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 ABSTRACT 

 In this work, analysis of nonlinear vibration of piezoelectric nanobeam 

in a thermo-magnetic environment embedded in Winkler, Pasternak, 

quadratic and cubic nonlinear elastic media for simply supported and 

clamped boundary conditions is presented. With the considerations of 

Von- Karman geometric nonlinearity effect and with the aids of 

nonlocal elasticity theory as well as Euler–Bernoulli beam model, the 

equation of motion for the nanobeam is derived using Hamilton’s 

principle. The nonlinear dynamic model is solved using Galerkin-

decomposition coupled with iteration perturbation method. From the 

parametric studies, it is shown that the frequency of the nanobeam 

increases at low temperatures but decreases at high temperatures. The 

nonlocal parameter decreases the frequencies of the piezoelectric 

nanobeam. An increase in the quadratic nonlinear elastic medium 

stiffness causes a decrease in the first mode of the nanobeam with 

clamped-clamped supports and an increase in all modes of the simply 

supported nanobeam at both low and high temperatures. When the 

magnetic force, cubic nonlinear elastic medium stiffness, and 

amplitude increase, there is an increase in all mode frequencies of the 

nanobeam. An increase in the temperature change at high temperature 

reduces the frequency ratio but at low or room temperature, an increase 

in temperature change, increases the frequency ratio of the structure 

nanotube. The significance of this study is evident in the design and 

applications of nanobeams in thermal and magnetic environments. 

                                  © 2022 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

HE continuous and increasing wide applications of nanomaterials have been tremendous following the 

discovery of the novel nanostructure materials by Iijima [1]. Such expanding applications of nanomaterials are 

evident in the developments of nanoelectronics, nanodevices, nanomechanical systems, nanobiological, 

______ 
*
Corresponding author. Tel.: +23 47034717417.  

E-mail address: mikegbeminiyi@gmail.com (M.G. Sobamowo) 

T 



                                                                                                                                                  M.G. Sobamowo                         222 
 

© 2022 IAU, Arak Branch 

nanocomposites due to its excellent properties and high strength to weight ratio. However, large deformations within 

the elastic limit and high frequency of vibrate at frequency in the order of GHz and THz are experienced in the 

applications of carbon nanotubes. Consequently, there have been increasing research interests directed towards the 

investigations into the dynamic behaviours of the novel structures [2-9].  In the pools of the research studies, Sears 

and Batra [10] studied the buckling behaviour of carbon nanotubes subjected to axial compression. Yoon et al. [11] 

explored the noncoaxial resonance of an isolated carbon nanotube with multiple walls while Wang and Cai [12] 

presented an extended study on the same work with the consideration of the effects of initial stress on the 

nanostructure. Wang et al. [13] analyzed the dynamic behaviour of carbon nanotube with multiple walls using 

Timoshenko beam model. Zhang et al. [14] examined the impact of compressive axial load on the transverse 

vibrations of carbon nanotube with double walls. Elishakoff and Pentaras [15] presented the fundamental natural 

frequencies of carbon nanotube with double walls. Buks and Yurke [16] accessed the nonlinear nanomechanical 

resonator of mass detection while [17] Postma et al. [18] determined the dynamic range of carbon nanostructure. Fu 

et al. [18] submitted nonlinear vibration analysis of embedded nanotubes. Vibration of carbon nanotube with 

electrical actuator was studied by some authors [19-24].  The nonlinear vibrations of the carbon nanotube with 

double walls was submitted by Hawwa and Al-Qahtani [24]. Hajnayeb and Khadem [25] studied the nonlinear 

dynamic behaviour and stability of the double-walled nanotube subjected to electrostatic actuation. Xu et al. [26] 

considers nonlinear intertube van der Waals forces on the dynamic response of carbon nanotube with double walls.  

