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 ABSTRACT 

 This paper presents the buckling and out-of-plane free vibration 

response of a sandwich panel with flexible core for the different 

boundary condition. In the desired configuration of the sandwich panel, 

the top and bottom plates are made of magneto-electro-elastic (MEE) 

plates. Moreover, the in-plane electric and magnetic potential fields are 

neglected for the derivation of the required relations. The sandwich 

structure is subjected to axial force in both longitudinal and transverse 

directions; in addition, and the top and bottom plates are exposed to 

electric and magnetic fields. The governing equations of motion for 

MEE sandwich panel with a flexible core are derived based on the first-

order shear deformation theory by neglecting the displacement of the 

mid-plate and using the Hamilton’s principle. Furthermore, the derived 

partial differential equations (PDEs) are solved. According to the 

obtained numerical results, the core thickness, variation of electric 

field, variation of magnetic field and plate length are introduced as the 

most influential parameters on the free vibration response of the panel 

as well as the critical force of buckling.  As one of the results, the 

electric potential is inversely related to the natural frequency and 

buckling load, so that with increasing the electric potential, the natural 

frequency and critical load of the structure is also increased. Moreover, 

the magnetic potential is directly related to the natural frequency and 

buckling load of the system, and increasing trends of natural frequency 

and critical load are observed by increasing the magnetic potential. 

                                     © 2021 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 OWADAYS, regarding the advances in various sciences and industries, the need for light, durable and 

intelligent structures is of great significance. Regarding the light weight and high flexibility features of the 

sandwich structures with flexible cores, they have been introduced as an efficient solution for controlling and reducing 

the vibrations of the structure. Consequently, much attentions have been dedicated to the study of buckling and 

vibration of such structures. Besides the provision of high strength and low weight by MEE sandwich panels with 
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flexible cores, the ability to convert mechanical, electrical and magnetic energies into each other is considered as other 

advantageous feature of these structures. Sandwich panels are extensively used in various industrial, aerospace and 

space applications due to their high bending strength and low weight. In the mid-1960s, several investigations were 

conducted on such panels. In some studies [1, 2] analytical and numerical approaches for sandwich panels and 

numerical solutions for standard problems were presented. Rouhani and Marceller [3] studied the vibrations and 

buckling of a rectangular sandwich plate with a small displacement theory for different types of support conditions. 

The Reighley-Ritz method was utilized for solving the equations and the enhanced importance of support conditions 

on buckling and vibration in higher aspect ratios was declared. For better evaluation of buckling and vibrations in a 

sandwich panel with a flexible core, Frostig and Thompson [4, 5] presented two comprehensive models for 

modeling a flexible core. In the prior model, normal shear stress was used in the core; while in the latter model, the 

core displacements were assumed in the polynomial form. A good agreement with the first and higher-order 

deformation theories was achieved by the presented models. The use of Galerkin method and higher-order 

deformation theories for studying the vibrations of a sandwich plate with a flexible core was presented by Schwartz 

Giuli et al. [6, 7]. In their approach, the core was modeled with polynomial functions, known as Frostig model. 

Generally, two types of core modeling have been performed; non-contact assumption with the surface and 

consideration of contact with the surface. Comparing the results of these modeling, the main role of the contact 

conditions in natural frequency and mode shape was deduced. In another study by Frostig and Thompson [8, 9], the 

vibrations of a sandwich panel with a flexible core and temperature-dependent properties were analyzed. In this 

study, the governing equations of motion were extracted based on the higher-order shear deformation theory and 

Hamilton's principle. Moreover, two types of temperature distribution were considered in the core; uniform 

temperature variation along the core thickness and a linear temperature variation along the thickness. Their results 

declared the reduced frequency as a result of increasing temperature or temperature gradient. Arajo et al. [10] 

modeled the vibrations of a sandwich panel consisting of two layers of composite, flexible core and two layers of 

piezoelectric plate as sensors and actuators by the finite element method. They demonstrated the impact of the 

flexible core on control feedback and the importance of core modeling in the active control of the structure. The 

dynamic response of composite sandwich panels on the elastic foundation subjected to the impact loading was 

assessed by Malekzadeh Fard et al.[11].The first-order shear deformation theory was implemented for the derivation 

of relations for faces; in addition, the core was modeled through Frostig theory. Moreover, the effects of elastic 

foundation on the vibrations of sandwich panels as well as effect of impact loading at the center of the plate were 

