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 ABSTRACT 

 In this work, a nonlinear investigation of non-homogeneous varying 

thickness circular plates resting on elastic foundations under the 

influence of the magnetic field is investigated. The non-homogeneity of 

the circular plates’ material is presumed to occur due to linear and 

parabolic changes in Young’s modulus likewise the density along the 

radial direction in a unique manner. The geometric Von Kármán 

equations are used in modelling the governing differential equations. 

The transverse deflection is approximated using an assumed single 

term mode shape while the central deflection in form of Duffing’s 

equation is obtained using the Galerkin method.  Subsequently, the 

semi-analytical solutions are provided using the Optimal Homotopy 

Asymptotic Method (OHAM), the analytical solutions are used for 

parametric investigation. The results in this work are in good harmony 

with past results in the literature. From the results, it is realized that the 

nonlinear frequency of the circular plate increases with an increase in 

the linear elastic foundation. Also, the results showed that clamped 

edge and simply supported edge condition produced the same 

hardening nonlinearity. However, varying taper and non-homogeneity 

lower the nonlinear frequency ratio. Also, maximum deflection occurs 

when excitation force is zero, and attenuation of deflection is observed 

due to the presence of a magnetic field, varying thickness, 

homogeneity, and elastic foundation. It is anticipated that the 

discoveries from this research will boost the design of structures 

subjected to vibration.  

                                        © 2021 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ITH the advent of modern science and technology, structures under magnetic field usage in different fields 
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of industry have been intensified. Consequently, higher demands for the design of modern machinery are put 

forward, that is, the dynamic feature of the structure should be fully considered in the structure design process. Thus, 

it is very germane to scrutinize the dynamic behavior of such plates under the effect of external force to avoid 

resonance. Many authors had worked on nonlinear vibration of variable thickness plates. In the problem of the 

dynamic behavior of plates under an in-plane force, Zhiming [1] analyzed the nonlinear vibration of exponential 

varying thickness circular plates using Galerkin and Perturbation method. The influence of the thickness variation 

was considered and it was found out that, increasing the thickness increases the nonlinear natural frequency. In 

another study, Wattanasakulpong and Charoensuk [2] obtained solutions for the vibration of stepped beams 

comprised of functionally graded material (FGM) plates using the Differential Transformation Method. The author 

obtained the differential governing equation using Hamilton’s principle. It was detected that the value of natural 

frequencies increases with foundation stiffness increment. In another work, Chakravorty [3] investigated the bending 

and buckling of the annular hole circular plate of variable thickness under symmetric loading using the exact 

method. It was found out that, no buckling in the presumed finite body deflection of the annular plate. Hu and Wang 

[4] worked on a circular plate under the magnetic field. Also, [5] obtained buckling loads through analytical 

methods. There are sizeable numbers of publications on the analysis of FGM plates under external loading. [6] 

analyzed plate vibration based on classical and shear order deformation plate theories using an analytical method for 

free vibration. Results obtained show that buckling mode numbers fluctuate with power-law index variation. In a 

later work, Shishesaz et al. [7] used a GDQ method for the investigation of magneto-elastic analysis of annular 

FGM plates.  Banerjee [8] studied large deflection of clamped edge circular plates using Dutta and Banerjee 

equations. Based on the results, the increase in values of thickness the deflection of the circular plate increases for 

clamped edge condition. In another study, Shariyat et al. [9] adopted the principle of complex modulus laterally on 

an elastic-viscoelastic plate while the power series solution is used to obtain the solution. It was realized that an 

increase in thickness, foundation stiffness, and material loss factor leads to higher natural frequencies. For real-life 

problems, the adoption of two-parameter foundations predicts a better result than only Winkler elastic foundation 

because of the provision for cohesion among the spring elements. The present research adopts three-parameter 

foundations and is peculiar to the railway track. To investigate the response of plates resting on elastic foundations, 

