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 ABSTRACT 

 In the present paper, a finite element nonlinear coupled 

thermoelasticity formulation is presented for analysis of the wave 

propagation, reflection, and mixing phenomena in the finite length 

isotropic solids. The governing equations are derived based on the 

second Piola-Kirchhoff stress and the full form of Green’s strain-

displacement tensors to account for the large deformations and finite 

strains. In contrast to the available researches, the assumption of very 

small temperature changes compared to the reference temperature is 

released in the present research. Galerkin’s method, a weak 

formulation, and cubic elements are employed to obtain the time-

dependent non-linear finite element governing equations. The proposed 

solution procedure to the resulting highly nonlinear and time-dependent 

governing equations employs an updating algorithm and Newmark’s 

numerical time integration method. The wave propagation and 

reflection phenomena are investigated for both the mechanical and 

thermal shocks and time variations of distributions of the resulting 

displacements, temperature rises, and stresses are illustrated 

graphically and discussed comprehensively. Furthermore, the effects of 

the non-linear terms are discussed comprehensively. Results reveal that 

in the non-linear analysis, no fixed speed of wave propagation can be 

defined.                           © 2021 IAU, Arak Branch.All rights reserved. 

 Keywords : Coupled thermoelasticity; Finite strain; Thermal shock; 

Surface traction; Wave propagation and reflection. 

1    INTRODUCTION 

 UE to the probable occurrence of catastrophic failures, determination of the transient structural responses in 

time instants immediately after exposure to a thermoelastic shock is an important issue in many engineering 

applications, such as mechanical, electrical power, nuclear, chemical, and aerospace engineering. Publication of the 

first books on thermal stresses, e.g., by Melan and Parkus [1] and Nowacki [2-4] was the most important stage in the 

progress of the thermoelasticity. Danilovskaya [5] pioneered the first research on the one-dimensional dynamic 
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thermoelasticity problem of thermal stresses in a half-space. The main studies in this field have considered the 

occurrence of large displacements and small strains. In this regard,  Manoach and Ribeiro [6] studied nonlinear 

vibrations of thick beams under the combined action of mechanical and thermal loads. They also investigated the 

influence of the time duration and amplitude of the thermal loading on time histories of the responses of the 

structure. Vujošević and Lubarda [7] derived the constitutive formulation of the finite-strain thermoelasticity by 

multiplicative decomposition of the deformation gradient. Abo-El-Nour et al. [8] presented an analytical solution for 

nonlinear thermoelasticity problems with special boundary conditions. Slemrod [9] derived the governing equations 

of the nonlinear thermoelasticity and provided an appropriate evolution equation but neglected the infinitesimal 

strain expressions and used the method of Lions-Faedo-Galerkin. Rawy et al. [10] proposed a numerical solution for 

the nonlinear, one-dimensional problem of thermoelasticity. Sweilam [11] employed the variational iteration and 

Adomian’s decomposition methods to numerically solve the governing equations of the harmonic wave generation 

in a one-dimensional non-linear elastic half-space. Rogovoi and Stolbova [12] obtained the equation of state of the 

finite-strain coupled thermoelasticity, using a variational approach, to construct the constitutive relations for 

complex media under the assumption of the closeness of the intermediate and current configurations. Wave 

propagation in initially-stressed elastic rods was investigated by Kocakaplan and Tassoulas [13]. Marzani et al. [14] 

proposed a finite element solution to analyze the wave propagation in axisymmetric waveguides [15].  

The foregoing brief review reveals that the majority of the available researches on the one-dimensional coupled 

thermoelasticity have not treated the wave propagation and especially, reflection; as the majority of them have 

studied the thermoelasticity problem for the half-space, rather than a finite domain. Furthermore, some of the 1D 

thermoelasticity models that have studied the coupled thermoelasticity problem in a finite domain, have either used 

linear strain-displacement expressions [16-18] or used linear elements (which results in jumps in the stress 

components at the mutual nodes and edges of the elements). In the lights of these issues, novelties of the present 

research may be summarized as: 

(1) Presenting a finite element coupled thermoelasticity formulation that may be used for large deformations as 

well, 

(2) Investigation of both wave propagation and wave reflection phenomena,  

(3) Incorporation of the traction boundary condition through a novel procedure, 

(4) Proposing a solution algorithm for solving the resulting highly nonlinear coupled governing equations, 

(5) Presenting a new idea in the development of the weak formulation. 

