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ABSTRACT

A sensitive modal data-based damage indicator is proposed to 
diagnose breathing cracks in beam-column structures subjected to 
axial load, as a percent of its critical value, and transverse harmonic 
load. The Newmark-Beta method is utilized to solve the equation of 
structural vibration, based on finite element method. The effect of 
Rayleigh-type damping is also examined. The indicator uses the 
modal deformations and their derivatives in healthy and damaged 
beam-column structures to identify the exact damage locations. The 
influence of some parameters such as noise effects and various axial 
loads on the efficiency of the method was also investigated. The 
results show the reliability of the approach in identifying the 
damage location for different scenarios, even in the presence of 
noise effect. Increasing the axial load, especially for values near to 
the critical load value, causes negative effects on the modal 
responses and their derivatives which are appropriately considered 
by the proposed index. 
                               

Keywords: Breathing crack; Damage identification; Beam-column 
structures; Harmonic load; Damage index.

1    INTRODUCTION

HE structural damage detection technique addresses the problem of how to locate and detect damage that 
occurred in a structure by using the observed changes in its dynamic and static characteristics. Many structural 

systems may experience some local damage during their lifetime. If the local damage is not identified timely, it may 
lead to a terrible outcome. During the last years, various researches were conducted to introduce appropriate damage 
identification approaches for beam structures. The cracks are usually shown through“open” or “breathing” crack 
models in vibration-based damage identification techniques. Open cracks are used for the case that the cracks are to 
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be considered open during structural vibration. This operation is usually adopted with the notched beams’ functionin 
the case of substantial damages [1-20]. Breathing behavior is generally occurred in the case of fatigue cracks to 
consider the complexity resulted from nonlinear behavior. In fact, the breathing or closing crack model considers the 
vibration cycle of the structure, at which the crack edges come into or out of contact and result in sudden changes in 
the stiffness and dynamic structural responses [21-29]. The influence of damping on the nonlinearity level of the 
vibration response at the superharmonic resonance based on the finite element model of a beam with a closing crack 
was investigated by Bovsunovsky and Surace[30]. The goal of the work was to consider the change of damping due 
to the crack progress. A mathematical model of the beam with a closing crack based on the energy dissipated in the 
crack was developed. The model leads to predict the changes of damping of the cracked beam caused by the crack 
presence and compute its nonlinear behavior. A quantitative damage detection technique for a cantilever beam with 
a breathing crack using higher-order frequency response functions was developed by Chatterjee[31]. In this study, 
the bilinear restoring force was approximated by a Volterra series, and a nonlinear dynamic model of the cracked 
structure was proposed. The effect of crack severity on the response harmonic amplitudes was investigated, and a 
new procedure was suggested. Based on the results, the crack severity could be estimated through the measurement 
of the first and second harmonic amplitudes. An analytical-numerical method, based on the wavelet spectral finite 
element, was presented by Joglekar and Mitra[32] for studying the nonlinear interaction of flexural waves with a 
breathing crack present in a slender beam. A new damage index based on singular spectrum analysis for breathing 
crack detection and localization was proposed by Prawin et al.[33]. Their results show that the proposed breathing 
crack identification algorithm could be robust in the detection and identification of the particular location of the 
breathing crack present in the structure. Shariyat and Alipour [34] applied the differential transformation method for 
free vibration and modal stress analyses of two-directional functionally graded circular plates considering different 
elastic material properties and boundary conditions. Their results show the efficiency of the proposed approach.

The main objective of this study is to assess the efficiency of dynamic data for determining the location of 
breathing crack in beam-column structures, including axial load subjected to harmonic loading. For this purpose, a 
breathing crack in beam-column under harmonic loading was simulated using the finite element method. Rayleigh 
damping is assumed in the numerical simulation. Then, the equation of motion of structural vibration subjected to 
external harmonic force was solved through the Newmark-Beta approach. Consequently, an efficient damage 
indicator based on the healthy and damaged modal deformations and their derivatives are introduced to identify the 
exact damage locations in beam-column structures. It should be noted that the first and second derivatives of mode 
shapes were computed through the first and second order of central finite difference approximated formulas, 
respectively. The influence of many parameters such as Rayleigh damping, noise, and various axial load affecting 
the efficiency of the method was investigated. Numerical results demonstrate that the proposed damage index can 
well diagnose the locations of single and multiple damage cases having different characteristics. Moreover, the 
presented index for damage detection does not depend on the harmonic load position and its magnitude.

