton’s 
principle and are solved analytically using Navier’s method for a 
simply supported plate. The influences of various parameters on the 
natural frequencies and corresponding loss factors are examined 
such as aspect ratio of the plate, thickness-to-length of the plate, 
magnetic field intensity, thickness of the MRE core, mass fraction 
of the CNTs in the MRE core, mass fractions of the GPLs and fibers 
in the face sheets, and Winkler, Pasternak, and damping coefficients 
of the foundation. It is shown that subjoining CNTs to the MRE 
core leads to a small increase in the natural frequencies and loss 
factors of the plate. Consequently, due to the high cost of the CNTs, 
adding them to the MRE core to improve the vibrational 
characteristics of the sandwich plates with MRE core is not an 
optimum design.
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1    INTRODUCTION

UE to the advantages and disadvantages of materials, a single-layer structure is not an optimum design. To 
benefit from the advantages and reduce the side effects of the disadvantages, sandwich and multi-layered 

structures can be utilized [1-4]. The material selected for face sheets of a sandwich structure should be benefits from 
high stiffness and the material utilized as the core should be benefits from low density. One of the popular materials 
which can be utilized as the core in sandwich structures is magnetorheological materials (MRs). MRs such as 
magnetorheological fluids (MRF) and magnetorheological elastomers (MRE) are kinds of materials with 
controllable rheology. The MRs contain suspended micro-sized particles which are sensitive to applied magnetic 
fields. When an MR material is exposed to a magnetic field, the arrangement of the particles varies in a uniform way 
which affects the mechanical properties of the materials in a restorable way. There is a wide range of works 
associated with the vibration analysis of sandwich structures with MRE or MRF cores.

An experimental study was presented by Lara-Prieto et al. [5] to analyze the free vibration of cantilever 
sandwich beams with MR core. The tunability of the stiffness and damping characteristics of the beams with the MR 
core was confirmed by them. The dynamic buckling behavior of three-layered sandwich beams with conductive 
skins and partially MRE core was investigated by Nayak et al. [6]. It was shown by them that the higher percentage 
of iron particles and higher magnetic field result in better stability of the structure. In a similar work, they studied 
the dynamic buckling analysis of spinning three-layered sandwich beams with conductive skins and an MRE core. 
They focused on the effects of the magnetic field intensity and rotational speed on the stability regions [7]. 
Rajamohan et al. [8] employed the finite element method (FEM) and presented a numerical solution for the free 
vibration analysis of sandwich beams with MRF core. It was observed by them that the higher magnetic field 
intensity results in higher natural frequencies and loss factors. Navazi et al. [9] studied the free vibration analysis of 
doubly tapered sandwich beams with MRE core. They confirmed that there is an optimum value of the magnetic 
field which results in the highest loss factor of the beam. The effects of magnetoelastic loads on the free vibrational 
characteristics of the MR-based sandwich beams were investigated by Rokn-Abadi et al. [10]. It was observed by 
them that the effects of the magnetoelastic loads are more obvious with the higher beam length. Omidi Soroor et al. 
[11] studied the free vibrational analysis of sandwich beams consisting of a homogenous isotropic base layer, an 
MRF core, and an axially functionally graded (FG) constraining layer. They revealed that by increasing the 
thickness of the MRF core the natural frequencies diminish and the loss factors experience an initial steep reduction, 
followed by moderate growth. Aguib et al. [12] presented numerical and experimental results for the vibrational 
characteristics of sandwich plates with an MRE core. It was observed by them that the higher magnetic field 
intensity results in a lower resonance amplitude. The free vibrational behavior of multi-layered sandwich plates with 
a flexible core and MRF layers embedded between composite sheets was investigated by Payganeh et al. [13]. They 
concluded that to enhance the natural frequencies, it is more useful to utilize thinner MRF layers. Yeh [14] studied 
the free vibrational characteristics of orthotropic rectangular sandwich thin plates with isotropic homogenous face 
sheets and an MRE core. He found that the natural frequencies grow with an increase in the magnetic field intensity. 
Eshaghi [15] investigated the effects of MRF core on the aeroelastic stability characteristics of sandwich plates with 
MRF core. It was concluded by him that the higher magnetic field intensity results in better aeroelastic stability.

