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 ABSTRACT 

 In this paper, the mechanical fracture problem of a half-plane made of 

functionally graded material (FGM) with a coating of a homogeneous 

layer containing multiple interface cracks is investigated in order to 

determine the dynamic stress intensity factors (DSIFs) under transient 

in-plane loading. According to exponential law, the properties of 

functionally graded material change continuously along y-direction. 

Initially, integral transformations and dislocation of the Volterra type 

of climbing and sliding edges on the interface of a FG half-plane with a 

homogeneous coating leads to the numerical solution of a system with 

singular integral equations. These equations which have the Cauchy 

type-singularity are then obtained using the distributed dislocation 

technique (DDT). Using the inversion technique in the Laplace domain, 

the dislocation density on the crack faces is obtained which has led to 

the determination of the DSIFs. Finally, in order to show the accuracy 

and validity of this research, the final results in the form of graphs have 

been compared with other references and a very acceptable conformity 

has been observed. The influences of the FG parameter, coating 

thickness, crack length, the variation of time and the interaction 

between of cracks on the DSIFs are studied.  

                                         © 2023 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

N recent years, FGMs which represent a new version of composite materials with continuous variation of the 

elastic and physical properties, have become the research interest of many scientists due to their high performance 

optimization, improved mechanical properties, and thermal corrosion resistance. To solve the differential equations 

governing the medium made of FGMs, variable coefficients must be used instead of constants. From the behavioral 

perspective of failure mechanics, due to the complexity of crack growth analysis of FGM materials, the study of 
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DSIFs for use in more reliable designing involving FGMs can be a significant field of scientific research. In studies 

conducted by researchers, it has been shown that for interface cracks, the properties of materials especially FGMs 

play an considerable role in their mechanical fracture behavior. The various problems of fracture mechanics in 

FGMs are solved under in-plane loading. A brief review of the articles on cracks under the in-plane load is listed 

below. Ma et al. [1] studied the dynamic behavior of two collinear cracks in FGM layer bonded to dissimilar half 

planes under anti-plane shear waves by the Schmidt method. The effects of the geometry of the interacting cracks, 

the shear stress wave velocity of the materials and the frequency of the incident wave on the DSIFs are investigated. 

The crack problem for a partially insulated interface crack between a functionally graded coating and a 

homogeneous substrate subject to both thermal and mechanical loading was considered by El-Borgi et al [2]. The 

problem is solved under the assumption of plane strain and generalized plane stress conditions. Chi and Chung [3] 

studied the SIF of cracked multi-layered and FGM coatings of a coating–substrate composite, due to the action of 

uniform normal stress on the crack surfaces. In this paper, the substrate is assumed to be homogeneous material, 

while the coating consists of multi-layered media or sigmoid FGMs. A new multi-layered model for fracture 

analysis of FGMs with arbitrarily varying elastic moduli under plane deformation was investigated by Huang et al. 

[4]. In this investigation, the FGM is divided into several sub-layers and in each sub-layer the shear modulus is 

assumed to be a linear function of the depth while the Poisson’s ratio is assumed to be a constant. The DSIFs around 

two parallel cracks in a functionally graded layer bonded to dissimilar half-planes under an anti-plane incident 

harmonic loading is studied by Ma et al. [5]. The Fourier transform technique is used to reduce the boundary 

conditions to four simultaneous integral equations which are then solved by expanding the differences of crack 

surface displacements in a series. An interface crack problems in graded orthotropic media using analytical and 

computational techniques was investigated by Dag et al. [6]. Mechanical properties of the medium are assumed to be 

continuous with discontinuous derivatives at the interface. Liu et al. [7] provided a method for obtaining the mixed-

mode stress intensity factors for a bi-material interface crack in the infinite strip configuration and in the case where 

both phases are fully anisotropic. Guo et al. [8] studied the transient response of a coating–substrate structure with a 

cracked functionally graded interfacial layer subjected to an impact load. In this study, the influences of the material 

nonhomogeneity constant and the geometry parameters on the DSIFs are investigated. Li [9] analyzed the problem 

of an interface crack between two bonded dissimilar semi-infinitely long orthotropic strips of finite width under 

arbitrary anti-plane shear loading. The finite Fourier transform technique is used to reduce the mixed boundary value 

problem to triple series equations, which are then transformed to a singular integral equation. A new multi-layered 

model for fracture analysis of functionally graded materials (FGMs) with arbitrarily varying Young’s modulus and 