With the aids of nonlocal Timoshenko beam model. Lei et al. [27] explored surface effects on the frequency of 

vibration of carbon nanotube with double walls. Ghorbanpour et al. [28] used shell model to analyze nonlinear 

nonlocal vibration of fluid-conveying embedded carbon nanotubes with double walls. The analyses of the carbon 

nanotubes were extended to multi-walled carbon nanotubes (MWCNTs) [29-35]. Sobamowo [36, 37 and 38], 

Sobamowo et al. [39] as well as Arefi and Nahvi [40] studied nonlinear vibration in nano-structures with slightly 

and initial curvature while Cigeroglu and Samandari [41] analyzed the dynamic behaviour of curved nanobeams. 

Studies on vibrations of nanotubes as presented in literatures using experimental measurements, density functional 

theory, molecular dynamics simulations, and classical continuum theories and non-classical continuum theories such 

as nonlocal stress theory, modified couple stress theory, gradient strain theory, and surface elasticity theory.  There 

are some difficulties in the experiment investigations at the nanoscale level. Therefore, majority of the past works 

are based on theoretical investigations using classical continuum models (which do not consider the small-scale 

effects). However, due to their scale-free models as they cannot incorporate the small-scale effects in their 

formulations, the classical continuum theories are inadequate for the accurate predictions of the dynamic behaviours 

of the nanotubes. Such inadequacy in the classical continuum models is corrected in the works of Eringen [42-44] 

and that of Erigen and Edelen [45], where the author developed nonlocal continuum mechanics based on nonlocal 

elasticity theory. Although, some studies in literature have used the nonlocal continuum mechanics to present some 

theoretical investigations [46-67].  Simsek [68] as well as Murmu and Pradhan [69] adopted nonlocal elasticity 

theory to study the nonlinear vibration of a carbon nanotube embedded in an elastic medium. In a recent study, 

Abdullah et al. [70] presented effects of temperature, magnetic field and elastic media on the nonlinear vibration of 

nanobeams.  The authors present very good work and results.  

However, the dynamic response of the nanobeam was not explored and the effect of electric field on the 

vibration characteristics of the nanobeam was not studied. Moreover, to the best of the authors knowledge, a study 

on the effects of electromechanical and thermomagnetic loadings on the nonlinear vibration of nanobeams 

embedded in Winkler, Pasternak, quadratic and cubic nonlinear elastic media has not been presented in literature. 

Therefore, with the aid of iteration perturbation method, the present work focusses on such study. With the 

considerations of Von Karman geometric nonlinearity effect and with the aids of nonlocal elasticity theory and 

Euler–Bernoulli beam model, the equation of motion for the nanobeam is derived using Hamilton’s principle. Also, 

the present analysis used four layers (Winkler, Pasternak, and quadratic and cubic nonlinear layers) which generate 

nonlinearities in the developed dynamic models. Additionally, the impacts of nonlocal parameter, electromechanical 

parameter, magnetic force, elastic media, temperature and amplitude on the dynamic behaviour of the nanotube are 

investigated.  

2    MODEL DEVELOPMENT FOR THE SINGLE_WALLED NANOTUBE 

Consider a nanobeam embedded in linear and nonlinear elastic media as shown in Fig. 1. The nanobeam is subjected 

to stretching effects and resting on Winkler, Pasternak and nonlinear elastic media in a thermo-magnetic 

environment as depicted in the figure.  
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Fig.1 

A piezoelectric nanobeam embedded in linear and nonlinear 

elastic media (Note: only the bottom side of the elastic media 

is shown). 

 
with the applications of nonlocal theory presented by Erigen [42, 43, 44] and that of  Erigen and Edelen [45], the 

relationship between the nonlocal stress–tenso, Euler-Bernoulli theory and Hamilton's principle the following 

equations are developed  
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It is assumed that the midpoint of the nanobeam is subjected to the following initial conditions 
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The following boundary conditions for the multi-walled nanotubes are considered in this work: 

 
Table 1 

The basic functions corresponding to the above boundary conditions.  

                    Cases                                                            Mode shape,  ( )x                    Value of   for the first mode 
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For simply supported (S-S) nanotube, 
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For clamped-clamped supported (C-C) nanotube, 
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Using the following adimensional constants and variables  
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The adimensional form of the governing equation of motion for the nanobeam is given as: 
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and the boundary conditions become. 