(6) Using cubic elements to obtain more accurate results. Employing the common linear elements usually lead 

to less accurate and sometimes, erroneous results. 

2    THE NONLINEAR COUPLED GOVERNING EQUATIONS OF THERMOELASTICITY 

2.1 The energy balance and motion equations 

Let us investigate the problem of thermoelastic wave propagation, reflection, and interference within the finite-

length medium shown in Fig. 1. The limited available researches on non-linear thermoelasticity have focused on 

half-spaces. Therefore, no wave reflection or thermal/stress wave mixing have been noticed in their findings. 

Moreover, since their goal was presenting semi-analytical solutions, the results were generally presented for special 

forms of the excitations that seldom occur. No limitations have been considered for the thermoelastic loads in the 

present analysis. When using the full form of the strain-displacement expressions or expecting the occurrence of 

large deformations, the nonlinear time-dependent governing equations of motion and the heat conduction equation 

of each material element may respectively be expressed as [9, 19- 21]: 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometric parameters and the imposed thermomechanical loads 

of the considered finite length solid. 
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where u, t, s, 
0 , b, e, r, and E are, respectively, the longitudinal displacement, time, second Piola-Kirchhoff stress 

tensor, reference mass density, body force, intrinsic energy, heat generation per unit mass, and Green’s strain tensor 

with the following definition: 

 

1
( ) ( )

2

T TE u u u u          (3) 

 

In Eq.(2), it is assumed that the material properties are temperature-independent, within the considered 

temperature rise. For a one-dimensional thermoelasticity, the instantaneous coordinates of each particle (
ix ) may be 

related to its initial coordinates (
iX ) according to the following transformation equation: 

 

1 1 1 2 2 3 3( , ), ,x x X t x X x X    (4) 

 

Therefore, the displacement, deformation gradient, strain–displacement expression, and second Piola-Kirchhoff 

stress can, respectively, be determined from: 
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where U is the displacement component. Since the considered problem is a 1D one, dimensions of the medium in 

directions perpendicular to the wave propagation directions (i.e., in X2 and X3 directions) are chosen to be infinity. 

For the sake of simplicity in writing, one may drop the subscript 1 from the parameters, e.g.; 

 

111 ,X X s s   (9) 

 

Then, the second Piola-Kirchhoff stress may be obtained in the reference configuration as [21]: 

 

0( 2 ) ( )s E T T       (10) 
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where   and   are Lame constants of the isotropic elastic continuum, (3 2 )T     , and 
T is the thermal 

expansion coefficient. Substituting Eqs. (3) to (10) into Eq. (1) and noting that 
0

0

1T T
T

 
  

 
, leads to the 

following nonlinear equation of motion: 
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It may be reminded that displacements of the medium are not restricted in X2 and X3 directions, as Eq. (8) 

implies. According to Fourier’s law, the heat flux per current area may be related to the temperature gradient as: 
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So that, combining the second law of thermodynamics and Fourier’s law leads to [20,21]: 
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Substituting Eq. (3) into Eq. (13) gives the nonlinear energy balance equation in the following form: 
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where c  is the specific heat capacity and k is the thermal conductivity coefficient. 

2.2 The geometric and boundary conditions 

Fig. 1 shows geometric parameters as well as the imposed thermomechanical loads of the finite length solid. The 

backplane of the body is fixed. Therefore, the wave reflection happens with a higher intensity. The body may be 

subjected to a shock in the form of either surface traction ( ) or a temperature rise ( 0T T   ) on one side and a 

convection heat transfer at the other side of the medium.  