Poisson’s ratio under plane stress-state deformation is developed by Huang et al. [10]. Chen [11] investigated 

thermal fracture problem of an interface crack between a graded orthotropic coating and the homogeneous substrate 

by two different approaches. In this paper, the influence of material gradient parameters and material distribution on 

the thermal fracture behavior is presented. The plane elasticity problem of an arbitrarily oriented crack in an FGM 

layer bonded to a homogeneous half-plane was studied by Long and Delale [12]. They analyzed the effects of the 

crack length, crack orientation and the non-homogeneity parameter of the strip material on the fracture of the FGM 

layer. Yong dong et al. [13] established the mechanical model for the dynamic fracture problem of the weak-

discontinuous interface between an FGM coating and an FGM substrate. The Cauchy singular integral equation for 

the crack is derived by integral transform, and the allocation method is used to get the numerical solution. Ioka et al. 

[14] calculated the stress distributions on the interface of bonded dissimilar materials with an interlayer by using the 

boundary element method to investigate the effect of the interlayer on the stress distribution. The relation between 

the free-edge singular stress fields of bonded dissimilar materials with and without an interlayer was investigated 

numerically. Li and Fan [15] analyzed the transient response of a crack embedded in a functionally graded material 

(FGM) layer sandwiched between two dissimilar elastic layers under anti-plane shear impact loads. The material 

properties of the FGM are assumed to be an exponential function of the thickness. Guo and Noda [16] analyzed the 

dynamic response of a functionally graded layered structure with a crack crossing the interface. By using the 

Laplace and Fourier integral transforms, singular integral equation method and residue theory, the present problem 

is reduced to a singular integral equation in the Laplace transform domain. Li and Lee [17] extended the concept of 

weak discontinuity to the interface in FGPMs, and investigated the fracture behavior of a weak discontinuous 

interface between two piezoelectric strips under electromechanical loads by the methods of Fourier integral 

transform and Cauchy singular integral equation. The dynamic response of a magnetoelectroelastic half-space with a 

functionally graded coating containing crack at the interface when subjected to sudden impacts is studied by Peng 

and Li [18]. In this paper, by using the integral transform method, the problem is reduced to solving singular integral 

equations. Torshizian and Kargarnovin [19] is considered an internal crack located within a functionally graded 

material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load. The crack is oriented in 

an arbitrary direction and the material properties of the strip are assumed to vary exponentially in the thickness 
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direction and two half-planes are assumed to be isotropic. Cheng et al. [20] is studied a finite crack with constant 

length propagating in a functionally graded coating with spatially varying elastic properties bonded to a 

homogeneous substrate finite thickness under anti-plane loading. A multi-layered model is employed to model 

arbitrary variations of material properties based on two linearly-distributed material compliance parameters. In 

another work, Cheng et al. [21] analyzed the problem of a finite interface crack with constant length propagating 

along the interface between two dissimilar functionally graded strips with spatially varying elastic properties under 

in-plane loading. By utilizing the Fourier transform technique, the mixed boundary problem is reduced to a system 

of singular integral equations that are solved numerically. Shi [22] investigated the problem of a doubly periodic 

interface crack in a layered periodic composite under anti-plane shear loads. In this study, the shielding effect of 

multiple parallel cracks and the amplifying effect of multiple collinear cracks exist simultaneously, and a coupled 

effect between geometrical and physical parameters on the interfacial fracture behavior exists clearly. In recent 

years, by utilizing the distributed dislocation technique (DDT), more complicated problems including several cracks 

with any arrangement have been solved. A concise review of articles is presented here. The analytical solution of 

two functionally graded layers with Volterra  type screw dislocation anti-plane shear impact loading were 

investigated by Fallahnejad et al. [23]. The energy dissipation of FGM layers is modeled by viscous damping and 

the properties of the materials are assumed to change exponentially along the thickness of the layers. Bagheri [24] 

studied the analytical solution of two dissimilar orthotropic functionally graded half-layers with interface Volterra-

type screw dislocation under anti-plane transient loading using linear elasticity theory. The dynamic stress intensity 

factors (DSIFs) are calculated in time domain by using numerical Laplace inversion and the distributed dislocation 

technique. The mixed mode analysis of multiple cracks in two dissimilar half-planes under transient loading, steady-

state condition and time-harmonic loading were calculated by Bagheri and Monfared [25-26] and Bagheri and 

Enjilela [27], respectively. In these papers, in-plane loading is considered and it is assumed that the properties of the 

non-homogeneous material change exponentially. Mode III DSIFs of several axisymmetric interfacial cracks in an 

FGM coated orthotropic layer, transient analysis for torsional impact of multiple axisymmetric cracks in the FG 

orthotropic medium and computation of mixed mode SIFs for multiple axisymmetric cracks in an FGM medium 

under transient loading were analyzed by Bagherpoor and Pourseifi [28], Rabieifar et al. [29] and Monfared et al. 