2. BREATHING DAMAGE (CRACK) MODELING IN A BEAM UNDER HARMONIC LOADING

The switching condition between closed and open behavior for the crack may occur in several applications. This 
condition leads to model the structure under consideration with a finite element, including a bilinear element matrix 

with a discontinuity [35-37]. The standard and undamaged element stiffness matrix e

u
K for a plane beam-column 

element with three degrees of freedom per node, collected in the vector U, according to Euler–Bernoulli beam-
column element, is expressed as[38]:
Where
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The presence of the breathing crack in the beam-column element considering the effect of the crack on the axial 
stiffness is modeled. The modeling process contains some changes in the element stiffness at the crack location. 
Assuming the crack initiation from the upper side of the beam-column element, the reduction in the stiffness matrix 
can be obtained as[33, 39]:

22 23 22 23

33 23 36

22 23

33

0 0 0 0

0

0

0 0

a a

c

a

K K

K K K K

K K K
k

K

symm K K

K










 
 
 
 
 
 
 
 
  (3)

where the stiffness factors are considered as follows:
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Where E is Young's modulus, Le is the length of the element, uA and ( )c cA w h h  are healthy and cracked 

cross-sections, respectively, and Pc is the critical load. Iu and Id are the healthy and damaged moments of inertia, 
respectively. h and w are the height and width of the intact beam-column element, and hc is the crack 
depth. represents the non-dimensional flexural damage and has a value between 0 and 1 for the healthy and 

completely damaged section, respectively[33, 39]:
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The cracked element of the structure is initially assumed to be in the closed state under compression; the opening 
state occurs in tension condition through the rotations at the end nodes of the damaged element, i.e., rotations 

i and j for the damaged element “ij” with a breathing crack located between i and j)[30, 39, 40]. Consequently, 

the breathing behavior could be introduced through a damaged element matrix,
e
dk with a bilinear behavior as 

follows:
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Where H is the Heaviside step function and depends on the relative rotations between nodes i and j. As a matter of 
fact, the Heaviside function is used to model the bilinear stiffness behavior due to change from open to close state.
So, the crack state is determined through evaluating the slope value of the response deformation at the damaged 
element nodes, i.e., i and j (see Figure 1)[30, 39].

In the case of more than one cracked element, the same procedure can be followed. The global stiffness matrix of 

the beam-column, dK , is obtained by assembling the element stiffness matrices, including those of cracked 

elements. 
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Fig. 1 
The schematic view of breathing cracked element[30].

3. THE PROPOSED CRACK IDENTIFICATION METHOD

As mentioned previously, one of the nondestructive damage identification methods is the methods that are 
established based on dynamic data. One of the dynamic data that is sensitive to the occurred damage, is the 
deflection of the beam-column and its derivatives that are obtained through solving the dynamic equation. Change in 
dynamic response related to deflection of the structure before and after damage can be considered as a criterion for 
detecting the damage. Besides, its derivatives, such as slope and curvature, are more sensitive to the damage and can 
be considered for detecting the damage presence. For this purpose, an efficient indicator based on dynamic 
deflection and its derivatives was proposed. It is worth mentioning that Rayleigh damping is assumed for the 
numerical simulation, and damping ratios at the first and third mode periods of the beam-column structure are set to 
be 5% [41, 42]. Therefore, the deflection of the beam is obtained by solving the dynamic equation presented as 
follows[43] [44]:

(7)

Where M, K, C, and F are mass, stiffness, damping, and excitation force (harmonic load), respectively, and 
presented as follows[43, 44, 45]:
where N is the number of structural elements, and is the maximum value of The values of α and β are the 

Rayleigh-type damping coefficients obtained based on the following equation[44, 45]:
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Where, ζ is the damping ratio, and  is the circular frequency. The indices in the above equation denote mode 
numbers, which depend on modal participation factors.