Gupta et al. [10] studied the free vibration response of non-homogenous, variable thickness rectangular on elastic 

foundation using the Differential Quadrature Method. The authors employed classical plate theory for the 

formulation of the governing equation. Also, Malekzadeh [11] adopted the GDQ method to analyze FGM plates 

placed on elastic foundations. In this study, geometric Von Kármán nonlinear equations are used to cater for 

nonlinear strain in the governing equation. This condition is of greater importance when the plate is subjected to the 

vibration amplitude of the equal order of the plate thickness. There is a huge number of pieces of literature 

concerning plate theories and plate dynamics. Meanwhile, Kamal and Durvasula [12] used Chebyshev polynomial 

using the Lanczos technique (analytical method) to investigate circular plate bending resting on an elastic 

foundation. Yazdi [13] employed the Homotopy perturbation method (HPM) to determine the deflection and 

frequency ratio of circular plates on three-parameter foundations. It was observed that increasing the elastic 

foundation parameters and orthotropic parameter value results in a decrease frequency ratio. [14,15] used the Ritz 

method in analyzing free vibration of varying thickness and non-homogenous plates. In another work, [16,17] 

investigated the dynamic analysis of plate resting on the three-parameter foundation. Touze et al. [18] studied 

nonlinear examination of circular plates using the Von Kármán principle. Khalsa [19,20] investigated thermoelastic 

large deflection bending analysis of elliptical plate resting on elastic foundations. In another work, [21-25] studied 

dynamic behaviour of nanoplates. Findings had shown that nonlinear problems are not easy to analyze. This is 

because of the complexity introduced as a direct result of a nonlinear variable, thereby limiting the choice of 

methods that may be adopted to obtain accurate solutions. The use of numerical solutions requires stability and 

convergence studies which increase the computation time and cost. More so, the exact method requires a sound 

knowledge of mathematics coupled with the challenges of handling nonlinear problems. Semi-analytical methods 

are highly effective in handling nonlinear problems. Some of them are associated with few challenges. GDQ and 

Power series methods also have limitations of defining valid function and divergence of series solutions. Galerkin 

and Perturbation method also requires finding insignificant perturbation parameters. The difficulty of obtaining 

Chebyshev polynomial is also a limitation. The need for a symbolic solution prompts the use of the semi-analytical 

method. [13,26] considered the use of the HPM for the analysis of circular plates. Zhong [27] applied HAM in 

obtaining a solution for the Von Karman plate. Though HPM and HAM are reliable method of solution for the 

nonlinear problem but suffers the setback of embedded parameters and initial solution with direct implication on 

timing and cost of the computation. OHAM is by far a more effective method for solving a strongly nonlinear 

problem, easy to use, versatile and improvement on HPM. The edge OHAM has over other semi-analytical methods 

justifies the choice for this study. 
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The previous investigations into the nonlinear analysis of non-homogeneous varying thickness circular plates on 

elastic foundations as reviewed above have shown that a study of nonlinear vibration analysis of variable thickness 

circular plate under magnetic field resting on three-parameter elastic foundations using OHAM has not been 

investigated. Therefore, the present study concentrates on the dynamic analysis of non-homogeneous varying 

thickness circular plates placed on three-parameter elastic foundations under the impact of the magnetic field using 

the OHAM. Part of the novelties of this study is the consideration of various variations in thickness, homogeneity, 

and density under magnetic field. Parametric studies also conducted using the analytical solution obtained. 

2    PROPLEM FORMULATION AND MATHEMATICAL ANALYSIS  

Considering a nonhomogeneous, linearly varying circular plate under the impact of magnetic field resting on three-

parameter foundations as illustrated in Fig. 1. The circular plate is resting on a linear, nonlinear Winkler and 

Pasternak foundation. The governing equations as reported by [13,26, 28] are: 
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where t  is the time, r is the radial coordinate, w is the transverse deflection, E  is Young’s modulus of the plate. The 

Winkler foundation is wk , sk  is the Pasternak foundation, pk  the nonlinear Winkler.
 0Q  is the uniformly distributed 

transverse load,  is the excitation frequency while   is the material density, h is the plate thickness, flexural 

rigidity 3 2/12(1 )D Eh   , Boz  is the external magnetic field, f is the Airy stress and Poisson’s ratio is v. Using 

dimensionless parameters 
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Assuming  3 2/12(1 )mEh v   , then,  
3

( )D g R . Two variation cases considered are: 

 Linear variation of plate thickness, non-homogeneity of plate material variation in the radial direction. The 

thickness h of the plate at an arbitrary point is anticipated to be 0( ) (1 )h R h R  , the non-homogeneity 

parameter is 0 0(1 ), (1 )R E E R       and 0 (1 ), 0 1wK K R     .  
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Therefore, 2 2 3 31 3 3D R R R          

 Parabolic variation of plate thickness, non-homogeneity of plate material in the radial direction. 