For simply supported (S-S) nanotube, 
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For clamped-clamped supported (C-C) nanotube, 

 

(0, ) (1, )
(0, ) 0, 0, (1, ) 0, 0.

w t w t
w t w t

x x

 
   

 
 (8) 

3  SOLUTION METHODOLOGY: GALERKIN DECOMPOSITION AND ITERATION PERTURBATION 

METHOD   

The method of solution for the governing equation include Galerkin decomposition and homotopy perturbation 

methods. As the name implies the Galerkin decomposition method is used to decompose the governing partial 

differential equation of motion can be separated into spatial and temporal parts. The resulting temporal equations are 

solved using iteration perturbation method. 

The procedures for the analysis of the equations are given in the proceeding sections as follows: 

3.1 Galerkin decomposition method 

With the application of Galerkin decomposition procedure, the governing partial differential equations of motion can 

be separated into spatial and temporal parts of the lateral displacement function as: 

 

     ,w x t x q t  (9) 

 

Using one-parameter Galerkin decomposition procedure, one arrives at 
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where  ,R x t is the governing equation of motion for nanobeam i.e.  
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(11) 

 

where  x is the basis or trial or comparison function or normal function, which must satisfy the kinetic boundary 

conditions in Eq. (7) and (8), and  q t is the temporal part (time-dependent function). 

Substituting Eqs. (11) into (10), then multiplying both sides of the resulting equation by  x and integrating it 

for the domain of (0,1) 
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Substitution of Eq. (10) into Eq. (12), gives 
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Therefore, Eq. (16) can be written as: 
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The initial conditions are given as: 
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A is the maximum vibration amplitude of the structure. It can be seen from the above procedures that the apart 

from the fact that the Galerkin decomposition method decomposes governing equation of motion into spatial and 

temporal parts, it also helps in converting the space- and time-dependent partial differential equation to a time-

dependent ordinary differential equation. The nonlinear ordinary differential equation easily be solved using 

numerical methods or approximate analytical methods. In this work, iteration perturbation method is adopted due to 

its simplicity and high level of accuracy. 

4    METHOD OF SOLUTION: ITERATION PERTURBATION METHOD  

In order to solve the nonlinear model in Eq. (18), iteration perturbation method is adopted in the present study.  In 

order to obtain an iteration perturbation solution for the nonlinear equation, an artificial parameter   is introduced. 

Therefore, Eq. (18) becomes: 
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0q  is the initial approximation solution. With the purpose of finding the periodic solution of Eq. (18), an 

initial approximation for zero-order deformation is assumed as: 
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Assuming that  
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Also, for the initial conditions in Eq. (30), we have 
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Arranging Eq. (31) according to the powers of  , gives  
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 ( )oq t Acos t  (39) 

 

which still obeys the assumed solution for the initial approximation. 

In order to solve the first-order equation in Eq. (35), we substitute Eq. (39) into Eq. (35),  
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Collection of like terms in the above Eq. (41), provides 
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If the term  cos t  exists in the RHS of Eq. (42), the secular term  tcos t will appear in the final solution. 

Therefore, the coefficient of  cos t  should be equal to zero which gives 
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The zero-order nonlinear natural frequency can be found by substituting Eq. (43) into Eq. (35). We have 
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where 1b  . Also, it can easily be shown that the solution of Eq. (35) is 
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We can now substitute Eqs. (39) and (48) into Eq. (37), after simplification, we arrived at 
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No secular term in Eq. (49) as a result of 
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From Eqs. (55) and (47), the following facts are established:   
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and  

 

A
b

lim



   (57) 

 

Substitute the equations in Table 1 and Eq. (48) into Eq. (9), one arrives at. For simple supported nanobeam 
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For clamped-clamped nanobeam 
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where  
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Table 2 

Table of Parameters used for the simulations. 