To solve Eq. (3.1) and consequently simulate the dynamic behavior of the undamaged and damaged structure, a 
step-by-step numerical procedure could be used. To this purpose, the well-known Newmark-Beta method is 
considered as follows[46]:

 Considering the initial deflection and initial velocity:

0,  0 0
u u v u   (13)

 For constant-average acceleration method:

1 1,   =2 4  (14)

 Calculating u
0 0 0p cu ku

u
m

 





(15)

 Selecting time step t as[47-49]:

10.1t T  (16)

2

1

( )

1 1
;  b= ( 1)

2 2

k k c m
t t

a m c m t c
t



 

 

   

  
 

    




(17)

 Calculating the following parameters for each time step i:
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The above procedures are repeated for both the healthy and damaged structure. It should be noted that for 
modeling the damage, the moment of inertia is reduced (see Eq. (2.5)). 
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In this paper, the damaged identification of a beam-column structure is studied. The structure is modeled through 
a finite element procedure, using a MATLAB code[50]. The transverse deformations for the healthy and damaged 

structures are calculated for considered points; i.e., ( )h pu and ( )d pu for point, p on the healthy and damaged 

structure, respectively. 
The deformations slope for the undamaged beam-columns, at any node p, ( )h pu  can be calculated using the 

central finite difference approximation as:
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where Le is the element length. For the damaged structure, the “h” is replaced by “d” in the above equation.
Moreover, the deformations curvature of the healthy structure can be achieved as:
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As stated before, for the damaged structure, the “h” is replaced by “d” in the above equation. For nodes located 
on the supports, the calculations of deformation derivatives could be conducted using forward or backward 
difference approximation.

It should be noted that it is assumed that the damage decreases the stiffness and therefore, can be simulated by a 
reduction in the moment of inertia (I) at the location of the damage. 

Finally, using the dynamic responses (deformations, slope, and curvature of deformations) obtained previously, 
the harmonic load based indicator (HLBI) is proposed:
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where, pHLBI is the indicator value for point p (p=1,2,…,n+1), nm is the number of iteration steps considered for 

the Newmark-Beta method. 
Assuming a normal distribution for the values of the proposed indicator, the normalized form of the indicator can 

be calculated as follows:
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Where mean (HLBI) and std (HLBI) represent the mean and standard deviation of (  ,  p 1,2,..., 1pHLBI n  ), 

respectively. It is worth noting that a borderline value of 0.05 is considered for p inHLBI , and lower values are not 

considered during the damage detection process.
To consider the noise effect, the below relation is used to apply ±e percent noise, i.e.,
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Where, Noise freeData  and NoiseData are primary data(data without any noise) and noisy data, respectively. “random” 

is a random number between 0 and 1.
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4. VALIDATION OF RESULTS

To show the reliability of the damage detection approach and also to survey the applicability of the proposed 
damage indicator, the acquired results of the HLBI are compared with those of technical literature[39]. For this 
purpose, a simply supported beam with a span length of l=0.6 (m) shown in Figure 2 is selected. The beam has a 
cross-section with dimensions of 0.02×0.04 m. The material density and modulus elasticity 

are 37800  kg m  and 206 ( )E GPa , respectively. The beam is discretized by 60 one-dimensional Euler-

beam elements leading to 180 DOFs.

Fig. 2 
The geometry of the simply supported beam under harmonic load[39].  