 Parabolic thickness 2

0( ) (1 )h R h R  , the non-homogeneity parameter is 2 2

0 0(1 ), (1 )R E E R       ,   

and 2

0 (1 ), 0 1wK K R     . Where 
0 0 0 0, , ,h E K  are the thickness of the plate, density, Young modulus of 

the plate material at the middle of the plate, and Winkler foundation parameter, respectively. While , , ,     are the 

taper parameter, non-homogeneity, and Winkler constant parameters at R   respectively.
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Fig.1 

Showing varying thickness circular plate on three-parameter 

foundations. 

 

Figs. 2-5 show some industrial applications of the problem under consideration. 

 

 

 

 

 

 

 

 
Fig.2 

Train moving on the railway track.Source: Google search. 

  

 

 

 

 

 

 

 

 

Fig.3 

Circular Magnetic grill cover. Source: Google search. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Circular magnetic object lifter. Source: Google search. 
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Fig.5 

Automobile brake system. Source: Google search. 

3    METHOD OF SOLUTION   

An approximate solution is obtained by assuming the non-linear vibrations to have the same spatial shape, i.e., 
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Substitute Eq. (6) into Eq. (3) and solve the ODE 
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The value F is accordingly found to be finite at the origin
1 0c  . Additionally,

3c  is the integration constant to be 

determined from in-plane boundary conditions. The Substitution of the expressions for W and F given by Eqs. (6) 

and (7) respectively into Eq. (4) and the application of the Galerkin procedure in the nonlinear time differential 

equation obtained in the form 
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We have 
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where the coefficients of the duffing equation are expressed for Linear Variation as; 
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Also, the coefficients of the duffing equation are expressed for Parabolic Variation as: 
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(20) 

3.1.1 Boundary condition 

The initial and boundary conditions are 

 

(0, ) , (0, ) 0,ar r    (21) 

 

The boundary conditions  considered for plates with outer edge elastically restrained, coupled with rotational 

then in-plane stiffnesses *

bk  and *

ik , exposed to an outer edge in-plane radial force *N are: 

 
*

* * * *: , ,r b r i

w
r a M k N N k u
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
 

 

(22) 
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where *u is the radial displacement at the midplane. Introduce dimensionless parameters ,b ik k and N 
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(23) 

 

The dimensionless boundary conditions are 

 

  

 

 

 

 

 

Fig.6 

Schematic of a simply supported condition.        
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(26) 

 

Eqs. (23) and (24) are used to find constants 
2c  and 

4c  while the constant of integration
3c  is obtained using Eq. 

(26) 
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(28) 

 

Similarly, for the Clamped condition. 

 

  

 

 

 

 

 

Fig.7 

Schematic of a clamped-clamped supported condition.     
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(29) 

3.1.2 Description of optimal homotopy asymptotic method  

To illustrate the operating principle, the following general nonlinear governing equation of the form is assumed. 

( )
( ( ) ( ) ( ( ))) 0, , ( ), 0, ,s

s s s

t
L t g t N t t B t r

d

dt


  

 
      

 
 

 

(30) 

 

where L  is the linear operator, t signifies the independent variable, ( )s t  is the unknown function, N denotes the 

nonlinear operator,   is the domain, B represents the boundary operator, and   depicts the boundary of the 

domain. By means of OHAM [29,30]  

 

   (1 ) ( ( , )) ( ) ( ) ( ( , ) ( ) ( ( , )) ,p L t p g t H p L t p g t N t p        
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t p
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(31) 

 

where  0,1p   is an embedding operator, ( )H p  is a nonzero auxiliary function 0p  , and ( , )t p  is an unknown 

function when 0p   and 1p  , it holds 
0( ,0) ( )t t   and ( ,1) ( )t t  . Therefore, p it varies from 0 to 1 while it 