investigated. In another article Malekzadeh Fard and Malek-Mohammadi [12] investigated free vibrations and 

buckling of the sandwich panels with composite skin layers and flexible core using Frostig's first theory for 

modeling core. The main advantage of this theory is its simplicity and less number of equations than the second 

method of Frostig's high-order theory. Daikh et al. [13]studied the vibrations of a nanoscale sandwich panels with a 

functionally graded core in a thermal environment. Relationships were extracted on the basis of Eringen's nonlocal 

theory and the higher-order shear deformation theory, and the solutions of the governing equations were determined 

using the Navier’s approach. The results show the effect of temperature, power index and nano parameters on the 

dimensionless natural frequency of the sandwich panel. For achieving better consistency with the experimental 

results, Jam et al. [14]considered the in-plane stresses of the core in analyzing the vibrations of a sandwich panel 

with a flexible core. Furthermore, Mohammadi Mehr and Mostafavifar [15] studied the vibrations of a sandwich 

panel with a flexible core, top and bottom layers of functionally graded nanocarbon under longitudinal magnetic 

field. A comprehensive review on the vibrations and buckling of sandwich panels was surveyed by Kumar and 

Serinoasa[16]. They declared the insufficient study on the field of sandwich panels with functionally graded and 

smart faces. Several investigations have been performed concerning the vibrations of MEE plates. Among these 

investigations, it can be mentioned to the work of Pan and Hiliger [17], in which the linear vibrations of multilayer 

rectangular MEE plate with simply supported boundary conditions were investigated. The governing equations were 

derived through the thin plate theory (classical plate theory), and the natural frequencies and mode shapes were 

calculated using the propagator matrix method. Buchanan [18] examined and compared the free vibrations of a 

multilayer plate with a multi-phase MEE plate. The frequency responses were presented by obtaining the shape 

functions using the Galerkin method through the application of finite element method and considering the 3-node 

elements. Chen et al. [19] examined the free vibrations of the non-homogeneous transversely isotropic MEE plate 

with a simply supported edges. They extracted three-dimensional (3-D) equilibrium equations of the plate and 

solved the problem numerically. Ramirez et al. [20] examined the response to 2-D free vibration of MEE multilayer 

plates. The intended model was independent of boundary conditions and the approximate solution of the problem 

was achieved by combining the discrete layer approach and Ritz method. The exact vibrations solution of a 

transversely isotropic thin rectangular MEE plate was presented by Liu and Chang [21] for the first time. In this 

paper, free vibrations of two-layered BaTiO3-CoFe2O4 composite material was obtained and the effect of different 
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volume fraction on natural frequency was investigated. Davi and Millazzo [22]surveyed the free vibrations of the 

MEE structure by the mesh less method. Milazzo and Orlando [23]examined the exact solution of free vibrations in 

a multi-layered MEE plate with the third-order shear deformation theory (Reddy’s theory). Chang [24, 25] solved 

the random vibrations and natural frequencies of a MEE rectangular plate in collision with a fluid by increasing the 

virtual mass for different support conditions. In this study, incompressible, inviscid and non-rotating assumptions 

were considered for the fluid. In another study by Chen et al. [26], the 3-D free vibrations of a multi-layer MEE 

plate under clamped-free support conditions with an approximation method of a discrete layer approach was studied. 

The intelligent control of nonlinear vibrations of MEE rectangular plates was investigated by Katimani and Ray 

[27].In this study, the active damping analysis of the compressed layer was studied through Golla’s model. Liaoling 

et al. [28] examined the free vibrations of nano-MEE on the basis of non-local theory. In the mentioned 

investigation, the classical plate theory with simply supported boundary conditions and non-local Eringen’s theory 

were implemented. External electric potential, external magnetic potential and temperature were applied to the plate 

and the derived equations of motion were solved through Navier’s approach. The free vibrations of MEE plate on 

elastic substrate was studied by Li and Zhang [29] using the first-order shear deformation theory (Mindlin’s theory) 

and neglecting the in-plane electric and magnetic fields. In another investigation, the buckling of MEE plate on 

Pasternak foundation was investigated by Li [30] through the use of first-order shear deformation theory. Karimi et 

al [31-33] investigated the effects of surface energy layers/stress on bending/buckling and vibration analysis of 