As can be observed in Figures 3 to 5, the obtained results for different damage scenarios show a good match 
between the results of the proposed damage index under harmonic load and those of technical literature[39].
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                   (a)  This study                                                (b) lF/l=0.06; p = 0.73, s = 0.1 [39]

Fig. 3 
Breathing crack identification on the simply supported beam under harmonic load: a) HLBI index b) proposed method by Casini 
et al. [39]

Where, lF/l shows the position of the harmonic force and, p and s are the position and severity of the damage, 
respectively.
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Fig. 4 
Breathing crack identification on the simply supported beam under harmonic load: a) HLBI index b) proposed method by Casini 
et al. [39].
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Fig. 5 
Breathing crack identification on the simply supported beam under harmonic load: a) HLBI index b) proposed method by Casini 
et al.[39] .

5. NUMERICAL EXAMPLES

To assess the applicability of the proposed method for detecting single and multiple damage scenarios, two 
examples are considered: a simply supported beam-column and a continues beam-column. The changes in various 
parameters that may affect the performance of the approach are studied. It’s noted that in all damage scenarios, the 
moment of inertia (I) is reduced in damaged elements. Breathing cracks are considered in damaged elements, as 
described previously in section 3. The robustness of the proposed method in presence of damping and noise effects 
are also examined. 



205                                P. Mirzaii et al.

Journal of Solid Mechanics Vol. 16, No. 2 (2024)  

5.1. Example 1: A simply supported beam-column

A simply supported beam with a span length of L=5 (m) is selected as the first example (see Figure 6). Twenty 
elements and consequently sixty DOFs are considered for the beam. The beam has a cross-section of 0.2×0.2 m and 

an elasticity modulus of 11 22.1 10 N mE   . Table 1 shows 14 different damage scenarios under vertical (lateral) 

harmonic loading that are considered during the breathing cracks detection process. The effect of axial load is not 
considered in these 14 scenarios.

The first eighth scenario (cases 1-8) consists of a single crack. The ninth-fourteenth scenarios (cases 9-14) 
include multiple damage cases with different intensities. Also, cases 12 and 13 are introduced for considering the 
noise effects. In this example, 1.5 % noise is assumed in these scenarios. Moreover, the effect of changing in the 
direction of the transverse harmonic load and breathing cracks are examined in scenarios 1, 2, 5, and 6. It is worth 
mentioning that in all scenarios, the axial load is assumed to be zero. A MATLAB code using the Newmark-Beta 
method is prepared here for this purpose.

         
Fig. 6
(a) Geometry of the simply supported beam-column                                                                         (b) Cross-section of the beam.

Table 1.
14 different damage scenarios induced in the simply supported beam

Case Element number
Damage ratioa

(%)
Damping 

ratio ( %)
Pv (KN)
(vertical)

Pa (N)
(axial)

Location of load 
(node)

noise 
(%)

1 1 10 0 -10cos(t)b

0

11 0
2 1 10 0 10cos(t) 11 0
3 2 10 0 -10cos(t) 11 0
4 2 10 5 -10cos(t) 11 0
5 6 15 0 -10cos(t) 11 0
6 6 15 5 10cos(t) 11 0
7 17 20 0 -10cos(t) 11 0
8 17 20 5 -10cos(t) 11 0
9 1 & 8 10 0 -10cos(t) 11 0

10 1 & 8 10 5 -10cos(t) 11 0
11 3 & 18 15 0 -10cos(t) 11 0
12 3 & 18 15 5 -10cos(t) 11 1.5
13 5 & 19 10 & 20 5 -10cos(t) 11 1.5
14 2 & 10 & 18 20 5 -10cos(t) 11 0

       a Damage ratio is hc/h where hc is the crack depth
       b -1cos(t)1

The values of nHLBI for damage scenarios 1 to 14 are presented in Figure 7 (a)-(n), respectively. 
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Fig. 7
  Breathing crack identification of simply supported beam-column for cases 1-14.

As shown in the figures, the values of nHLBI are higher in the vicinity of some elements that indicate damage 
occurrence in these elements. A borderline value of 0.05 is considered for p inHLBI , and lower values are not 

considered during the damage detection process. Based on the defined threshold, it is revealed that the proposed 
index can accurately locate the single and multiple damage cases. Moreover, 1.5% noise is randomly applied in 
cases 12 and 13 on the response of the damaged structure.