0 ( )t is obtained from Eq. (31) for 0p   

3.1.2.1 Zero-order deformation 
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(32) 

 

The auxiliary function ( )H p  in the form 

 
2

1 2( )H p pC p C    (33) 

 

where
1C  and 

2C are constants. By expanding the Taylor series of 
1( , , )t p C about p, we obtain 
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Now substituting Eq. (34) in Eq. (31) and equating the equal powers of p, we obtain the following equations: 

3.1.2.2 The first and second-order problems are as follows 
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(36) 

 

The general governing equations ( )k t are given by; 
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(37) 

 

where 2, 3,k   0 1( ( ), ( ), , ( )m k jN t t t     the coefficient of mp  the expansion of ( ( , , ))iN t p C  about the 

embedding parameter p. 
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(38) 

 

It is revealed that the convergence of Eq. (33) is a dependent of the auxiliary constants 
1 2, ,C C  at 1p  , one 

has; 
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(39) 

 

Substitute Eq. (39) into Eq. (30) will give 

 

1 2 1 2 1 2( , ,C , C ) ( ( , ,C , C )) ( ) ( ( , ,C , C ))m m mR t C L t C g t N t C     (40) 

 

If 0R  then   will be the exact solution. There are many methods of residuals to find the optimal 

value , 1,2,3,iC i m . We may apply the least-squares method. 
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where R is residual and; 
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(43) 

 

where a  and b  are properly chosen numbers to locate the desired , 1,2,3,iC i m  

3.1.3 Application of the OHAM 

Considering the following Duffing equation 

 
2 3
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We can construct an OHAM in this form; 
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where   is the damping coefficient,   is the cubic nonlinearity,   is the exciting frequency and 2

0 /K M   

which is the natural frequency, a is the amplitude of vibration. For primary resonance, the exciting frequency   is 

presumed to be close to 
0  is a non-zero auxiliary function for 0.p   

The solution can be expanded in a series of; 
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1 2( , )H t p pc p c   
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(46) 

 

Generally, one iteration cannot be done due to the complicated nonlinear equation. Therefore, an additional 

iteration method is needed. As such, the natural frequency  is beneficial. Using the parameter p the succeeding 

equation is obtained. 
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where   is the approximate nonlinear frequency 
0  is the linear natural frequency and 

j
 
are unknowns arriving 

from by removing the secularity conditions due to inhomogeneity in the expression [31].  
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The expansion is like the Lindstedt-Poincaré method, we introduce a new variable   the unknown period T. 
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(49) 

 

where  is the natural frequency. Then Eq. (51) can be rephrased as: 
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Then substituting Eq. (46) and Eq. (47) into (45), and equating terms of identical powers of p, yields the 

following equations.  
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Solving Eq. (51) along with the conditions, we have 

 

0 cos( ),A   (54) 

 

Substitute Eq. (54) into Eq. (52), we have 
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To eradicate the secular terms, the following should be satisfied 
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Therefore 
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A particular solution of Eq. (55) is 
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Substituting
1 0 1, ,    and into Eq. (53) one gets further iterations. 
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To eliminate the secular terms, the following should be satisfied 
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Therefore  
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A particular solution of Eq. (59) is 
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Accordingly, the first order estimated solution of Eq. (46) is 
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Also, applying Eq. (50), we have the first-order nonlinear frequency ratio 
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Substituting Eq. (63) into Eq. (46), we get the residual 
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where ϕ is Eq. (63). Therefore, the residual equal 
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For 
1C  and 

2C we minimize the function as follows: 
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The unknown constant
1C  and 

2C  can be determined by using the following conditions 
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We obtained, 

 
9 6

1 2C =2.4025 10 ,C = 5.271143 10 ,   (70) 

4    RESULTS  

The problem titled nonlinear investigation of non-homogeneous varying thickness circular plates resting on three-

parameter elastic foundations under the impact of the magnetic field is investigated and the solutions are validated 

with results reported in cited literature Haterbouch and Benamar [32] to show the reliability and efficiency of 