METE Nano plates. The refined plate theory, surface energy, nonlocal hypotheses and the Hamilton principle were 

employed to derive the governing equations of motion for the double layer magneto-electro-thermo-elastic Nano 

plates, then the Galerkin method was employed to solve the governing equations. Effects of some parameters such 

as external electric/ magnetic potentials, elastic foundations, skew angle, and temperature change on surface 

properties were investigated. Motivation and objective of this work. Proper evaluation of MEE material’s behavior 

as a new class of smart materials which have coupling interaction among electrical, magnetic, and mechanical fields 

is necessary. Actually for improving our understanding about these materials it is necessary to analyze them in 

different structures with more accurate assumptions. By reviewing the previous investigations, it has been found 

that, the out-of-plane free vibrations and buckling of the MEE sandwich panels with a flexible core based on the 

first-order shear deformation theory and different boundary conditions such as SSSS, CCCC and SSCC have not 

been studied so far.  

Accordingly, in this paper, an effort is made to find what effects could have the flexible core and other 

influential parameters on the buckling and vibration of the MEE sandwich panels. The investigation is conducted by 

the neglecting of mid-plates displacements as well as electric and magnetic fields within the plate. The upper and 

lower plates are also subjected to electrical and magnetic fields. The governing equations of motion are extracted by 

considering the normal and shear stresses for the core and the implementation of Hamilton's principle. Then the derived 

PDEs would be solved by analytic solution method. The investigation could be appropriate for various industrial, 

aerospace and space applications due to their high bending strength, low weight and intelligent materials. 

2    PROBLEM MODELING  

A MEE sandwich panel with a length of a, width of  b  and thickness of  h, with simply supported edges is considered 

as depicted in Fig. 1. The panel is consisted of three layers; the top and bottom layers made of MEE with the respective 

thicknesses of th and bh , and the flexible core of foam with the thickness of ch . 

 

 

 

 

 

 

Fig.1 

The MEE sandwich panel with flexible core. 

 

According to the first-order shear deformation theory, with the neglection of mid-plates displacements of the 

sandwich panel, the relations for the displacement sandwich panel can be expressed as follows [29]: 
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(1) 

 

where, x and y represent the normal transverse rotations with respect to x and y axes, respectively. In addition, 

considering the continuity between the layers, the core rotations can be obtained as: 
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According to the above displacement relations, the linear strains for the rectangular sandwich panel are stated as 

follows [29]: 
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      The structural equations functionally graded MEE plate are expressed in the following form [29]: 
 

  
c eE qH            TD e E dH         TB q dE H   

   
 (4) 

 

where,   and    denote the stress and strain, D is the electric displacement, B is the magnetic flux vector, E  is the 

electric field, H is the magnetic field vector, C is the elastic coefficient,   is the dielectric coefficient,   is the 

magnetic coefficient, e is piezoelectric, q is piezomagnetic, and d is magneto-electric coefficient. 

The coefficients of the structural equation are defined as follows [29]: 
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(5) 

 

The top and bottom layers of the MEE sandwich panel along  z  axis affected by the electric potential of 0 and the 

magnetic potential of 0  are located between the top and bottom surfaces of each layer. The electrical and magnetic 

boundary conditions of the plate surface are expressed in the following form [28]: 
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If the electric vector and the magnetic field intensity are defined as the scalar gradients of electric and magnetic 

potential of   and
 
  , respectively, the Maxwell's equations in quasi-static approximation are satisfied. 
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3    EQUATIONS OF MOTION  

The governing differential equations of motion on the basis of first-order shear deformation theory for MEE 

sandwich plates considering normal and shear stresses for a flexible core can be obtained using the Hamilton’s 

principle, which are defined as follows: 
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In the above equations, forces and torques can be determined from: 
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where
 xmN , xeN , xaN , ymN , yeN  and yaN  denote the mechanical, electrical and magnetic forces in the directions of 

x and y, respectively. By substituting the strain Eqs. (3) in the last two equations of Eq. (8) and solving the algebraic 

equations, Eq. (10) is obtained as: 
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Now, using the Cramer’s rule and integrating the Eq. (10), we have: 
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By the substitution of Eqs. (3) and (11) in Eq. (9) and rewriting Eqs. (8), the equations of motion of the sandwich 

structure with the flexible core are extracted in the following form: 
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        (12e) 

4  ANALYTIC SOLUTIONS FOR FREE VIBRATION RESPONSE AND BUCKLING OF THE 

SANDWICH  STRUCTURE   

The analytic solution of Eqs. (12) for the MEE sandwich panel under various boundary conditions will be 

constructed. The plate is assumed to have simply-supported (S), clamped (C) or free (F) edges or have combinations 

of them, they are given as[34, 35]: 