Due to high values of elastic moduli and low density, CNTs have been extensively utilized as the reinforcement 
in the structures. Many authors have focused on the positive effects of CNTs on the mechanical characteristics of the 
structures [16-21]. Recently, Selvaraj and his co-workers presented some works regarding the mechanical 
characteristics of sandwich structures with CNT-reinforced MR core [22-26]. Selvaraj and Ramamoorthy [22]
presented experimental and numerical analyses on the free vibration of sandwich beams with CNT-reinforced MRE 
core. They concluded that the presence of CNTs improves the free vibration characteristics of MRE. In another 
work, they focused on the dynamic characteristics of laminated composite sandwich beams with CNT-reinforced 
MRE core [23]. They concluded that the presence of CNTs in MREs not only creates a higher stiffness of the beam 
but also enhances its damping characteristics. Dynamic characteristics of laminated composite cylindrical sandwich 
shells with CNT-reinforced MRE core were investigated by Arumugam et al. [24]. It was demonstrated by them that 
the natural frequencies of such structures decrease by increasing the CNT-MRE thickness. Numerical and 
experimental results were provided by Selvaraj et al. [25] on the free vibration characteristics of rotating composite 
sandwich beams with CNT-reinforced MRE core. They concluded that higher percentages of the CNTs in the MRE 
core result in higher natural frequencies and loss factors. Selvaraj et al. [26] studied the free and forced vibration 
characteristics of sandwich beams with laminated composite face sheets and a partially configured CNT-reinforced 
MRE core. They employed the genetic algorithm (GA) to find the optimal positions of the MRE core to maximize the 
natural frequencies and loss factors. 
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In the presented article, the free damped vibrational characteristics of sandwich rectangular plates with a CNT-
reinforced MRE core and laminated three-phase polymer/GPL/fiber face sheets resting on a visco-Pasternak foundation 
were investigated for the first time. The effects of various parameters on the natural frequencies and loss factors are 
investigated including geometrical parameters of the plate, the thickness of the MRE core, magnetic field intensity, mass 
fraction of the CNTs in the MRE core, and mass fractions of the GPLs and fibers in the face sheets. As the novelty of the 
presented work, it can be stated that there are lots of works regarding the free vibration analysis of the sandwich plates 
with MR core and isotropic homogenous face sheets. But the presented work is the first work that investigates the 
vibrational characteristics of a sandwich plate with a CNT-reinforced MRE core and laminated three-phase 
polymer/GPL/fiber face sheets.

2    MATHEMATICAL MODELING  

As depicted in Fig. 1, a sandwich rectangular plate of length b and width a resting on a visco-Pasternak foundation 
is considered. The face sheets are laminated three-phase polymer/GPL/fiber face sheets and the core is made of a 
CNT-reinforced MRE. The thickness of the bottom, core, and top layers sequentially are shown by h1, h2, h3.

It is assumed that the MRE core does not bear considerable normal stress and it can only bear the shear 
components of the stress tensor which can be presented as follows [14]:

       2 2 2 2* *
2 2, ,xz xz yz yzG G     (1)

where  2
xz and  2

yz are shear components of the stress tensor at the MRE core and with the following definition,

G2
* is a complex value known as the complex shear modulus of MRE [14]:

 *
2 0 01G G i  (2)

in which i2=-1 and G0 and η0 are known as the storage modulus and loss factor. These parameters can be found in 
Table 1 for an MRE reinforced with multi-walled carbon nanotubes (MWCNTs) with various values of mass 
fraction of the CNTs (WCNT) and magnetic field intensity (B). These experimental values are provided by Selvaraj et 
al. [25].

In this paper, the third-order polynomials provided in Eq. (3.a) are utilized to estimate the values provided in 
Table 1. It is noteworthy that second-order polynomials presented in Eq. (3.b) are recommended by Selvaraj et al. 
[25]. As shown in Fig. 2, the polynomials recommended by Selvaraj et al. [25] are not accurate enough for 
estimating loss factors.
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Fig. 1

Schematic of the problem.

 

 
 

   
 

 
   

2
0

7 2 4
0

2
0

8 2 5
0

2
0

8 2 5
0

0 :

0.0241 644.67 639600,

10 10 0.0919,

0.005 0.5% :

0.3588 732.3 810100,

6 10 8 10 0.0926,

0.01 1% :

0.5489 833.01 868100

3 10 4 10 0.099

CNT

CNT

CNT

W

G Pa B B

B B

W

G Pa B B

B B

W

G Pa B B

B B







 

 

 



   

   



   

     



   

      5.



