Since the thermoelastic behaviors resulting from the mechanical impulse loading differ from those caused by 

thermal shocks, the resulting thermoelastic stresses, and displacements, as well as the wave propagation and 

reflection phenomena, are considered for the following two distinct loading conditions: 

i) Impulsive compressive traction that is imposed for a very time duration, on the beginning plane of the body 

(Fig. 1) while both the front and back planes of the body are exposed to a convection heat transfer with the 

ambient. 
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where   is the Cauchy stress. 

ii) The front plane of the domain is subjected to a temperature rise shock with a high rate of decay while the 

backplane is under a convection heat transfer: 
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For both cases, it is assumed that all particles of the domain are initially at rest and experience the ambient 

temperature; so that, the associated initial conditions are:  
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Although the full Green’s non-linear strain-displacement expressions are employed for both types of examples, 

from a practical point of view, large deformations in a one-dimensional domain may occur due to the first type of 

problems. Because large deformations in the second type problem may take place when a significantly high-

temperature rise is employed. In such a case, either a local melting or a high temperature-rise that requires 

considering the temperature-dependency of the material properties may happen.  

3  THE FINITE ELEMENT FORM OF THE GOVERNING EQUATIONS AND THE BOUNDARY 

CONDITIONS 

The first-order elements generally lead to erroneous or inaccurate results in structural analyses, unless a huge 

number of elements (h-method refinement) is used. It has been proven that the highest accuracy is obtained when the 

order of the shape functions is larger than that of the order of the weak form of the governing equations by one [22]. 

Since, as explained later, the order of the weak forms of the governing system of Eqs. (11) and (14) is not less than 

2, cubic elements are employed in the present research. Many researchers have already proven that using high-order 

elements (p-method refinement) leads to significantly reducing the computations [17,22-26].  In this regard, spatial 

variations of the domain degrees of freedom, i.e., main variables of Eqs. (11) and (14) can be traced by the adopted 

cubic shape functions: 
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where ,e e

j ju   are the nodal vectors of the displacement component and the temperature rise and ( )e

jN x  are the 

third-order shape functions that may be expressed in terms of local coordinate as [22]: 
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where ( ) ( )

2 1

e

e

el X X   and ( )

1

eX  and ( )

2

eX  are coordinates of the beginning and end grid points of the element. The 

augmented vector of the degrees of freedom can be established as: 
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Therefore, Galerkin's form of the governing differential Eqs. (11) and (14) has the following form: 
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where 
1 0  and 

2 0  correspond to Eqs. (11) and (14), respectively. The weak form of the weighted residual 

Eq. (21) may be represented by: 
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In this regard, one may reduce the order of as much as terms possible. This hint leads to resulting terms with 

higher-order dependency on X , for an identical order of the shape functions and in turn, enables computing the 

integrals more accurately and incorporates the thermal boundary conditions more adequately. In Eq. (22): 
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It is worth mentioning that the order of the weighted third and fourth terms of Eq. (11) does not lead to weak 

formulations, e.g.;  
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For this reason, these terms are not manipulated in Eq. (25). This is why cubic rather than quadratic elements are 

used. The traction boundary condition (15) can be assembled with Eq. (22), after interpreting it in the following 

finite element form: 
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 expressions appeared in Eqs. (22) to (26) can also be substituted by appropriate finite 

element expressions. 

4    THE SOLUTION PROCEDURE OF THE NONLINEAR COUPLED SYSTEM OF EQUATIONS 

In the foregoing section, the nonlinear system of governing Eqs. (11) and (14) was reduced to a nonlinear system of 

ordinary finite element Eqs. (22) in time. The boundary conditions, such as Eq. (28) have to be incorporated before 

solving the resulting system of equation in the time domain. 