OHAM. The circular plate material non-homogeneity is presumed to arise because of the parabolic and linear 

variation in Young's modulus likewise the density along the radial direction. Non-uniform thickness circular plate of 

the following material properties is considered: 

Young modulus of  210E GPa , material density 37850 /kg m  ,  the circular plate radius is  considered to 

be 1m, the initial thickness of 0.03h m , Poisson's ratio 0.3  , a small external force 9 2

0 1.5 10 /Q N m   is 

considered and the external magnetic field amplitude adopted is 
0 400 /zB A m . Validation of the solution is 

presented in Table 1. A comparison study was done for a uniform thickness clamped edge isotropic circular plate, 

the investigation revealed that the proposed results are in good harmony with values presented by [32], maximum of 

0.51% discrepancy is observed. Table 2 shows the comparison of the solutions obtained with OHAM with numerical 

using the Runge-Kutta method. An almost identical result is observed.  The computational time for different values 

of amplitude along with the constant values of C’s is displayed in Table 3. 

 



Nonlinear Investigation of Magnetic Influence on Dynamic ….                           474 
 

© 2021 IAU, Arak Branch 

Table 1  

Frequency ratio for a uniform thickness clamped edge isotropic circular plate of different values of non-dimensional vibration 

amplitudes. 

Wmax /h [32] Present study % Variation 

0.2 1.0072 1.007 0.02 

0.4 1.0284 1.0238 0.46 

0.5 1.0439 1.0414 0.25 

0.6 1.0623 1.0597 0.26 

0.8 1.1073 1.1049 0.24 

1 1.1615 1.1564 0.51 

 

 

Table 2 

Deflection verification for large amplitude vibration. 

t A = 1 A = 2 A = 4 

  RK4 OHAM 
Relative 

error 
RK4 OHAM 

Relative 

error 
RK4 OHAM 

Relative 

error 

0 1.00000 1.00000 0.0000 2.00000 2.00000 0.0000 4.00000 4.00000 0.00000 

1 -0.07960 -0.07970 0.0001 -0.12800 -0.12900 0.0010 0.22302 0.22350 0.00048 

2 0.00660 0.00660 0.0000 0.01040 0.01040 0.0000 -0.01865 -0.01860 0.00005 

3 -0.00040 -0.00040 0.0000 -0.00070 -0.00060 0.0001 0.00172 0.00170 0.00002 

4 0.00020 0.00025 0.0001 0.00020 0.00020 0.0000 -0.00002 -0.00001 0.00001 

5 0.00000 0.00000 0.0000 -0.00010 -0.00011 0.0000 -0.00004 -0.00005 0.00001 

6 -0.00020 -0.00060 0.0004 -0.00020 -0.00020 0.0000 -0.00016 -0.00020 0.00004 

7 -0.00010 -0.00010 0.0000 -0.00010 -0.00010 0.0000 -0.00012 -0.00010 0.00002 

8 0.00000 0.00000 0.0000 0.00000 0.00003 0.0000 0.00002 0.00000 0.00002 

9 0.00010 0.00010 0.0000 0.00010 0.00020 0.0001 0.00015 0.00010 0.00005 

10 0.00010 0.00030 0.0002 0.00010 0.00010 0.0000 0.00014 0.00030 0.00016 

11 0.00000 0.00000 0.0000 0.00000 0.00001 0.0000 0.00000 0.00000 0.00000 

12 -0.00010 -0.00010 0.0000 -0.00010 -0.00010 0.0000 -0.00014 -0.00010 0.00004 

13 -0.00010 -0.00020 0.0001 -0.00010 -0.00020 0.0001 -0.00015 -0.00010 0.00005 

14 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 -0.00002 0.00000 0.00002 

15 0.00010 0.00010 0.0000 0.00010 0.00010 0.0000 0.00012 0.00010 0.00002 

16 0.00020 0.00020 0.0000 0.00020 0.00050 0.0003 0.00016 0.00020 0.00004 

17 0.00000 0.00001 0.0000 0.00000 0.00000 0.0000 0.00005 0.00000 0.00005 

18 -0.00010 -0.00010 0.0000 -0.00010 -0.00010 0.0000 -0.00011 -0.00010 0.00001 

19 -0.00020 -0.00030 0.0001 -0.00020 -0.00030 0.0001 -0.00016 -0.00020 0.00004 

20 -0.00010 -0.00010 0.0000 -0.00010 -0.00010 0.0000 -0.00007 -0.00010 0.00003 

 

 

Table 3  

Showing the Coefficient of C1 and C2 given by OHAM for different values of a with computation time. 