(3.b)

Table 1
Storage modulus and loss factor of CNT-reinforced MRE [25]

B (Gauss)
WCNT=0 WCNT=0.005 (0.5 %) WCNT=0.01 (1 %)

Storage modulus
(MPa)

Loss factor
Storage modulus

(MPa)
Loss factor

Storage modulus
(MPa)

Loss factor

0 0.636 0.0912 0.811 0.0926 0.868 0.0991

125 0.721 0.1038 0.891 0.1021 0.962 0.1120

250 0.793 0.1069 0.974 0.1100 1.041 0.1190

500 0.957 0.1099 1.086 0.1199 1.160 0.1261

x

y

a

b

Shearing layer of foundation

Laminated three-phase polymer/GPL/fiber 

CNT-reinforced MRE

z
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The variations of storage modulus and loss factor versus the variation of magnetic field intensity are depicted in 
Fig. 2 for various values of mass fraction of the CNTs. This figure reveals that as the mass fraction of the CNTs 
grows, the storage modulus increases for all values of magnetic field intensity, and the loss factor increases for most 
values of magnetic field intensity.

An MRE contains suspended micro-sized particles (Fig. 3.a) which are sensitive to an applied magnetic field. 
When an MRE is exposed to a magnetic field, the arrangement of the particles varies in a uniform way which affects 
the mechanical properties of the materials in a restorable way (Fig. 3.b). As the magnetic field intensity grows, more 
micro-sized particles are affected which results in higher shear modulus which can be seen in Fig. 2. Fig. 2 also 
shows that an increase in the mass fraction of the CNTs leads to higher storage modulus which can be explained by 
high values of the elastic moduli of the CNTs.

2.1. Effective mechanical properties

Due to the high cost of CNTs and GPLs and also their agglomeration when used in high percentages, three-phase 
composite materials have attracted high attention of researchers in recent years [27-29]. A three-phase composite 
polymer/GPL/fiber consists of a polymeric matrix enriched with GPLs and reinforced with micro-scaled fibers such 
as glass, boron fibers, or aramid. Here the subscripts m, GPL, f, and gm are utilized to show the properties of the 
matrix, GPLs, fibers, and GPL-reinforced matrix, respectively. It should be noted that in some cases, superscript f is 
employed to show the properties of fibers.

According to the rule of mixture, the density (ρ) and Poisson’s ratio (ν) of the GPL-reinforced matrix can be 
stated in terms of their volume fraction (V) as follows [30, 31]:

, ,gm GPL GPL m m gm GPL GPL m mV V V V         (4)

For the GPLs, the volume fraction can be presented as follows [32]:
1

,
1

1 1
GPL

GPL

m GPL

V

W





 

  
 

(5)

in which WGPL indicates the weight fraction of the GPLs. For the matrix, the volume fraction can be calculated as
1 .m GPLV V  (6)

Based on the Halpin-Tsai model, the effective modulus of elasticity (E) of the GPL-reinforced polymeric matrix 
can be stated as follows [33]:

   3 1 5 11
,

8 1 1
L L GPL w w GPL

gm m
L GPL w GPL

V V
E E

V V

   
 

  
    

(7)
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(a)

(b)

Fig. 3

The effect of magnetic field on an MRE elastomer.
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 
(8)

in which lGPL, wGPL, and hGPL respectively stand for the length, width, and thickness of the GPLs. As the GPL-
reinforced matrix is an isotropic material, its shear modulus can be stated as follows:

 
.