Simply supported (s): 

 

0

0

0 ( 0, )

0 ( 0, )

x y

y x

w M at y b

w M at x a





   

     
        (13) 

 

Clamped (C): 

 

0 0 ( 0, ) & ( 0, )x yw at x a y b     
 
        (14) 

 

Free (F): 

 

0 ( 0, )

0 ( 0, )

y xy y

x xy x

M M Q at y b

M M Q at x a

   

     
        (15) 

 

To satisfy the above boundary conditions, following responses are being considered [34, 35]: 

 

0 ( , , ) ( ) ( )

( )
( , , ) ( )

( )
( , , ) ( )

i t

nm n m

i tn

x nm m

i tm

y nm n

w x y t W X x Y y e

X x
x y t X Y y e

x

Y y
x y t Y X x e

y























 
        

(16) 

 

where the functions ( )nX x  and ( )mY y  are presented as bellow for considered boundary conditions: 
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        (18) 

 

where  
n

a



 

 
 

 and 
m

b



 

 
 

. Moreover ,nm nmX Y  and  nmW are arbitrary parameters and nm  denotes the 

Eigen frequency associated with (nth, mth) Eigen modes. The functions ( )nX x  and ( )mY y are suggested here to 

satisfy at least the geometric boundary conditions given in Eqs. (13)–(15), and represent approximate shapes of the 

deflected surface of the plate. Substituting expressions (16) into the governing Eqs. (12) and multiplying each equation 

by the corresponding Eigen function then integrating over the domain of solution, we can obtain, after some 

mathematical manipulations, the following equations: 

 

 2[ ] [ ] [ ] 0M K q  
 
        (19) 

 

where, M is the mass matrix and K is the stiffness matrix. In order to analyze the buckling of the structure, the kinetic 

energy relations are eliminated and Eq. (16) is substituted in the PDE of Eq. (12); hence the algebraic equations would 

be obtained in the form of Eq. (20): 

 

 [ ] [ ] 0K q 
 
        (20) 

 

In the above relation, K is a 5 5 square matrix in terms of the unknown p, by solving which the amount of 

buckling load can be calculated. 

5    VALIDATION  

Since the buckling and vibrations of the MEE sandwich structure with a flexible core has not been studied yet, for 

the sake of validation, the results of buckling and vibration of the single-layer MEE plate was compared with the 

results provided by Lee and Zhang [29, 30]. Finally, the vibrations of the sandwich structure was compared with the 

work of Yang et al. [36]. The values of dimensionless natural frequency of the single-layer MEE plate is provided in 

Table 1. The thickness-to-length ratio of the plate was assumed as 0.01 and the elastic substrate and magnetic 

potential terms were considered to be zero. In addition, the dimensionless relation of frequency was defined 

as
2

11

a

h c

 
  . As can be seen, there is a good match between the results. 

 
Table 1 

Comparison of the natural frequencies of the MEE plate. 

 a
b

 
5

0 10 ( )v    0 0   5

0 10 ( )v   

Present 1 7.15 5.66 3.58 

Li & Zhang[20] 7.16 5.66 3.58 

Present 2 15.63 14.01 12.18 

Li & Zhang[20] 15.64 14.02 12.19 
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The dimensionless critical load values of the single-layer MEE plate for different ratio of thickness to length are 

listed in Table 2. The elastic substrate and electrical and magnetic potentials were considered to be zero. The 

dimensionless relationship of critical load was also defined as
2

3

11

cr

p a
P

h c
 . As can be seen, there is a good match 

between the results. 
 

Table 2 

Comparison of the buckling load of the MEE plate. 

 
  0.1h

a
  0.15h

a
  0.2h

a
  

Present 
0 

2.94 2.63 2.32 

Li [22] 2.97 2.67 2.33 

Present 
0.5 

1.98 1.78 1.54 

Li [22] 1.99 1.79 1.55 

 

The vibrations of the sandwich structure provided in Table 3 are compared with the work of Yang et al. [36] for the 

first four frequencies. The upper and lower plates were made of aluminum and the core was made of viscoelastic with a 

complex Young’s modulus. The core thickness was 2 times of the thickness of lower and upper layers and the ratio of 

length to thickness was assumed to be 100. Additionally, square plate with a length and width of 1 meter was 

considered. Moreover, the dimensionless relationship of the plate was defined as 
2

0

0

a

h E


  . The closeness of the 

results confirms the accuracy of the present method. 
 