A C1 C2 Computational time (sec) 

0.10 2.40E-09 5.27E+06 80.43 

0.20 -9.11E-09 6.64E+05 35.98 

0.30 -3.59E-09 1.98E+05 30.57 

0.40 1.13E-08 8.43E+04 32.21 

0.50 -3.52E-09 4.35E+04 32.73 

0.60 5.10E-09 2.53E+04 36.14 

0.80 2.15E-01 2.37E+05 122.2 

1.00 7.17E-09 5.63E+03 39.01 

2.00 -2.37E+00 -5.11E+07 98.93 

4.00 2.47E-08 1.08E+02 123.93 

4.1 Effect of foundation parameters 

To study the effect of elastic foundations ,p sk k and wk on the circular plate behaviour, the nonlinear analysis is 

carried out and the obtained results are illustrated in Figs.8-15. The influence of the elastic foundations’ variation on 

the amplitude with the nonlinear natural frequency is scrutinized and shown in Figs.8, 9, 12-14. From the results, 

hardening nonlinearity is observed. The nonlinear frequency increases as the stiffness values of the three parameters 
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foundation increases. This finding is in line with the observation made by Dumir [17]. However, for linear Winkler 

foundation Fig. 12, the nonlinear frequency decreases as the values of the foundation stiffness increases. Increase of 

foundation stiffness, the plate vibration deflection tends 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Influence of nonlinear Winkler foundation stiffness variation 

on the amplitude of vibration of linear varying parameters 

circular plate. 

 

 

 

 

 

 

 

 

Fig.9 

Influence of Pasternak foundation stiffness variation on the 

amplitude of vibration of linear varying parameters circular 

plate. 

 

 

 

 

 

 

 

 

 

 

 
Fig.10 

Influence of nonlinear Winkler foundation stiffness variation 

on deflection of linear varying thickness circular plate. 

  

 

 

 

 

 

 

 

 

Fig.11 

Influence of combined foundation stiffness variation on the 

deflection of linear varying thickness circular plate. 
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Fig.12 

Influence of Winkler foundation stiffness variation on the 

amplitude of vibration for circular parabolic parameters 

variation plate. 

 

 

 

 

 

 

 

 

 

Fig.13 

Influence of Pasternak foundation stiffness variation on the 

amplitude of vibration for circular parabolic plate. 

 

 

 

 

 

 

 

 

 
Fig.14 

Influence of nonlinear Winkler foundation stiffness variation 

on the amplitude of vibration for circular parabolic plate. 

 

 

 

 

 

 

 

 

 

 

Fig.15 

Influence of combined foundation stiffness variation on the 

deflection of parabolic varying thickness circular plate. 

 

This can serve as the controlling parameter to the model nonlinearity. Figs. 10,11 and 15 show that the circular 

plate deflection decreases with an increase in nonlinear foundation parameters. This may be attributed to the fact 

that, as the shear stiffness of the foundation increases, this makes the plate stronger resulting in attenuation of the 

deflection Civalek [33]. 
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4.2 Primary resonance response 

To further analyze the influence of primary resonance on the parabolic and linear varying thickness with non-

homogenous plate, the partial differential governing equations are transformed into the nonlinear ordinary equation 

through the Galerkin method. Subsequently, the Duffing equation obtained is analyzed using OHAM, and results are 

presented in Fig.16 and 17. The results further show that the nonlinear natural frequency is a function of amplitude. 

Increasing the forcing term increase the circular plate vibration amplitude. 

 

 

 

 

 

 

 

 

 

Fig.16 

Influence of varying vibration amplitude on the nonlinear 

frequency-amplitude response curves for linear variation of 

parameters. 

 

 

 

 

 

 

 

 

Fig.17 

Influence of varying vibration amplitude on the nonlinear 

frequency-amplitude response curves for parabolic variation 

of parameters. 