2 1
gm

gm

gm

E
G





(9)

Based on the rule of mixture, the density of the three-phase material can be stated as [34, 35]
,f f gm gmV V    (10)

where the following relation can be utilized to calculate the volume fraction of the fibers [34, 35]:
1

.
1

1 1
f

f

gm f

V

W





 

   
 

(11)

in which WF is the weight fraction of the fibers. The volume fraction of the GPL-reinforced polymeric matrix can be 
stated as follows:

1 .gm fV V  (12)

For the three-phase material, the elastic and shear moduli and Poisson ratios can be calculated utilizing the 
following micromechanical relations (ν21=ν12E22/E11) [34, 35]:
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2.2. Equations of motion

The plate consists of a moderately thick core and two thin face sheets. Consequently, the face sاeets can be modeled 
based on the classical plate theory (CPT) and the MRE core can be modeled based on the first-order shear 
deformation theory (FSDT). Based on the CPT, the displacement field in the thin face sheets (k=1,3) can be 
described as follows [14]:

   

   

   

ˆ , , , , , ,

ˆ , , , , , ,
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


 




(14)

in which ˆku , ˆkv and ˆ kw respectively indicate the displacement in the kth layer in x, y, and z directions, and uk, vk

and w stand for the corresponding displacement at the middle surface of each layer (zk=0). Based on the FSDT, the 
displacement field in the core (specified with the subscript c) can be considered as

     
     
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2 2 2 2
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


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 



(15)

where α2 and β2 are the rotation about y- and x-axes, sequentially.
The continuity of displacement between three layers of the plate can be stated as follows:

32 1 2
2 1 2 3ˆ ˆ ˆ ˆ, , , , , , , , , , , , , .

2 2 2 2

hh h h
u x y t u x y t u x y t u x y t

                
       

(16)

Utilizing Eqs. (14)-(16) and considering the same thickness for the face sheets (h1=h3=hf), the following relation 
can be obtained: 

1 3 1 3 3 1 3 1
2 2 2 2

2 2 2 2

, , , .
2 2
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By substituting Eq. (17) into Eq. (16), the displacement field in the MRE core can be described as follows:

1 3 1 32 2
2 3 1 2 3 1 2

2 2

ˆ ˆ ˆ, , .
2 2f f

u u v vz zw w
u u u h v v v h w w
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(18)

The normal (εij) and shear (γij) components of the strain tensor in the face sheets can be stated as follows:
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and for the MRE core, the following equation can be stated for the shear components of strain:
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in which
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The components of the stress tensor in the face sheets can be obtained as
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Based on Hamilton’s principle, by considering δ as the variational operator and [t1,t2] as an arbitrary time 
interval, the set of the governing equations and associated boundary conditions can be derived using the following 
relation [36]: 

 
2

1

. . 0,
t

s n c

t

T U W dt     (24)

where T and Us sequentially stand for the kinetic energy and strain energy, and Wn.c. is the work done by the external 
non-conservative loads.
The kinetic energy of the plate can be presented as follows:

2 2 23

1

ˆ ˆ ˆ1
,

2
k

k k k
k

k V

u v w
T dV

t t t




                         
  (25)

where Vk is the volume of the kth layer:

   
2

2

.

k

kk

h

k k
hV S

dV dz dS



   (26)

in which S stands for the surface of the plate.
The densities of the core and the face sheets do not change through the thickness direction; Consequently, one 

can write
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     (27)

and Eq. (25) can be presented as
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
2
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t

   
     

(28)

in which the inertia terms are defined as follows:

         
2 2

1 2 32
0 2 0 0 0 0

2 2

, , .

k k

k k

h h

k k
k k k k k

h h

I dz I z dz I I I I 
 

      (29)

The strain energy of the plate can be presented stated as

   
3

1

1
,

2
k

k k
s ij ij k

k V

U dV 


   (30)

and the variation of the strain energy of the plate can be found as follows:
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.
k
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Eq. (31) can be represented in the following expanded form:
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which can be rewritten utilizing Eqs. (19), (20), and (26) as
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(33)

where the stress resultants are defined as follows:
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Eq. (34) can be stated utilizing Eqs. (1), (19), (20), and (22) as
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where
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The virtual work done by the external non-conservative loads can be presented as follows:

. . ,n c f

S

W q wdS   (37)

in which qf is the distributed load per unit area applied by the foundation which can be presented based on the visco-
Pasternak foundation model as 

2 2

2 2
,f w p

w w w
q k w c k

t x y

   
        

(38)

where kw, kp, and c represent Winkler, Pasternak, and damping coefficients of the foundation, respectively.
Substituting Eqs. (28), (33), and (37) into Eq. (24) leads to the following set of governing equations:
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in which
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Substituting Eqs. (35) and (38) into Eq. (39) leads to the following set of governing equations:
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3    SOLUTION PROCEDURE  