The solution of the governing equations in the time domain requires the discretization of the time domain into 

time steps that are much smaller than the period time associated with the fundamental natural frequency of the 

system (about its current state). It is evident the oscillations of the temperature require remarkably larger times. The 

adopted time step is 510t s  . Employing Newmark’s numerical time integration procedure [22] for the ith time 

step, one may write: 
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Eqs. (29) and (30) may reduce the resulting system of equations to a nonlinear system of algebraic equations of 

the following form: 
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where: 
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where t  is the time increment. The choice of   and   parameters affects the stability and accuracy of the 

solution. According to the second-order Runge-Kutta method: 
1 1

,
2 2

   . For the first time step, the initial 

conditions 
0  and 

0 are assumed to be zero and the acceleration vector is computed from Eq. (22) to be: 

 
1

0 0( ) R F  (34) 

 

The resulting element stiffness matrix is still dependent on 
1i  ; so that, the system of Eq. (31) is nonlinear and 

asymmetric. In each time step, Picard’s iterative solution procedure may be used in this regard [27-29]:  

 

1

1
1 1 * *

1 1 1 1
( ) ; 1

i

m m

i i i i i
m






   
        F  (35) 

 

where m is the iteration counter. The iterative solution is continued until convergence is achieved. The following 

criterion is chosen to check the convergence: 

 
1

1 1

1

1

m m

i i

m

i





 








 


 (36) 

 

where   is a negligible number. After each iteration, a modified   is obtained which in turn can be employed to 

update the stiffness of the entire domain to be used in the next iteration. 

5    NUMERICAL RESULTS AND DISCUSSIONS 
5.1 Validation of the results 

To verify the results, a linear problem of half-space previously studied by Youssef and Al-Lehaibi [30] is 

reexamined. The boundary plane at x=0 is traction free and subjected to a step temperature rise 

0(0, ) ( )t H t  where ( )H t is Heaviside’s unit step function (
0 293 T K ). The medium is fabricated from copper 

with the following material properties: 

 
5 1 2 3

10 2 10 2

  386 / ,    1.78 10 ,  c   383.1 / ,  8954 / ,

 3.86 10 / ,    7.76 10 /

TK N Ks a K m K kg m

N m N m

 

 

     

   
  

 

Since a linear thermoelasticity approach was adopted by Youssef and Lehaibi, using an analytical solution and 

Laplace transform and state-space techniques were available [31,32]. Youssef and Al-Lehaibi presented their results 

using the theory of two-temperature generalized. The following dimensionless terms were introduced to obtain the 

results: 

 

' ' ' ' '0

0

2 2 2
, , ( ) , ( ) , ( )

T T u t x
u t x

T k k k

      
 

   

   
      (37) 

 

The results are obtained for 0.2( )t s  and 0, 1  . The resulting time histories of the dimensionless 

temperature-rise and stress are compared with those of [30] at x=0.2 section in Figs. 2 and 3. As may readily 

deduced from Figs. 2 and 3 that the temperature and stress of the considered section increase with time (wave 

propagation) and the temperature converges toward a certain amount, as 't tends to infinity. Due to the 

thermoelastic coupling, these oscillations affect the temperature rise within the body as well. On the other hand, the 

numerical Laplace inversion equation uses two floating parameters that their optimum values not only vary from a 

problem to another but also within the same time history and thus, cannot be assigned accurately [31,32]. Moreover, 

the number of engaged vibration modes depends on the number of summation terms. Generally, the present 
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numerical time integration can trace the instantaneous fluctuations. Hence, in addition to the fact that the present 

results show a good concordance with those obtained by Youssef and Lehaibi, they give a stronger physical sense.   
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Fig.2 

Comparison between time variations of the temperature 

predicted by the present research and those of the semi-

analytical model of Youssef and Al-Lehaibi, at (x=0.2). 
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Fig.3 

Comparison between time variations of the stress predicted 

by the present research and those of the semi-analytical 

model of Youssef and Al-Lehaibi, at (x=0.2). 

 

The longitudinal distributions of stresses and displacements are presented in Figs. 4 and 5 and compared with the 

predicted results of Youssef and Lehaibi. Fig. 4 illustrates that the displacements grow with time whereas Fig. 5 

reveals that the stress wavefront has reached the x=0.09 plane; so that point the behind sections are pulled to 

compress the front sections, as the wave travels across the domain. The analytical results of Youssef indicate a jump 

in the stress distribution at the instantaneous location of the stress wavefront. It is evident that all the discretization 

techniques, such as the finite element, boundary element, differential quadrature, and meshless methods cannot 

show the local jumps and discontinuities in the quantities and regard them as residual errors that must be distributed 

over the whole domain [33,34]. 