[30], respectively.In accordance with the review of the above literature, there is no favorable investigation for the 

transient response of multiple cracks at the interface of an FG half-plane with homogeneous coating under mixed 

mode loading. 

In this paper, the problem of multiple cracks located between an FG half-plane substrate and a homogeneous 

coating under mixed-mode loads is investigated using DDT. First, using the dislocation solution and integral 

transforms in conjunction with the Lobatto–Chebyshev collocation and the Stehfest’s method [31], the singular 

integral equations with Cauchy singularity form are extracted and are solved numerically for the dislocation density 

on the cracks faces. Then, these solutions are used to calculate mixed-mode DSIFs for multiple interface cracks. 

Consideration will be concentrated on the effects of the time variations, coating thickness, the gradient of the 

material property and as well as crack interactions on transient SIFs. 

2    DISLOCATION SOLUTIONS 

Assuming perfect bonding between the two mediums, to reinforce the FGM half-plane, a layer of homogeneous 

coating with thickness h is used as shown in Fig. 1 that contain a Volterra dislocation in the positive direction of x-

axis. The x and y indicate the Cartesian coordinate system which defines x-axis to the right along the interface and 

the y-axis facing upwards in the coating thickness direction. 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Schematic of a dislocation at the interface between the 

coating and the substrate. 
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In this case, since our assumption is based on the propagation of cracks in a plane, therefore the constitutive 

equations in terms of elastic displacements in the half-plane FGM in the absence of body force will be written as 

follows: 
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where u , v  are the in-plane displacements in the x  and y  direction, respectively, , ,xx yy xy    are the stress 

tensor components, 0  and  denotes the shear modulus of elasticity at th interface and the Kolosov constant, 

respectively. The Kolosov constant is (3 ) (1 )      for plane stress and 3 4    for plane strain, where 

indicates the Poisson ratio of the material. In addition, in the above relations, comma denotes partial derivatives. By 

placing Eqs. (1) in the equations of motion,
 , ,( ) ,( , ) { , }ij j i tty u i j x y   , these equations for the FGM half-plane 

are easily written in terms of displacements as follows: 
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(2) 

 

Based on an accepted logical presumption and in order to simplify the solution of the governing differential 

equations, the focus will be on a specific type of FGMs in which the constants of nonhomogeneous material change 

according to the exponential laws as follows: 

 

0( ) yy e    (3) 

 

where 0  and 0  refers to the material density in the 0y   location and elastic constant at interface and   is a 

constant that indicates the distribution of non-homogeneous materials. By placing 0   in relations (2), the 

equations of motion for homogeneous coating 0 y h  are acquired as follows: 
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where 0 01 c    demonstrate the shear wave velocity at the interface of two materials. As shown in Fig.1, let a 

Volterra glide and climb of the edge dislocations with Burgers vectors ( )xb t  and ( )yb t be situated at the origin of 

the coordinates with the dislocation line 0, 0y x  . According to the displacement jumps defined by the Volterra 

edge dislocations, the conditions of displacement and continuous stress as well as the traction free conditions on the 

boundaries governing the problem can be expressed as follows: 
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where (.)H is the Heaviside step function. It is supposed that the study medium is at rest at time; hence, by applying 
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Laplace and Fourier transform to Eqs. (2) and (4) to the variables t and x, respectively, and assuming that the stress 

components in the far field are zero, the following results are obtained: 
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where the superscript ∗ represents the Laplace transform, the s is Laplace variable at the time transform domain, 

1i   ,   is the Fourier variable, and U and V  are Fourier transforms of displacement components u  and v , 

respectively. By solving the differential Eqs. (6a) and (6b) for both regions 0y  , and 0 y h  , the following 

results are obtained for *U  and *V : 
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where  , , 1,2,3,4j jA C j   are the unknown functions. The characteristic roots  , , 1,2,3,4j jr j   and the 

functions  1 1, , 1,2,3,4j ja b j   are given as: 
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Since the displacements in Eqs. (7a) should be limited at y   , the unknown functions 
1 2,A A  become zero. 