The obtained results of Figures 7 (l) and 7(m) show the efficiency and capability of the nHLBIin diagnosing the 
breathing crack in the presence of noise effect. In other words, the noise has an approximately low effect on the 
performance of nHLBI. Moreover, the obtained results in Figures 7 (i) and (j) associated with cases 9 and 10 show a 
better performance of the crack detection approach in the presence of damping effects.

5.1.1. The axial load effects

As listed in Table 2, two damage cases, including six different axial loads (as a percentage of critical axial load), are 
considered to evaluate the axial load effect on the proposed approach and indictor. The results of case 1 for single 
crack and case 2 for multiple cracks are presented in Figures 8 and 9, respectively. Based on the results, the damage 
locations in single and multiple damage scenarios can be well detected in the presence of low axial loads. For higher 
axial load values (especially near critical axial load values), the structure may experience high deformations; in this 
situation, the modal responses and their derivatives are hugely affected by the axial load which may result in 
uncommon modal data (even in undamaged structure);In this case, the failure is practically occurred due to 
increasing the axial load in the cracked structural elements, and the common damage detection methods should not 
be applied for detection of the breathing crack damage. So, the numerical results of the proposed damage indicator 
are reasonable and show its reliable performance.
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Table 2.
Different damage cases induced in simply supported beam-column including the axial load effect

Case 1 Case 2
Element number Damage ratioa (%) Damping ratio

(%)
Element number Damage ratio* (%) Damping ratio

(%)
4 10 5 3 15 5
- - - 16 15 5

1 Pa=0.1Pcr Pa=0.1Pcr

2 Pa=0.3Pcr Pa=0.3Pcr

3 Pa=0.6Pcr Pa=0.6Pcr

4 Pa=0.8Pcr Pa=0.8Pcr

5 Pa=0.9Pcr Pa=0.9Pcr

6     Pa=0.989Pcr     Pa=0.986Pcr

a Damage ratio is hc/h where hc is the crack depth
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Fig. 8 
  Damage identification of simply supported beam-column for case 1 subjected to different axial loads.
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Fig. 9 
  Damage identification of simply supported beam-column for cases 2 subjected to different axial loads.

5.2. Example 2: A continues beam-column

A continuous beam-column with a span of L=5 (m) is selected as the second example (see Figure 10). The 
characteristics of the beam-column are similar to those of the first example. As shown in Table 3, for assessing the 
robustness of the proposed method, six different damage scenarios under vertical (lateral) harmonic loading are 
considered for detecting single and multiple breathing crack locations. In this example, the axial load is considered 
as 0.1Pcr for all six scenarios, and 1.5% random noise is assumed for scenario 5. A MATLAB code using the 
Newmark-Beta method is prepared here for this purpose.
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Fig. 10
(a) The geometry of the continuous beam-column                                                                (b) cross-section of the beam-column.  

Table 3. 
Six different damage scenarios induced in the continuous beam-column

Case Element number
Damage ratioa

(%)
Damping 

ratio ( %)
Pv (KN)
(vertical)

Pa (N)
(axial)

Location of load 
(node)

noise 
(%)

1 1 10 5 -10cos(t)b

0.1Pcr

10 0
2 1 10 5 10cos(t) 10 0
3 10 10 5 -10cos(t) 10 0
4 2 & 15 10 5 10cos(t) 10 0
5 9 & 19 10 5 -10cos(t) 10 1.5
6 2, 10 & 18 10 5 -10cos(t) 10 0

       a Damage ratio is hc/h where hc is the crack depth
       b -1cos(t)1

Figure 11 shows the damage detection diagram of the continuous beam-column for cases 1 to 6, including 
different characteristics, which are listed in Table 3. As shown in the figure, the nHLBI can determine the cracked 
elements with high accuracy, applying both directions of the transverse harmonic load. Moreover, in case 5 with 
1.5% random noise, the damaged elements are defined properly by the presented indicator, and an approximately 
negligible impact on the performance of nHLBI can be seen.
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Fig. 11
Breathing crack identification of continuously supported beam-column for cases 1-6.