Table 3 

Comparison of the dimensionless natural frequency of the isotropic sandwich panel with flexible core. 

100a a b
h
   

22  
21  

12  
11  

Yang et al.[36] 6.440 4.434 4.434 2.350 

Present work 6.386 4.362 4.362 2.297 

6    RESULTS AND DISCUSSIONS   

In this section, the obtained results of vibration and buckling of MEE sandwich plates with flexible cores are discussed. 

The top and bottom layers were made of MEE and the core was made of flexible foam. The properties of MEE material 

and core materials are given in Table 4. The effect of electric potential on the natural frequency for different ratios of 

width to different lengths is represented in Fig. 2. 

 
Table 4 

The properties of different materials. 

MEE material properties [28] 

11 ( )C Gpa  226 
22 ( )C Gpa  216 

12C  125 
44 55C C  44.2 

66C    50.5 2

31 ( / )e C m  -2.2 

31 ( / )q N MA  290.1 
33  -297 

33  275 
33d  2737.5 

3( / )kg m  5550   

Core material properties [36] 

11 22 ( )E E Gpa  0.5776 
12 ( )G Gpa  0.1079 

12  0.0025 3( / )kg m  
1000 
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As can be seen in this figure, the total thickness of the structure and the thickness to the length ratio of the plate is 

0.2 and the thickness of the upper and lower layers is 2 times of the thickness of core. According to this figure, the 

natural frequency of the plate decreases with increasing the electric potential and the ratio of width to length of the 

plate. Due to the negative values of electrical coefficients of MEE plates, the values of stiffness matrix increased by 

applying negative potential to the system, which was followed by an increase in the natural frequency. In contrast, if 

the positive electric potential was applied to the plate, the stiffness matrix would be decreased with the subsequent 

decrease in the natural frequency of the structure. In addition, by increasing the width-to-length ratio of the plate, 

reduced stiffness and the consequent decreased natural frequency would be achieved. 

 

 

 

 

 

 

 

 

Fig.2 

The effect of electric potential of the sandwich panel on the 

natural frequency of the system. 

 

In Tables 5, the dimensionless frequency of MEE sandwich panels are presented, respectively, accounting for 

different kinds of boundary conditions (SSSS, CSSS, CSCS,CCCC, and FFCC) for various electric voltages at a/h = 

100, a/h = 20, and a/h = 10. According to these tables as the thickness rises, the dimensionless frequency rises. Also, it 

is concluded that by increasing the thickness of the sandwich panel, the effect of electrical potential decreases on the 

dimensionless frequency. Moreover, it is found that for all kinds of boundary conditions, negative values of electric 

voltage provide higher frequencies than positive values. This is due to the axial compressive and tensile forces 

produced in the MEE sandwich plate by the applied positive and negative voltages, respectively. Therefore, the sign of 

applied voltage shows a prominent impact on the vibrational responses of MEE sandwich plates. 
 
Table 5 

Variation of dimensionless frequency of MEE sandwich plate for various boundary conditions and electric voltages. 

B.C   100 2 ca b h h h    20 2 ca b h h h    10 2 ca b h h h    

SSSS 

-106     38.7175  7.836    6.5064 

0 14.03  7.145    6.4073 

106        8.1621  6.378    6.3066 

CSSS 

-106   43.548 10.570  8.842 

0   17.082  9.913 8.74 

106   10.457  9.346   8.587 

CSCS 

-106   49.768 12.926 10.88   

0   19.841 12.270 10.679 

106   14.241 11.984 10.432 

CCCC 

-106     45.8509 13.071 10.786 

0     19.1356   12.5326 10.707 

106     13.8765 12.470 10.69    

CCFF 

-106  46.977 13.620 11.08   

0  19.428 13.131 11.01   

106  14.017 12.569 10.83   

 

The effect of magnetic potential on the natural frequency for different ratios of width to lengths is plotted in Fig. 3. 

In the desired configuration, the total thickness of the structure and the thickness to the length ratio is 0.2 and the 

thickness of the core is 2 times of the thickness of the upper and lower layers. As can be seen, by reducing the magnetic 

potential and increasing the ratio of width to length, a reducing trend can be seen in the natural frequency of the plate. 

Regarding the positive values of magnetic coefficients of MEE plates, application of negative potential to the system 
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would resulted in a reduction in the values of stiffness matrix and the consequent decrease in the natural frequency. 