Utilizing Navier’s method, the displacement field can be considered for a simply supported plate as follows:
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in which ωmn is a complex eigenvalue and
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   (43)

Substituting Eq. (42) into Eq. (41) leads to the following eigenvalue equation:
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The solution of the eigenvalue equation (44) provides the complex eigenvalues of the plate (ωmn). Using the 
following relations, the natural frequencies (Ωnm) and the corresponding loss factor (ηnm) can be obtained [37]:

(46)     
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The loss factor is a dimensionless parameter and the dimensionless definition of the natural frequency is defined 
as follows:

(47)  .m
mn mn

m

a
E


  

4    NUMERICAL RESULTS 

In the current section, numerical results are provided for the presented model. Except for the cases which are 
mentioned directly, a sandwich rectangular plate of a=1 m, b/a=2, h/a=0.05, and h2/h=0.6 is considered. The face 
sheets are made of epoxy as the matrix enriched with GPLs and reinforced with glass fibers (see Table 2). Total 
mass fractions of the GPLs and glass fibers in the face sheets respectively are considered as WGPL=0.01 (1 %) and 
Wf=0.6 (60 %) and fibers are oriented in both bottom and top face sheets as φ=[0/90°/0/90°]. The density of the core 
is 2384.2 kg/m3, the mass fraction of the CNTs in the MRE core is selected as WCNT=1 % and the magnetic field 
intensity is considered as B=500 Gauss. Also, with the following definitions, the coefficients of the foundation are 
considered in a dimensionless form as k*

w=0.01, k*
p=0.0001, and c*=0.01:

* * *, , .pw
w p

m m m m

kk a c
k k c

E E a E
   (48)
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Table 2
The mechanical properties of epoxy, GPLs, and glass fibers [34, 38]

Epoxy Glass fibers GPLs

Em=3 GPa

νm=0.34

ρm=1200 kg/m3

Ef
11=Ef

22=73.084 GPa

Gf
12=30.130 GPa

νf
12=0.22

ρf=2491.191 kg/m3

EGPL=1010 GPa

νGPL=0.186

ρGPL=1060 kg/m3

lGPL=2.5 μm

wGPL=1.5 μm

hGPL=1.5 nm

As there is no available data for the natural frequencies and loss factors of the structure investigated in this paper, 
the verification is examined for a simpler case study. Consider a rectangular sandwich plate of a=0.3048 m and 
b=0.3480 m with homogenous isotropic face sheets of Ef=68.9 GPa, νf=0.3, and ρf=2740 kg/m3, and hf=0.762 mm 
and a viscoelastic core of h2=0.254 mm. The complex shear modulus and density of the core respectively are 
selected as G*

2=0.896(1+0.5i) MPa and ρ2=999 kg/m3. For various vibrational modes, values of the natural 
frequencies and corresponding loss factors are tabulated in Table 3 along with the corresponding ones reported by 
Johnson and Kienholz [39] and Cupial and Niziol [40]. As observed, results are in high agreement which approves 
the accuracy of the presented paper. 

Table 3
Natural frequencies and loss factors for a rectangular sandwich plate with homogenous isotropic face sheets and a viscoelastic 

core

Cupial and Niziol [40]Johnson and Kienholz [39]Present
(m,n)

ηmnΩmn (Hz)ηmnΩmn (Hz)ηmnΩmn (Hz)

0.19060.200.19060.300.19060.24(1,1)

0.203115.20.203115.40.203115.3(1,2)

0.199130.20.199130.60.199130.5(2,1)

0.181178.50.181178.70.181178.5(2,2)

0.174195.40.174195.70.174195.5(1,3)

Fig. 4 is provided to examine the effect of magnetic field intensity on the natural frequencies and loss factors of 
the plate in various vibrational modes. As shown in this figure, by increasing the magnetic field intensity both 
natural frequencies and loss factors of the plate increase in all vibrational modes. This enhancement can be 
explained using Fig. 2. As shown in Fig. 2, the higher magnetic field intensity results in higher storage modulus and 
loss factor. Thus, as the magnetic field intensity the stiffness and damping of the plate increase which leads to an 
increase in the natural frequencies and loss factors. It should be noted that the effect of magnetic field intensity on 
the free damped vibrational characteristics of the plate is inconspicuous and to make it possible to show the 
variations, the following definitions are utilized:

* *

0 0

, .mn mn
mn mn

mn mnB B

 
 

 
 

  (49)
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Fig. 4 reveals that the higher vibrational modes are more sensitive to the magnetic field intensity. But, by 
increasing the magnetic field intensity from zero to 500 Gauss, the maximum increases in the natural frequencies 
and loss factors for (m,n)=(2,2) are less than 1 %.