4.3 Effect of the magnetic field 

The magnetic field influence is presented in Figs. 18, 19, 22, and 23. Based on the finding illustrated in Figs. 18 and 

22, as the magnetic parameter increases, the deflection on the plate decreases. Attenuation of the deflection means 

that the magnetic field acts like a damper to the system which further prevents damage in the system as a direct 

result of vibration. Fig. 19 depicts that, the more the magnetic induction intensity is, the lower the nonlinear 

amplitude response of the circular plate linear varying thickness. Hu and Wang [34]. However, the result illustrated 

in Fig. 23 for parabolic varying parameters circular plate shows a contrary response to linear variation parameters. 

The nonlinear frequency increases as the values of the magnetic parameter increases. 

 

 

 

 

 

 

 

 

 

 

Fig.18 

Effect of circular plate magnetic field deflection of linear 

varying thickness. 
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Fig.19 

Effect of circular plate magnetic field on frequency-

amplitude response curves of linear varying thickness. 

 

 

 

 

 

 

 

 

 
Fig.20 

Circular plate midpoint deflection time history of linear 

varying thickness. 

 

 

 

 

 

 

 

 

 

 

 
Fig.21 

Circular plate midpoint deflection time history comparison of 

the linear and nonlinear analysis of linear varying thickness. 

 

Figs. 20 and 24 illustrate the nonlinear investigation of the midpoint time-deflection history of a circular plate of 

linear and parabolic thickness variation. While Figs. 21 and 25 show the assessment of linear with nonlinear 

vibration of the plate. It further shows from the diagram that, the nonlinear natural frequency is a function of 

amplitude, the higher the values of the amplitude the more pronounced is the variance between linear and nonlinear 

natural frequency. 

 

 

 

 

 

 

 

 

 

 

Fig.22 

Effect of  circular plate magnetic field deflection of parabolic 

varying thickness circular plate. 
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Fig.23 

Effect of circular plate magnetic field on frequency-

amplitude response curves of parabolic varying thickness. 

 

 

 

 

 

 

 

 
Fig.24 

Circular plate midpoint deflection time history analysis of 

parabolic varying thickness. 

 

 

 

 

 

 

 
Fig.25 

Circular plate midpoint deflection time history comparison of 

the linear and nonlinear analysis for parabolic varying 

thickness. 

4.4 Influence of taper variation  

Taper parameter variational influence on the nonlinear frequency response of the circular plate is studied and 

presented in Figs.26 and 28. In this analysis, homogeneity constant Young’s modulus η and density are taken as 

constant values respectively. Figs. 26 and 28 show taper parameter variational influence on the nonlinear frequency 

versus amplitude curve. It can be seen that; the nonlinear frequency of the varying thickness circular plate decreases 

with an increase in taper values. This is in harmony with [8,15] findings. 

 

 

 

 

 

 

 

 

 

Fig.26 

Influence of taper variation on the amplitude of vibration for 

linear varying parameters circular plate. 



Nonlinear Investigation of Magnetic Influence on Dynamic ….                           480 
 

© 2021 IAU, Arak Branch 

 

 

 

 

 

 

 

 

 

Fig.27 

Influence of taper variation on circular plate maximum 

deflection of linear varying thickness. 

  

 

 

 

 

 
Fig.28 

Influence of taper variation on the amplitude of vibration for 

parabolic varying parameters. 

  

 

 

 

 

 

 
Fig.29 

Influence of taper variation on circular plate maximum 

deflection of parabolic varying thickness. 

 

while Figs.27 and 29 illustrate the attenuation of deflection due to an increase in the thickness of the circular plate. 

This is an obvious fact, the increase in stiffness of the plate, due to thickness increment lowers the deflection of the 

plate.  

4.5 Effects of non-homogeneity variation  

Figs.30-36 show the impact of circular plate non-homogeneity response of linear and parabolic varying thickness 

under magnetic field. This is obtained by linear and parabolic variation of the values of the density and Young’s 

modulus of the circular plate. It is discovered that as the non-homogeneity values increases, the deflection of the 

circular plate decreases. Also, the nonlinear frequency of the varying thickness circular plate decreases with an 

increase in non-homogeneity values. The non-homogeneity being increase in flexural rigidity increases which leads 

to a decrease in the flexibility of the plate and consequently lowers the deflection [15]. 