By taking the inverse Fourier transform, the displacement fields in Eqs. (7a) and (7b) lead to the following results: 
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Finally, using the Eqs. (1), (10a) and (10b), the stress components in the Laplace domain for the two regions 

under study can be expressed as follows: 
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where, the functions  2 3 4, , , 3,4j j ja a a j   and  2 3 4, , , 1,2,3,4j j jb b b j   are given as: 

 

2 1

3 1

4 1

( 1) (3 )

(3 ) ( 1) 3,4

j j j

j j j

j j j

a a

a a j

a a

   

   

 

    


    


 

 

2 1

3 1

4 1

( 1) (3 )

(3 ) ( 1) 1,2,3,4

j j j

j j j

j j j

b b r

b b r j

b r b

  

  



    


    


 

 

(12) 
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By applying the Fourier and Laplace transforms to the boundary conditions (5) and by using the expressions 

obtained in Eqs. (7a-7b) and (11a-11b), the unknown coefficients ( , 3,4jA j  and , 1,2,3,4jC j  ) can be obtained 

as follows: 

 

1 2[ ( ) ( )]( ( ) ), 3,4j j x j yA A b s iA b s i j       (13a) 

 

1 2[ ( ) ( )]( ( ) ), 1,2,3,4j j x j yC C b s iC b s i j       (13b) 

 

where (.)  is the Dirac delta function and 1 2, , {3,4}j jA A j   are given in Appendix I. Substituting Eq. (13a) into 

Eqs. (11a), the stress components in the half-plane made of FGM is obtained as follows: 
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To perform a numerical calculation of the components of stress fields, the integrals mentioned in Eqs. (14) can 

be divided into odd and even parts and rewritten in the following equation form: 
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(15) 

 

where ( , , , ), , { , }xyf x y s i j x y   are defined as follows:  
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(16) 

 

Since the integrals of Eqs. (15) are infinite for adjacent points of dislocation, the singular behaviors of the 

kernels ijf  are investigated by asymptotic values of ijf  for    as follows: 

 

sin
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(17) 

 

when   , the asymptotic values of ijf  in Eqs. (16) are written as follows:
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(18) 

 

The stress components mentioned in Eqs. (15) by view of Eqs. (17) and (18) are as follows: 
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(19) 

 

The integrals expressed in Eqs. (19) are bounded and can be solved by appropriate numerical methods. 

3    SEVERAL INTERFACE CRACKS FORMULATION 

To numerical examine an FG half-plane with homogeneous coating containing N  interface cracks; the solutions of 

edge dislocations acquired in the preceding section are utilized. A crack configuration at the interface of the two 

zones under discussion is defined parametrically as follows: 
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i i i
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x p x pl
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where 0( ,0)ix , 
il  illustrate the coordinates of the center and half the length of the i-th crack, respectively. Using 

the principle of superposition of stress field components at a point with ( , )i ix y  coordinates, where the 

parameter 1 1p   , on the faces of all cracks obtains the following relations. 
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where ( , )xkb q s  and ( , )ykb q s are the Laplace transforms of the dislocation density functions on the face of k-th 

crack, 1 , 1,2, , ,m

ikk m i k x y  are coefficients of ( )xb s  and ( )yb s  in Eqs. (19). The kernels in Eqs. (21) show the 

singularity of the Cauchy form for i k as q p  and are expressed as follows: 
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The singular part of the above equation is obtained by expanding the Taylor series ( )ix q  and ( )iy q in the 

vicinity of q . The stresses due to the external load on the presumed crack surfaces between the two materials are to 

the left-hand side of Eqs. (21), which is placed in the above equations according to the Bueckner's theorem [32] of 
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superposition with the opposite sign. The integral Eqs. (21) must be solved with the following single-valued 

conditions: 

 
1

1

( , ) 0, { , }, {1,2,..., }kjb q s dq k x y j N



    (23) 

 

The stress components near the crack tip have a square root singularity. So, the density of dislocation is 

considered as follows: 
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By replacing Eqs. (24) into Eqs. (21) and (23), and using the Lobatto–Chebyshev integration formula, the 

discretization singular integral equations lead to: 
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where the collocation points are chosen as 
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0.5re  for 1,r n  and 1re   for 1 r n  . The modes I and II DSIFs are defined by Baghestani et al. [33] as 

follows: 

 
* * * *
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where r  is the distance from the crack tip, 0   is right and    is left crack tips, respectively. By placing Eqs. 