For various vibrational modes, the influences of the mass fraction of the CNTs in the MRE core on the natural 
frequencies and loss factors of the plate are investigated in Table 3. As this table shows, by subjoining the CNTs to 
the MRE core from WCNT=0 to WCNT=1 %, the natural frequencies and corresponding loss factors experience a small 
growth. This increase can be explained by high values of the elastic moduli of the CNTs in comparison with MRE. 
Table 4 reveals that by increasing the mass fraction of the CNTs from WCNT=0 to WCNT=1 %, the maximum 
enhancement in the natural frequencies and loss factors is less than 0.5 %. 

As revealed by Fig. 3 and Table 4, the magnetic field intensity and mass fraction of the CNTs in the MRE core 
have no remarkable effects on the free damped vibrational characteristics of the plate. To explain these 
inconspicuous effects, it should be noticed that the CNT-reinforced core bears only the shear components of the 
stress tensor and it has no sensible effect on the flexural rigidity of the plate which plays the dominant role in the 
free vibrational characteristics of the plate.

Table 4
Effects of mass fraction of the CNTs in the MRE core on the natural frequencies and loss factors

(m,n)
λmn ηmn

WCNT=0 WCNT=0.5 % WCNT=1 % WCNT=0 WCNT=0.5 % WCNT=1 %

(1,1) 0.3543 0.3548 0.3550 0.3245 0.3246 0.3247

(1,2) 0.3734 0.3741 0.3745 0.3086 0.3087 0.3088

(2,1) 0.4432 0.4444 0.4451 0.2611 0.2615 0.2617

(2,2) 0.4661 0.4675 0.4682 0.2486 0.2490 0.2493
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Fig. 4
Effects of magnetic field intensity on the natural frequencies and loss factors.
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Fig. 5
Effects of the thickness of CNT-reinforced MRE core on the natural frequencies and loss factors.
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Fig. 6
Effects of mass fraction of the GPLs in the face sheets on the natural frequencies and loss factors.

By considering a constant thickness for the plate, Fig. 5 shows the effects of the thickness of the CNT-reinforced 
MRE core on the natural frequencies and loss factors of the plate. This figure shows that as the thickness of the 
CNT-reinforced MRE core grows, the natural frequencies decrease in all vibrational modes and the corresponding 
loss factors experience an initial increase followed by a reduction. As the thickness of the CNT-reinforced MRE 
core increases, the thickness of the three-phase polymer/GPL/fiber face sheets decreases which reduces the flexural 
rigidity of the plate and leads to a considerable reduction in the natural frequencies. As Fig. 5 shows, for each 
vibrational mode, there is an optimum value of the thickness of the CNT-reinforced MRE core which provides the 
maximum damping. This optimum value can be affected by the mode numbers.

Fig. 6 is presented to study the influences of the mass fraction of the GPLs in the face sheets on the natural 
frequencies and loss factors of the plate. As observed, higher values of mass fraction of the GPLs in the face sheets 
result in higher natural frequencies and lower loss factors. As the GPLs benefit from a high value of the elastic 
modulus, subjoining more GPLs to the face sheets increases the flexural rigidity of the plate which increases the 
natural frequencies and reduces the loss factors in all vibrational modes.
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Fig. 7
Effects of mass fraction of the glass fibers in the face sheets on the natural frequencies and loss factors.
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Fig. 8
Effects of the thickness of the plate on the natural frequencies and loss factors.