S/N Parameter      Symbol Value 

1 Diameter of armchair single-walled nanotube d 0.678 nm 

2 Length of the nanotube L 6.78 nm 

3 Aspect ratio L/h 10, 20, 50 

4 Height of the nanotube h 0, 0.1, 0.3 nm 

5 Thickness of the nanotube t 0.066 nm 

6 Density of the nanotube ρ 2300 kg/m3 

7 Young Modulus E  5.5 TPa 

8 Poisson’s ratio υ  0.19 

9 Cross-sectional area A  0.1406 nm2 

10 Thermal expansion coefficient for room and low Temperatures αx -1.6×10-6 K-1 

11 Thermal expansion coefficient for high Temperatures αx 1.1×10-6K-1 

12 Second moment of inertia I 8.155×10-3 nm4 

13 Nonlocal parameter (eoa)2 0, 1, 2, 3, 4 nm2 

14 Dimensionless Winkler elastic medium stiffness                           Kw 0 – 50  

15   Dimensionless Pasternak elastic medium stiffness  Kp 0 – 100 

16 Dimensionless quadratic nonlinear elastic medium stiffness   K1 0 – 100  

17 Dimensionless cubic nonlinear elastic medium stiffness                K2’ 0 – 100  

18 Magnetic field permeability  η 103-108 N/A2 

19 Longitudinal magnetic field  Hx                     104-109 A/m 

20 Change in temperature T                0 – 300 K 

21 One dimensional piezoelectric constant  ζ 0.95 

22 Electric field  Ez -1.7 ×107-5×106 
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5    RESULTS AND DISCUSSION   

With the aid of MATLAB, the developed solutions are simulated, and the results are verified with the results of 

previous studies as presented in Tables 3 and 4.  The comparison of the results as presented in the tables show that 

the results of the present study agree very well with the results of the previous studies in literatures. Also, this 

establishes the accuracy of the iteration perturbation method.  

It is presented as shown in the Table 5 that the comparison of the results of linear fundamental frequency of the 

simply-supported nanobeam for various values of aspect ratio and nonlocal parameter and aspect ratio. It is shown in 

the results that the method is valid for a wide range of vibration amplitudes. Also, the method is relatively simple 

and cost effective as compared to the other approximate analytical methods.   

 
Table 3 

Comparison of results of nonlinear frequency ratio for simply supported when 
1 2 0d d

w p m t eHa            . 

                                             h=0.1                                                                         h=0.3 

A         Simsek [68]       Abdullah et al. [70]        Present                Simsek [68]         Abdullah et al. [70]       Present   

0.5         1.02542                 1.0254                    1.0254                    1.04331                1.0433                     1.0433           

1.5         1.20975                 1.2098                    1.2098                    1.34037                1.3404                     1.3404                         

3.5         1.51245                 1.5125                    1.5125                    1.79243                1.7924                     1.7924                     
 

 

Table 4 

Comparison of results of nonlinear frequency ratio for clamped-clamped supported when 1 2 0d d

w p m t eHa            . 

                                             h=0.1                                                                         h=0.3 

A        Simsek [68]       Abdullah et al. [70]        Present               Simsek [68]         Abdullah et al. [70]       Present   

0.5         1.01974                 1.0197                    1.0197                    1.04331                1.0433                     1.0433           

1.5         1.16572                 1.1672                    1.1672                    1.34037                1.3404                     1.3404                         

3.5         1.4132                   1.4132                    1.4132                    2.07455                2.0746                     2.0746                     
 

Table 5 

Comparison of results of linear frequency ratio for simply-supported when 1 2 0d d

w p m tHa          . 