 

 

 

 

 

 

 

 

Fig.4 

Comparison between displacement distributions predicted by 

the present research and those of the semi-analytical model of 

Youssef and Al-Lehaibi, (t’=0.1 and t’=0.2). 

  

 

 

 

 

Fig.5 

Comparison between stress distributions predicted by the 

present research and those of the semi-analytical model of 

Youssef and Al-Lehaibi, (t’=0.1 and t’=0.2). 
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As another validation example, the outcomes are compared with those of the finite element solution given by 

Ting and Chen [35] that predicted a solution for anisotropic elastic medium subjected to a convection heat transfer 

with this boundary conditions: 

 

0

0
0

(0, ) ; ( 0)

( ) ; ( 0)
x

x

T t T t

T
k h T T t

X




 



   

 (38) 

 

These non-dimensional parameters are employed to express the obtained results:  
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 
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
 (39) 

 

Time history of the temperature rise and stress are demonstrated in Figs. 6 and 7, for x'=1. Although the results 

show a relatively good agreement, since Ting and Chen [35] used linear shape functions, their results, especially the 

stress results are not as accurate as the present results that have been extracted using cubic shape functions. For this 

reason, the results of the solution presented in this research, are more similar to the exact results (Lee and Sim [36]), 

as Fig. 7 confirms.  
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Fig.6 

Comparison between the temperature-rise results of the first-

order [35] and third-order (present) finite element models 

(x’=0.1). 
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Fig.7 

Comparison between the stress results of the first-order [35] 

and third-order (present) fine element models (x’=0.1). 

5.2 Investigation of wave propagation/reflection and mixing phenomena in a finite length domain 

5.2.1 Anisotropic elastic solid exposed to a traction shock and convection 

Boundary conditions of the domain have appeared in Eq. (15). The material properties of the selected stainless-steel 

are listed in Table 1. 
 

Table 1 

Material properties of stainless steel [37]. 

0T T  2( / )h w m K  2( / )E N m  ( / )c j kgK  3( / )kg m  1( )K   ( / )k w mK  

250C 100 9189.5 10  500 7700 612 10  16.5 

 

http://www.sciencedirect.com/science/article/pii/S0020746217304997
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The other required parameters are introduced in the following: 

 
5 6

0 1 2 02 , 10 , 10 , 0, 3 ( ), 100L m t s Pa t t t s C           

 

The domain is discretized into 100 cubic elements. The time histories of the stress observed in different sections 

as the stress wave travels through the domain because of the applied traction shock are demonstrated in Fig. 8. As 

may be observed, in the early times, stresses are zero in some sections. This phenomenon confirms the stress wave 

propagation with a speed approximately equal to ( 2 ) / 5238( / )v m s . The stress wave has arrived at the 

end plane of the solid ( 2( ))X m , approximately after 13.8 10 ( )t ms . After this time, by changing the stress 

sign, wave reflection starts. Fig. 9 shows the longitudinal distribution of the stress, for various time instants. At the 

shock time duration, only regions that are located in the neighborhood of the front plane have sensed the imposed 

compressive traction. Followed by the pressure shock elimination, the wave travels in the medium 

until 13.8 10 ( )t ms . The reversion of the wave propagation (reflection) begins after 14 10 ( )t ms , (Fig.9 

(c)), which induces tensile stresses after a transition situation. Fig. 10 demonstrates the time histories of the non-

dimensional displacement observed at various planes of the domain. Before 0.38( )t ms , all sections, travel in the 

positive axis (Fig. 10). Followed by that time, wave reflection begins, and opposite motions will begin as well. 