The influences of the mass fraction of the glass fibers in the face sheets on the natural frequencies and loss 
factors of the plate are investigated in Fig. 7. This figure shows that as the mass fraction of the glass fibers increases, 
the loss factors decrease in all vibrational modes and no specific trend can be seen for the variation of the natural 
frequencies versus the variation of the mass fraction of the glass fibers. To explain this, it should be noted that based 
on Eq. (12), by increasing the mass fraction of the glass fibers, the mass fraction of the polymer and GPLs decrease, 
simultaneously. As Table 2 shows, the elastic moduli of the glass fibers are higher than the elastic modulus of the 
epoxy (matrix) and are smaller than the elastic modulus of the GPLs (Em<Ef

ij<EGPL). Thus, depending on the 
vibration mode, an increase in the mass fraction of the glass fibers may result in either higher or lower stiffness and 
consequently higher or lower natural frequencies.

The effects of geometrical parameters of the plate on the sandwich plate such as thickness-to-length and aspect 
ratios. As the total thickness of the plate increases, both the stiffness and inertia of the plate grow. Consequently, as 
shown in Fig. 8, by increasing the thickness of the plate, the natural frequencies experience an initial drop followed 
by an increase. Fig. 8 reveals that by increasing the thickness of the plate the loss factors diminish in all vibrational 
modes which can be explained by an increase in the stiffness of the plate.
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Fig. 9
Effects of the length of the plate on the natural frequencies and loss factors.
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Fig. 10
Effects of the Winkler coefficient of the foundation on the natural frequencies and loss factors.

An increase in the length of the plate reduces its stiffness and increases its inertia. Consequently, as Fig. 9 shows, 
by increasing the length of the plate, the natural frequencies decrease dramatically. Fig. 9 reveals that by increasing 
the length of the plate, the loss factors grow in all vibrational modes which can be explained by a reduction in the 
stiffness of the plate.

The influences of Winkler, Pasternak, and damping coefficients of the foundation on the natural frequencies and 
corresponding loss factors are examined in Figs. 10-12. An increase in the stiffness of the structure results in higher 
natural frequencies and a reduction in the damping of the structure [41]. Thus, as shown in Figs. 10 and 11, the 
natural frequencies grow and corresponding loss factors decrease by increasing the Winkler and Pasternak 
coefficients of the foundation which respectively show elastic and shear rigidity of the foundation.
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Fig. 11
Effects of the Pasternak coefficient of the foundation on the natural frequencies and loss factors.

Fig. 12
Effects of the damping coefficient of the foundation on the natural frequencies and loss factors.

An increase in the damping coefficients of the foundation leads to higher energy dissipation of the structure. 
Thus, as shown in Fig. 12, the natural frequencies decrease and corresponding loss factors increase by increasing the 
damping coefficients of the foundation.

5    CONCLUSIONS   

In this paper, an exact solution was presented for the free damped vibration analysis of sandwich plates with 
CNT-reinforced MRE core and laminated three-phase polymer/GPL/fiber face sheets resting on a visco-Pasternak 
foundation. The main conclusions of this paper can be listed as follows: 

 By increasing the magnetic field intensity, small enhancements can be seen in the natural frequencies of the 
plate and corresponding loss factors.
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 The higher vibrational modes are more sensitive to the magnetic field intensity.
 Subjoining the CNTs to the MRE core leads to a small increase in the natural frequencies of the plate and 

corresponding loss factors.
 By considering a specific thickness for the plate, by increasing the thickness of the CNT-reinforced MRE 

core, the natural frequencies decrease in all vibrational modes and the corresponding loss factors experience an 
initial growth followed by a reduction.

 For each vibrational mode, there is an optimum value of the thickness of the CNT-reinforced MRE core 
which provides the highest damping.

 As the mass fraction of the GPLs increases in the face sheets, the natural frequencies of the plate and 
corresponding loss factors grow.

 As the mass fraction of the glass fibers increases, the loss factors decrease in all vibrational modes. But no 
specific trend can be seen for the variation of the natural frequencies versus the variation of the mass fraction of the 
glass fibers.

 As the thickness of the plate grows, the natural frequencies experience an initial reduction followed by an 
increase.

 As the length of the plate increases, the natural frequencies diminish dramatically and the corresponding 
loss factors increase in all vibrational modes.

 As the Winkler (elastic) and Pasternak (shear) coefficients of the foundation increase, the natural 
frequencies grow and the corresponding loss factors decrease in all vibrational modes.

 As the damping coefficient of the foundation increases, the natural frequencies diminish and the 
corresponding loss factors grow in all vibrational modes.
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