  L/d = 10   L/d = 20     L/d = 50  
2( )oe a (nm2) Simsek 

[68] 

Murmu and 

Pradhan[69] 

Present Simsek 

[68] 

Murmu and 

Pradhan[69] 

Present Simsek 

[68] 

Murmu and 

Pradhan[69] 

Present 

0.0 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 

1.0 9.4158 9.4124 9.4157 9.7500 9.7498 9.7501 9.8501 9.8501 9.8501 

2.0 9.0194 9.0133 9.0193 9.6747 9.6343 9.6745 9.8308 9.8308 9.8308 

3.0 8.6692 8.6611 8.6690 9.5234 9.5228 9.5234 9.8116 9.8117 9.8116 

4.0 8.3569 8.3472 8.3568 9.4158 9.4150 9.4157 9.7926 9.7925 9.7926 
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Fig.2 

Comparison of results for the normalized deflection 

parameter vs dimensionless time. 

 
The dynamic behaviours of the beam are shown in Fig. 2 Also, the figure shows the comparison of results of 

numerical method using Fourth-order Runge-Kutta and the results of the present study using homotopy perturbation 

method. The results show that excellent agreement between the resents of the two methods. Having verified the 
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correctness and the high level of accuracy of the developed approximate analytical solutions, parametric studies are 

carried out as presented as follows: 

5.1 Different buckled and mode shapes of the nanobeam 

The different mode shapes (first-five normalized mode shapes) of the beam are  shown in Figs. 3 and 4. The figures 

depict the first-five normalized mode shapes of the beams for the nanotube with simple-simple and clamped-

clamped supports. In the figures, it is illustrated that the deflections of the beams along the beams’ span at five 

different buckled and mode shapes. 
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Fig.3 

The first five normalized mode shaped of the under simple-

simple supports. 
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Fig.4 

The first five normalized mode shaped of the beams under 

clamped-clamped supports beams. 

5.2 Effects of nonlocal parameter, temperature and aspect ratio on the linear frequency 

Figs. 5-9 presents the imparts of nonlocal parameter, change in temperature and aspect ratio on the linear 

frequencies of the simply and clamped-clamped supported nanotubes. It is shown in the figures that the linear 

frequencies of the simply and clamped-clamped supported nanotubes decrease at the high temperatures. However, 

the linear frequencies of the nanotubes under the two types of supports increase at the low temperatures as shown in 

Figs. 5-8.  This is because of the damping effect of temperature which decreases the stiffness of the nanotube at high 

temperature. Also, it is found that the as the nonlocal parameter increases, the linear frequencies of the nanotubes 

with simply and clamped-clamped supports decrease at both low and high temperatures.  

The effects of aspect ratio (ratio of the length of the beam to its diameter, L/d). The figure reveals that the 

frequency increases as the aspect increases.  Also, the figure re-establishes that the linear frequency decreases as the 

nonlocal parameter increases. However, this impact reduces significantly as the aspect ratio increases 
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Fig.5 

Effect of nonlocal parameter on the fundamental linear 

frequency of the simply supported nanobeam at high 

temperature. 
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Fig.6 

Effect of nonlocal parameter on the fundamental linear 

frequency of the simply supported nanobeam at low 

temperature. 
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Fig.7 

Effect of nonlocal parameter on the fundamental linear 

frequency of the clamped-clamped supported nanobeam at 

high temperature. 

  

0 20 40 60 80 100 120 140 160 180 200
15

16

17

18

19

20

21

22

23

24

25

Change in Temperature (K)

D
im

e
n
s
io

n
le

s
s
 l
in

e
a
r 

fr
e
q
u
e
n
c
y

 

 
h = 0.0

h = 0.1

h = 0.3

 

 

 

 

 

 

 

 

 

 

Fig.8 

Effect of nonlocal parameter on the fundamental linear 

frequency of the clamped-clamped supported nanobeam at 

low temperature. 
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Fig.9 

Effect of aspect ratio and nonlocal parameter on the 

fundamental frequency of the nanobeam. 

5.3 Effects of nonlocal parameter, temperature, elastic medium stiffness on the nonlinear frequency  

The effects of nonlocal parameter, change in temperature, Winkler, Pasternak, quadratic and cubic stiffnesses on the 

nonlinear frequencies of the simply and clamped-clamped supported nanotubes are shown in Fig. 10-15. It is 

depicted in the figures that the nonlinear frequencies of the simply and clamped-clamped supported nanotubes 

decrease at the high temperatures. However, the nonlinear frequencies of the nanotubes under the two types of 

supports increase at the low temperatures.  This is because of the damping effect on temperature which decreases the 

stiffness at a high temperature and increases nanobeam stiffness at a low temperature.  