(22) and (24) in the Eqs. (21) and use the result in the Eqs. (26), DSIFs are written at the tip of the i-th crack in terms 

of dislocation densities as follows: 
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(27) 

 

where 1   is the right crack tip and 1    is the left crack tip. To perform the Laplace inversion, the algorithm 

developed by Stehfest [31] is used as follows: 
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where M is a chosen positive even number, and mH  is given by: 
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In the above equation [.] signifies the integer part of the quantity. 
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4     RESULTS AND DISCUSSION 

This part of the research is divided into two main sections. At first a numerical example is verified and then the 

effects of crack characteristics such as crack length, the interaction between of cracks and arrangements of cracks 

are considered. In order to further investigate the modifiable properties of materials, also the defining and 

determining properties such as the loading conditions, the variation of time, thickness of the coating and different 

values of the nonhomogeneous parameter on the DSIFs diagrammatically are shown. In the calculation method, the 

plane strain conditions with Poisson’s ratio 0.3  , modulus of elasticity 0 200E GPa , number of Laplace 

transform inversion points 10M   and mass density 3

0 7840kg m   are considered. In addition, the DSIFs are 

normalized by 0 0K l  and 0 0K l  for normal and shear traction, respectively, where l  is the half length of 

the crack and 0K  is the static value of SIF for a single crack in a homogenous plane under static traction. In this 

paper, IK  and IIK  designate the SIFs for mode I and II of fracture mechanics, respectively. 

The first reliability of this study is checked by considering a crack in a homogeneous plane by choosing 0   

and h  . A crack with a length 2 2l cm  is shown in Fig. 2. The uniform normal step function tractions are 

applied along the crack face. The variation of the 0IK K , versus the 0t t  are displayed in Fig. 3, where 

0 0 0t l   . It can be seen from Fig. 3 that a very good agreement has been achieved between the present paper 

and the results reported by Sih et al. [34] and Mottale et al. [35]. 

 

 

 

 

 

 

 

Fig.2 

A crack in a homogeneous material under the uniform normal 

step function traction. 

  

 

 

 

 

 

 

 

Fig.3 

Comparison of dimensionless mode I DSIFs versus 0t t for a 

homogeneous plane. 

 

The second validation of this analysis is investigated by considering a nonhomogeneous elastic half-plane and an 

elastic half-plane including a crack under normal loading. In this case, we let h  and 0.5,1.0l  , 2 2l cm . 

The results are easily compared with the solution reported by Jafari et al. [36]. As shown in Fig. 4, excellent 

matching with Ref [36] is seen.  

 

 

 

 

 

 

 

 

Fig.4 

Comparison of dimensionless mode I DSIFs versus 0t t  for 

a nonhomogeneous elastic half-plane and an elastic half-

plane containing a single crack at the interface. 
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In Figs.5, 6 and 7, an FG half-plane with a homogeneous coating with 0.25,0.5l  are considered, including a 

crack situating at the interface with crack length 2 0.2,0.4l cm  under uniform normal, shear step function traction 

and mixed mode loading, respectively.  

 

 

 

 

 

 

Fig.5 

The geometry of a single crack situated between an FG half-

plane and homogeneous coating subjected to normal step 

function traction. 

  

 

 

 

 

 

 

Fig.6 

The geometry of a single crack situated between an FG half-

plane and homogeneous coating subjected to shear step 

function traction. 

  

 

 

 

 

 

Fig.7 

The geometry of a single crack situated between an FG half-

plane and homogeneous coating subjected to mixed-mode 

loading. 