 

 

 

 

 

 

 

 

Fig.30 

Influence of non-homogeneity variation on the amplitude of 

vibration for linear varying parameters circular plate. 



481                                  S.A. Salawu et.al. 

 
 

© 2021 IAU, Arak Branch 

 

 

 

 

 

 

 

 

Fig.31 

Influence of non-homogeneity variation on maximum 

deflection linear varying thickness. 

 

 

 

 

 

 

 
Fig.32 

Influence of density variation on the maximum deflection of 

the linear varying thickness. 

 

 

 

 

 

 

 

 
Fig.33 

Influence of density variation on the maximum deflection of 

the parabolic varying thickness. 

 

 

 

 

 

 

 
Fig.34 

Influence of non-homogeneity variation on the amplitude of 

vibration for parabolic varying parameters. 

 

 

 

 

 

 

 
Fig.35 

Influence of non-homogeneity variation on the maximum 

deflection of the parabolic varying thickness. 



Nonlinear Investigation of Magnetic Influence on Dynamic ….                           482 
 

© 2021 IAU, Arak Branch 

  

 

 

 

 

 

 
Fig.36 

Influence of non-homogeneity variation on the amplitude of 

vibration for parabolic varying parameters. 

4.6 Effect on boundary condition 

To further study the influence of boundary conditions on the nonlinear frequency with amplitude, analysis is done, 

and the results are shown in Figs.37 and 38. It is clearly shown from the presented result that, vibration amplitude is 

lower for clamped edge condition than simply supported condition. The lower frequency ratio for clamped edge is a 

result of higher stiffness of the linear and parabolic varying thickness isotropic circular plate compared to simply 

supported condition. 

 

 

 

 

 

 

 

 

 
Fig.37 

Influence of boundary conditions on circular plate nonlinear 

amplitude-frequency response curves of the linear varying 

parameters. 

 

 

 

 

 

 

 
Fig.38 

Influence of boundary conditions on isotropic circular plate 

nonlinear amplitude-frequency response curves of the 

parabolic varying parameters. 

5    CONCLUSIONS 

Nonlinear investigation of non-homogeneous varying thickness circular plates resting on three-parameter elastic 

foundations under the influence of the magnetic field is investigated. The nonlinear partial differential governing 

equation is transformed into the Duffing equation through the Galerkin method for transient state vibration analysis. 

The Ordinary differential equations were solved using Optimal Homotopy Asymptotic Method. The accuracies of 

the developed analytical solutions were verified with the results generated by some other methods as presented in the 

past works. The analytical solutions obtained were used to examine the effects of elastic foundations, boundary 
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conditions, non-homogeneity, thickness, and magnetic field on the dynamic response of the varying thickness 

circular plate. From the parametric studies, the following was observed: 

1) Nonlinear frequency ratio increases with an increase in the linear elastic foundation. Pasternak parameter 

has a pronounced effect on the nonlinear frequency. Attenuation of maximum deflection occurs due to an 

increase in elastic foundation stiffness. 

2) Maximum deflection and nonlinear frequency versus amplitude response decreases with increases in taper 

constant  

3) Maximum deflection and nonlinear frequency versus amplitude response decrease as the non-homogeneity 

values increases. 

4) The maximum deflection and nonlinear frequency versus amplitude response of the varying thickness 

circular plate decrease as the magnetic field parameters increases. 

5) For primary resonance obtained, vibration amplitude is lower than the thickness of the plate and maximum 

amplitude occurs Q = 0. 

6) Hardening nonlinearity is observed for both clamped and simply supported edge conditions. While the 

clamped edge has a lower amplitude. 

From the present study, it can be concluded that OHAM is found to be powerful. More so, amazingly simple to 

apply when dealing with vibration plate involving variable thickness. The ability to correct the domain challenge is 

of immense benefit to the method. It is hoped that; these findings will add input to the existing fact in the dynamic 

theory of plate vibration. 
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