It is shown in Figs. 10-13 that the nonlinear frequency increases as the Winkler stiffness (Kw) and Pasternak 

stiffness (Kp) for both low and high temperatures. This is due to the fact that increase in Pasternak stiffness causes an 

additional induced stiffness to the elastic medium of the nanotube. It was also shown that the Pasternak stiffness (Kp) 

has more significant effect on the nonlinear frequencies than the effect of Winkler stiffness (Kw). This is because of 

the shearing layer of Pasternak medium which bends and moves vertically as compared to the Winkler medium 

which moves only vertically during the vibration.  

The influences of the Hartmann number, quadratic (K1) and cubic (K2) nonlinear elastic medium constants on the 

nonlinear frequencies of the nanobeam for both low and high temperatures in Fig. 14 and 15. The results illustrate 

that when Hartmann number and cubic (K2) nonlinear elastic medium constants increase, the nonlinear frequency of 

the nanobeam increases for both low and high temperatures. However, when the Hartmann number and the 

quadratic (K1) nonlinear elastic medium constants increase, the nonlinear frequency of the nanobeam decreases for 

clamped-clamped beam at both low and high temperatures. Also, the nonlinear frequency of the nanobeam increases 

as the amplitude of the vibration increases. The nonlinear frequency of the nanobeam increases as the as the 

magnetic field parameter (Hartmann number) increases because the magnetic field intensity increases the rigidity of 

the nanobeams. However, it should be stated that it is the quadratic (K1) nonlinear elastic medium constants that 

reduces the nonlinear frequency of the nanobeam. 

 

 

0 20 40 60 80 100 120 140 160 180 200
25

26

27

28

29

30

31

32

33

Change in Temperature (K)

D
im

e
n
s
io

n
le

s
s
 n

o
n
lin

e
a
r 

fr
e
q
u
e
n
c
y

 

 

h = 0.0,  K
w

=50

h = 0.1,  K
w

=50

h = 0.3,  K
w

=50

h = 0.0,  K
w

=150

h = 0.1,  K
w

=150

h = 0.3,  K
w

=150

 

 

 

 

 

 

 

 

Fig.10 

Effect of nonlocal parameter and Winkler elastic medium 

stiffness on the nonlinear natural frequency of the clamped-

clamped supported nanobeam at low temperature. 
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Fig.11 

Effect of nonlocal parameter and Winkler elastic medium 

stiffness on the nonlinear natural frequency of the clamped-

clamped supported nanobeam at high temperature. 
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Fig.12 

Effect of nonlocal parameter and Pasternak elastic medium 

stiffness on the nonlinear natural frequency of the clamped-

clamped supported nanobeam at low temperature. 
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Fig.13 

Effect of nonlocal parameter and Pasternak elastic medium 

stiffness on the nonlinear natural frequency of the clamped-

clamped supported nanobeam at high temperature. 
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Fig.14 

Effect of nonlinear elastic medium stiffness parameters and 

Hartmann number (magnetic force parameter) on the 

nonlinear natural frequency of the simply supported 

nanobeam. 
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Fig.15 

Effect of nonlinear elastic medium stiffness parameters and 

Hartmann number (magnetic force parameter) on the 

nonlinear natural frequency of the clamped-clamped 

supported nanobeam. 