     

The normalized modes I and II transient DSIFs for different dimensionless nonhomogeneous parameters 

0.25,0.5l   are illustrated in Figs. 8 and 9 for normal traction, are shown in Figs. 10 and 11 for shear traction and 

are plotted in Figs. 12 and 13 for mixed mode loading respectively. The general characteristic of these figures is that 

the transient DSIF change by the time from their initial zero value to stable values in the end. The DSIFs at the left 

crack tip are the same as those at the right crack tip in mode I under normal traction and mode II under shear traction 

(Figs. 8 and 11) while for mode II under normal traction and mode I under shear traction, DSIFs at the left crack tip 

and right crack tip are differences with a negative sign (Figs. 9 and 10). This is because that the problem is 

symmetry for mode I and anti-symmetric for mode II under normal loading and also the problem is anti-symmetric 

for mode I and is symmetric for the mode II under shear loading which this phenomenon has been occurred and 

reported in Tables 2 and 4 in Ref [37]. By increasing the material gradient parameter l , the half-plane becomes 

stiffer than the homogeneous coating, and then both the peak and steady values of the DSIFs at the crack tips 

increase regularly. Also note that due to the nonhomogeneity of the medium, the DSIFs exhibit mixed mode 

condition even though the loading is from a single mode. As can be seen, the normalized mode I DSIFs under 

normal and mixed mode loading and mode II DSIFs under the shear traction increase by increasing the crack length.  

 

 

 

 

 

 

 

Fig.8 

Variations of normalized mode I DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under normal traction. 
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Fig.9 

Variations of normalized mode II DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under normal traction. 

  

 

 

 

 

 

 

Fig.10 

Variations of normalized mode I DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under shear traction. 

  

 

 

 

 

 

 

Fig.11 

Variations of normalized mode II DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under shear traction. 

  

 

 

 

 

 

 

 

Fig.12 

Variations of normalized mode I DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under mixed mode loading. 

  

 

 

 

 

 

 

Fig.13 

Variations of normalized mode II DSIFs of a single interface 

crack for different dimensionless nonhomogeneous 

parameters and crack length under mixed mode loading. 

 

 

In Figs. 14-19, the variety of normalized modes I and II transient DSIFs with different nonhomogeneous 

parameters 0.25,0.5l   and the thickness of the coating 0.1,0.2h   for an interface crack (Figs. 5-7) are 

examined. It can be seen that, the thickness of the coating h  has only a great effect on the transient DSIFs. Note due 
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to the lack of symmetry with respect to the x axis, the mode I DSIFs are produced under shear traction. 

 

 

 

 

 

 

 

 

Fig.14 

Variations of normalized mode I transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under normal traction. 

  

 

 

 

 

 

 

Fig.15 

Variations of normalized mode II transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under normal traction. 

  

 

 

 

 

 

 

 

Fig.16 

Variations of normalized mode I transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under shear traction. 

  

 

 

 

 

 

 

 

Fig.17 

Variations of normalized mode II transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under shear traction. 

  

 

 

 

 

 

 

 

Fig.18 

Variations of normalized mode I transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under mixed mode loading. 
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Fig.19 

Variations of normalized mode II transient DSIFs of an 

interface crack for different nonhomogeneous parameters and 

the thickness of the coating under mixed mode loading. 

 

 

In Figs. 20-25, the variety of normalized modes I and II transient DSIFs with different the thickness of the 

coating 2.0,1.0h  and the Poisson’s ratio 4.0,3.0 , for an interface crack (Figs. 5-7) with nonhomogeneous 

parameter 5.0l  are examined. It can be seen that, the thickness of the coating and the Poisson’s ratio has only a 

great effect on the transient DSIFs.  

 

 

 

 

 

 

 

 

Fig.20 

Variations of normalized mode I transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under normal loading. 

  

 

 

 

 

 

 

Fig.21 

Variations of normalized mode II transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under normal loading. 

  

 

 

 

 

 

 

Fig.22 

Variations of normalized mode I transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under shear loading. 

  

 

 

 

 

 

 

 

Fig.23 

Variations of normalized mode II transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under shear loading. 
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Fig.24 

Variations of normalized mode I transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under mixed mode loading. 

  

 

 

 

 

 

 

Fig.25 

Variations of normalized mode II transient DSIFs of an 

interface crack for different Poisson’s ratio and the thickness 

of the coating under mixed mode loading. 