Moreover, the wave propagation phenomenon in the medium due to the mechanical shock may be explored by 

studying the displacement distribution at successive time instants. 
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Fig.8 

Stress time histories observed at different sections of the 

medium. after exposure to the impulsive traction. 
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Fig.9 

Propagation of the stress wave along the solid under 

mechanical shock, for various time instants. 
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Fig.10 

Displacement time history at different sections of the body 

under mechanical shock. 

 

According to Fig. 11, at the beginning times, the initial points have the maximum displacement. By eliminating 

the applied stress, the displacement wave moves through the body over time. The propagation of the thermal wave 

may be traced in Fig. 12. As may be noted, the maximum of the temperature changes travels simultaneously with the 

maximum of the stress along the length (Fig.8). 
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Fig.11 

Displacement wave propagation along the solid.   
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Fig.12 

The time histories of the temperature-rise for different 

sections of the solid under mechanical shock. 
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It is clear that imposing compressive traction may lead to temperature rises whereas the tensile stresses induce a 

cooldown (negative temperature rises), as Fig. 12 confirms. For a more suitable imagination of the successive 

thermal propagations as well as reflection and finally, a complete mixing that eventually leads to a steady-state 

status, distributions of the temperature rise are plotted for very small to relatively large dimensionless time instants 

in Fig. 13. Recall that the end plane of the domain experiences a convection heat transfer and consequently, cooling. 

At 0.32( )t ms  the thermal wave reaches the end boundary (x=2m), for the first time. After that, the boundary 

temperature is rising. Then the wave manifests several-direction switching. 
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Fig.13 

The several propagations, reflections, and eventually mixing 

of the thermal waves under mechanical shock, for various 

times. 

5.2.2 Evaluation of the effects of the non-linear terms 

Non-linearity of the governing equations adds significant complexity in the solution procedure and drastically 

increases the computational time. Therefore, it is necessary to check whether it affects the resulting accuracy of the 

results remarkably. In this regard, two cases are considered to compare the outcomes of the original non-linear 

formulation with those of the linearized one: 

(i) The traction-type shock induces small strains whose order is in the practical range (e.g., of the order of 

0.01), 

(ii) The resulting strain is large (of the order of 0.1). This case is merely a sensitivity analysis; so that, it is 

postulated that the medium does not undergo plastic deformations. 

In Figs. 14 and 15, respectively, effects of the non-linear parameters of the governing equations of motion and 

energy balance on distributions of the longitudinal displacement and stress can be investigated through comparing 

results of the non-linear and linearized formulations. The comparison has been made for cases when the wave moves 

toward the end of the solid. Although the strains are not large, the differences between the two types of results are 

noticeable.   
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Fig.14 

The differences between the longitudinal distributions of the 

displacements predicted by the full non-linear and the 

linearized formulations, for various time instants (small 

strains). 
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Fig.15 

The differences between the longitudinal distributions of the 

stresses predicted by the full non-linear and the linearized 

formulations, for various time instants (small strains). 

 

As mentioned before, the strains induced by the second type of traction shock are large enough. The time 

histories of the displacements and stresses observed at various planes of the medium are demonstrated in Figs. 16 

and 17, respectively. Figs. 16 and 17 show that when the equations are linearized in cases where large deformations 

may happen, the displacement and stress components increase but the stress propagation speed decreases. It is 

obvious that increasing the flexibility of the solid generally leads to higher stresses and displacements [38]. 

Moreover, in non-linear systems, the natural frequencies and wave propagation speed are dependent on the 

magnitude of the external loads. For this reason, the propagation speed corresponding to the low tractions (the 

linearized formulation) is quite different from that of the large tractions (non-linear formulation). In other words, in 

non-linear analysis, no fixed speed of wave propagation can be defined. 
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Fig.16 

The differences between the time histories of the longitudinal 

displacements predicted for various sections by the full non-

linear and the linearized formulations (large strains). 
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Fig.17 

The differences between the time histories of the longitudinal 

stresses predicted for various sections by the full non-linear 

and the linearized formulations (large strains). 