5.2.1 The axial load effect

As listed in Table 4, two illustrative damage scenarios, including six different axial loads (especially in the vicinity 
of critical load), are studied. As shown in Figures 12 and 13, the damage locations of single and multiple damage 
scenarios can be well defined in low axial loads. Similar to simply supported beam-column, in continuous beam-
columns, increasing the axial load values (especially about the critical axial values), will result in a disturbance in
the structural responses; the failure is practically occurred due to increasing the axial load in cracked elements, and 
consequently, the common damage detection approaches should not be used in this case. So, the results of the 
proposed damage indicator (nHLBI) are reasonable and show its reliable performance.
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Table 4.
Different damage cases induced in continuous beam-column including the axial load effect

Case 1 Case 2
Element number Damage ratioa (%) Damping ratio

(%)
Element number Damage ratioa (%) Damping ratio

(%)
5 10 5 3 10 5
- - - 16 10 5

1 Pa=0.1Pcr Pa=0.1Pcr

2 Pa=0.3Pcr Pa=0.3Pcr

3 Pa=0.6Pcr Pa=0.6Pcr

4 Pa=0.8Pcr Pa=0.8Pcr

5 Pa=0.9Pcr Pa=0.9Pcr

6     Pa=0.984Pcr     Pa=0.964Pcr

    a Damage ratio is hc/h where hc is the crack depth

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n
H

L
B

I 
va

lu
e

Point number

Pa=0.1Pcr

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n
H

L
B

I 
va

lu
e

Point number

Pa=0.3Pcr

(a)  Case 1-1 (b) Case 1-2

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n
H

L
B

I 
va

lu
e

Point number

Pa=0.6Pcr

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n
H

L
B

I 
va

lu
e

Point number

Pa=0.8Pcr

(c)  Case 1-3 (d) Case 1-4



215                                P. Mirzaii et al.

Journal of Solid Mechanics Vol. 16, No. 2 (2024)  

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0
n

H
L

B
I 

va
lu

e

Point number

Pa=0.9Pcr

Damage borderline

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n
H

L
B

I 
va

lu
e

Point number

Pa=0.984Pcr

(e) Case 1-5                                                         (f) Case 1-6

Fig. 12 
  Damage identification of continuous beam-column for case 1 subjected to different axial loads.
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Fig. 13 
  Damage identification of continuous beam-column for case 2 subjected to different axial loads.

7. CONCLUSIONS

To assess the efficiency of the proposed method in diagnosing the breathing crack under harmonic load, different 
damage scenarios, including different characteristics, are investigated. The nonlinear behavior due to the presence of 
breathing crack is modeled using the Heaviside function to consider the bilinear stiffness behavior during open to 
close states. The effect of changes in the direction of harmonic load and also the noise and damping effect in the 
structural response is considered based on a proposed approach implemented on a MATLAB code using the 
Newmark-Beta method and a new damage indicator. The achievements based on the acquired results are listed as 
follows:

 The advantage of this study is breathing crack detection considering the axial load effects. The proposed 
method is accurately capable to detect the breathing crack location and leads to a better performance of the 
crack detection considering the damping effect in the dynamic equation of vibration.
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 The results show that the presence of noise has an approximately negligible effect on the efficiency of the 
damage detection indicator.

 The beam-column structure in the vicinity of the critical load experiences high deformation. Failure in these 
cases practically is due to the increase of the axial load in the cracked elements. Therefore, the available 
damaged indicators without considering the slop term cannot be practically used anymore, while the 
proposed damage indicator is properly sensitive to this issue. Consequently, the results demonstrate that the 
proposed damage indicator and the presented damage approach lead to breathing crack detection with more 
accuracy in beam-column structures under harmonic loading.
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