 

The geometry of two cracks at the interface between an FG half-plane and homogeneous coating, under uniform 

normal and shear load is displayed in Figs. 26 and 27. For mode I and II DSIFs, the interaction between two cracks 

with two dimensionless nonhomogeneous parameters 0.5,1.0l   under normal loading are depicted in Figs. 28 

and 29, respectively, where 2.0h l  and dimensionless distant 1 2 1.2c cx l x l  . Due to the symmetry of the 

problem with respect to the y-axis, DSIFs in mode I at the tips 1 1,L R  are equal to those at 2 2,R L , respectively. The 

variations of DSIFs at tips 1 2,L R  are much higher than that at the tips 1 2,R L , because these tips have stronger 

interaction than tips 1 2,R L . Also, it can be observed that, the magnitudes of DSIFs for mode I increase with the 

increasing of the nonhomogeneous parameter.  

 

 

 

 

 

 

 

Fig.26 

The geometry of two cracks situated between an FG half-

plane and homogeneous coating subjected to normal loading. 

  

 

 

 

 

 

 

 

 

Fig.27 

The geometry of two cracks situated between an FG half-

plane and homogeneous coating subjected to shear loading. 
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Fig.28 

Interaction of mode I of two interface cracks under normal 

step function traction. 

  

 

 

 

 

 

 

 

Fig.29 

Interaction of mode II of two interfaces cracks under normal 

step function traction. 

 

Similar to the two previous examples, in Figs. 30 and 31 the variations of normalized DSIFs versus 0t t  for 

different values of 0.5,1.0l   under shear loading are considered. The thickness of the coating and center of 

cracks are taken to be 2.0h l   and
 1 2 1.2c cx l x l  , respectively. Obviously, the maximum DSIFs for the 

crack tips occur when the crack length is increased. In addition, by increasing the crack length the distance between 

two cracks decreased and due to the interaction of two cracks the DSIFs of the crack tips are increased. 

 

 

 

 

 

 

 

 

Fig.30 

Interaction of mode I of two interfaces cracks under shear 

loading for different values .l  

  

 

 

 

 

 

 

 

 

Fig.31 

Interaction of mode II of two interfaces cracks under shear 

loading for different values .l  

 

In Fig. 32 the geometry of three equal cracks with lengths 2 2l cm  located at the interface of an FG half-plane 

and homogeneous coating with identical center-to-center distance 2 3 2.1c cx l x l   under normal loading is 

displayed. The variation of normalized modes I and II transient DSIFs versus the dimensionless time for 

nonhomogeneous parameter 0.5l   are plotted in Figs. 33 and 34, respectively. As the problem is symmetrical, 

the values of the mode I DSIFs at the tips 1 1L R , 3 2L R  and 2 3L R  are identical. It is found from Figs. 33 and 34 the 
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mode I DSIFs at the tips of crack 1 1L R is higher than that the other tips. 

 

 

 

 

 

 

 

Fig.32 

The geometry of three cracks located between an FG half-

plane and homogeneous coating subjected to uniform normal 

step function. 

 

  

 

 

 

 

 

 

 

 

Fig.33 

Interaction of mode I of three interface cracks under normal 

step function traction.  

 

  

 

 

 

 

 

 

 

Fig.34 

Interaction of mode II of three interface cracks under normal 

step function traction. 

5    CONCLUSIONS 

An FG half-plane with homogeneous coating weakened by multiple interface cracks are studied under mixed mode 

impact loading. In this paper, the FG material properties are supposed to change continuously along the y-axis in the 

nonhomogeneous half-planes, and the crack faces are loaded by uniform normal, shear step function traction and 

mixed mode loading. Using the DDT and integral transform methods, the associated boundary value problem is 

reduced to singular integral equations for the Volterra type climb and glide edge dislocation density. Validation of 

the presented method is carried out by considering a single crack in an isotropic infinite plane and also a 

nonhomogeneous elastic half-plane and an elastic half-plane under normal impact loading. The numerical results of 

the multiple interface cracks revealed that: 

(1) The nonhomogeneous parameters significantly effect on the transient DSIFs while the Poisson ratio has 

only a negligible influence on the transient DSIFs. 

(2) The values of DSIFs for two and three cracks are larger than for the single crack because of the interaction 

between cracks tips in several cracks are greater than that of the single crack tip. 

(3) The results are compatible with the analytical solutions obtained in Sih and Embley [34], Mottale et al. [35] 

and Jafari et al. [36]. 

(4) The maximum DSIFs for the crack tips occur when the crack length is increased.  

(5) By increasing the crack length the distance between two cracks decreased and due to interaction of two 

cracks the DSIFs of the crack tips are increased. 
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APPENDIX I 

Parameters appearing in Eq. (14) are: 
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