5.2.3 Anisotropic elastic solid exposed to a thermal and convection 

Now, responses of the medium are investigated for the case where the front plane is under a sudden temperature rise 

while the back point is subjected to convection with the ambient [Eq. (16)]. Fig. 18 illustrates the time variation of 

temperature rise for three different sections of the medium. From Fig. 18 one may readily deduce that the maximum 

temperature rises occur before the thermal load removal and the heat convection mechanism has significantly 

suppressed the temperature rise for section far away from the front plane.  
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Fig.18 

Temperature time history for different points of the solid 

under thermal shock. 

 

Time histories of the longitudinal distribution of the temperature rise are illustrated in Fig. 19. Fig. 19(a) shows 

the temperature distribution during applying the thermal shock and the distributions after the shock removal are 

presented in Fig. 19(b). The longitudinal thermal wave propagation can easily be seen in this figure. As may be 

noted, the wave reaches the end plane of the body at 0.38( )t ms , as before, which leads to the conclusion that the 

propagation velocity of the thermal shock is independent of the excitation type. This conclusion may be supported 

by Figs. 20 and 21 as well. Time variations of the displacement component are demonstrated in Fig. 20, for different 

sections of the medium. Furthermore, time variations of the longitudinal displacement distributions are shown in 

Fig. 20, for better imagination. This figure clearly illustrates the propagation of the displacement wave through the 

medium. Since the backplane of the domain is fixed, the thermal shock leads to movements in the negative direction 

of the x-direction (negative u’), as Fig. 21 shows. However, in the wave reflection period, the sign of this 

displacement changes. 
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Fig.19 

Distributions of the temperature-rise at various time instants, after the shock removal. The thermal wave propagation may 

readily be seen. 
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Fig.20 

Time variations of the displacement wave, for various 

sections of the medium due to thermal shock. 
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Fig.21 

Propagation of the displacement wave in the medium due to 

thermal shock. 
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Fig. 22 demonstrates time variations of the stress at various sections of the body and the stress wave propagation. 

When the wave reaches the fixed end of the medium, its amplitude increases by a small amount, and a transition 

from the wave propagation to wave conversion, i.e., reflection begins. Since the thermal shock induces abrupt 

expansion at the early times of the wave propagation, the resulting stresses are tensile, at the earlier instants.  
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Fig.22 

Propagation the stress wave at distinct sections of the 

medium due to thermal shock. 

6    CONCLUSIONS 

In this research, thermoelastic wave propagation, reflection, as well as the mixed phenomenon, are investigated. 

Some of the novelties of the present study can be presented as follow: 

 Using the most general and nonlinear form of the strain tensor (Green’s tensor) in terms of the 

displacement component. Furthermore, to account for the probability of large deformations, the second 

Piola-Kirchhoff stress tensor is employed. 

 Nonlinear finite element terms are expanded according to new ideas of the weak formulation. 

 An appropriate procedure for incorporation of the mechanical and thermal loading in the obtained finite 

element formulation is proposed, in conjunction with proposing an adequate algorithm for simultaneously 

treating the time-dependency and nonlinearity of final equations. 

 Investigation of effects of the non-linear kinematic terms associated with the large deformations.     

Some of the drawn practical conclusions are: 

 The stress and thermal waves have interactions; compressive stress can lead to a temperature rise whereas 

tensile stress may lead to a local temperature decrease. 

 The final temperature is the outcome of the combination of the consecutive thermal wave propagations and 

reflections. 

 In contrast to traction, thermal shock induces tensile stresses in the medium at time instants immediately 

followed by the shock. Therefore, in contrast to the compressive traction, the thermal shock may assist the 

crack propagation mechanism. It is evident that in contrast to the theoretical results, the subsequent stress 

domains (e.g., those associated with the reflection period) are smaller, due to the structural damping.  

 The terms associated with the large deformations show noticeable effects on the responses but do not alter 

the temperature rise, displacement, and stress distribution remarkably. 

 Neglecting the non-linear terms leads to larger stresses and displacements and smaller speeds of wave 

propagation. 

 In the non-linear analysis, no fixed speed of wave propagation can be defined. 
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