Moreover, by the application of a positive magnetic potential to the plate, the stiffness matrix was increased, which was 

followed by an increase in the natural frequency of the structure. The common feature that can be deduced by the 

comparison of Fig. 2 and 3, is the insignificant effect of electric and magnetic potentials on the natural frequency. 

However, these effects should be considered in the investigations. 

 

 

 

 

 

 

 

 

Fig.3 

The effect of magnetic potential of the sandwich panel on the 

natural frequency of the system. 

 

 

The variation of natural frequency of the system with the thickness of the sandwich plate core is represented in Fig. 

4. The considered configuration in this figure was a 1 1 square plate with the total thickness of 0.2. As can be seen in 

the figure, with the increase of core thickness, first an increasing trend can be seen for the natural frequency, which was 

followed by the decreasing one. The reason for the initial increase in natural frequency is attributed to the decrease in 

the amount of mass matrix. Considering the constant total thickness for the sandwich structure, by increasing the core 

thickness, the thickness of the upper and lower MEE layers would be decreased, which leads to lightening of the 

structure and reduction of the mass matrix. By further increasing the ratio of core thickness to total thickness after 0.5, 

the effect of mass matrix is dominated by the increase of structure stiffness, and as a consequence, the natural 

frequency of the system decreases. 

 

 

 

 

 

 

 

 

Fig.4 

The effect of flexible core thickness of the sandwich panel on 

the natural; frequency of the system. 

 

 

The buckling behavior of the sandwich plate is plotted for different length-to-width ratios in Fig. 5. The thickness of 

all three layers was considered to be the same value of 0.1. The buckling load is drawn for two modes, in which, the 

parameter   is associated with the applied load. As can be seen, as the length-to-width ratio increases, the critical load 

is increased. It should be noted that this increase would be much greater if the load is applied only along the length 

compared to the case that the half of the load is applied along the width of the plate. The variation of buckling behavior 

with electric and magnetic potentials is displayed in Figs. 6 and 7. According to Fig. 6, the reducing trend of critical 

load by increasing the electrical potential is evident. 
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Fig.5 

The effect of length-to width ratio of the sandwich panel on the 

critical load. 

  

 

 
 
 
 
 
 
 
 
Fig.6 

The effect of electric potential of the sandwich panel on the 

critical load. 

 

As shown in Fig. 7, the critical load of the structure increases with increasing magnetic potential. The effect of 

increasing the core thickness on the critical load for the values of   equal to zero and 0.5 is illustrated in Fig. 8. 

Regarding this figure, an increasing behavior of the critical load can be observed by increasing the core thickness. 

 

 

 

 

 

 

 

Fig.7 

The effect of magnetic potential of the sandwich panel on the 

critical load. 

  

 

 
 
 
 
 
 
 
Fig.8 

The effect of core thickness of the sandwich panel on the 

critical load. 
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7    CONCLUSION 

In this paper, the buckling and free vibrations of a MEE sandwich panel with a flexible core were investigated. The 

governing equations of motion for the desired panel were derived based on the first-order shear deformation theory 

using the Hamilton’s principle, and the obtained PDEs were solved for all kind of boundary condition. The considered 

assumptions of this study were the neglection of the in-plane electric and magnetic potentials, as well as displacement 

of the mid-plates. According to the obtained results, in MEE sandwich panel, the electric potential was inversely related 

to the natural frequency and buckling load, so that with increasing the electric potential, the natural frequency and 

critical load of the structure were also increased. Moreover, the magnetic potential was directly related to the natural 

frequency and buckling load of the system, and increasing trends of natural frequency and critical load were observed 

by increasing the magnetic potential. It should be noted that the effect of electric and magnetic potentials on plate 

buckling was much greater than their effect on the natural frequency of the structure. It is observed from table 5 that at 

a defined voltage, the FFCC MEE sandwich panel has the highest natural frequency then followed by CSCS, CCCC, 

CSSS and SSSS, respectively. Thus, for more accurate design of smart MEE sandwich panels, it is essential to consider 

various boundary conditions. Additionally, it was found that further increase in the core thickness greater than the   

ratio of 0.5 was resulted in a decrease in the natural frequency of the system. Moreover, the buckling load was 

decreased with increasing transverse load in the structure, which was much more pronounced for the length-to-width 

ratio higher than one. On the other hand, by increasing the thickness of the flexible core relative to the total thickness, 

the effect of transverse buckling load on the structure was increased. For further study, nonlinear analysis with 

viscoelastic core will be considered. 

APPENDIX 
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