5.4 Effects of mode number, temperature, elastic medium stiffness on the nonlinear frequency  

While the results in Fig. 2-15 present behaviour of the nanobeam at the first mode of vibration, further investigations 

as presented in Figs. 16-19 reveal that, at the high values of Winkler stiffness (Kw) and all the values of amplitude as 

well as Pasternak layer stiffness (Kp), the quantity of increase in the nonlinear frequencies is more significant in 

simply supported nanobeam than the clamped-clamped nanobeam. This means that simply supported nanobeam is 

more influenced by the high quantity of the Winkler stiffness than the clamped-clamped. Also, at any value of 

nonlocal parameter, the change in the first mode is higher than the second mode for the change in temperature. The 

simply supported nanobeam is more susceptible to the temperature change than the clamped-clamped nanobeam for 

all the modes. Such behaviour is due to the stiffer nature of the clamped-clamped nanobeam than the simply 

supported nanobeam. 
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Fig.16 

Effect of mode number and elastic medium stiffness on the 

nonlinear natural frequency of the simply supported 

nanobeam at high temperature and low Winkler stiffness. 
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Fig.17 

Effect of mode number and elastic medium stiffness on the 

nonlinear natural frequency of the simply supported 

nanobeam at high temperature and high Winkler stiffness. 
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Fig.18 

Effect of mode number and elastic medium stiffness on the 

nonlinear natural frequency of the simply supported 

nanobeam at low temperature and low Winkler stiffness. 
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Fig.19 

Effect of mode number and elastic medium stiffness on the 

nonlinear natural frequency of the simply supported 

nanobeam at low temperature and low Winkler stiffness. 

 

Furthermore, it is observed that when the amplitude increases, the nonlinear frequencies of the all modes 

increase for the simply supported nanobeam. The nonlinear frequency decreases and increases at high and low 

temperatures, respectively. The low temperatures increase the third mode frequency for both simply supported and 

clamped-clamped nanobeams. The first mode nonlinear frequency increases with an increase in the nonlocal 

parameter. However, at any high values of Pasternak layer stiffness, the second and the third modes nonlinear 

frequencies decrease with an increase in the nonlocal parameter. It means that the high values of the Pasternak layer 

stiffness decrease the effect of the nonlocal parameter on the first mode. It could be stated that the first mode is more 

influenced by low values of the Pasternak layer stiffness while the second and the third modes are significantly 

influenced by the high values of Pasternak layer stiffness. Furthermore, it was found that the nonlocal parameter 

increases, the frequencies for all modes decrease. The impact of change in temperature on the nonlinear frequencies 

rises as the nonlocal parameter rises for all modes for both simply supported and clamped-clamped nanobeam. 
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Fig.20 

Effect of electric field and vibration amplitude on nonlinear 

natural frequency of the simply supported nanobeam at low 

temperature.  

 

The significance of the effect of electric field, Ez on the nonlinear frequency of the nanobeam in Fig. 20. The 

figure shows that the nonlinear frequency of the beam decreases as the electric field and nonlocal parameter 

increase.  However, the decrease in nonlinear frequency as nonlocal parameter increases is marginal.  
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5.5 Effects of nonlocal parameter, temperature, elastic medium stiffness on the frequency ratio 

The impacts of nonlocal parameter, temperature, elastic medium stiffness on the nonlinear frequency to the linear 

frequency ratio for both simply and clamped-clamped supported nanobeams are illustrated in Fig. 21-35.  In all the 

results, it is demonstrated that as the dimensionless amplitude increases the frequency ratio increases due to the 

“hardening spring” behaviour of the nanobeam. Such behaviour in response to the increase in the dimensionless 

amplitude is caused by the increase in the axial stretching due to the large deflection which leads to a stiffer 

structure and a larger nonlinear frequency. The results show that the at any given dimensionless amplitude, 

frequency ratio increases as the values of the dimensionless nonlocal, quadratic and cubic elastic medium stiffness 

parameters increase as shown in Figs. 21-26. However, at any given dimensionless amplitude, the frequency ratio 

decreases as the values of the temperature change, magnetic force, one dimensional piezoelectric constant, Winkler 

and Pasternak layer stiffness parameters increase as shown in Figs. 27-35. It is shown in all the figures that the 

impact of the dimensionless nonlocal, quadratic, cubic elastic medium stiffness, temperature change, one 

dimensional piezoelectric constant, magnetic force, Winkler and Pasternak layer stiffness parameters on the 

nonlinear frequency ratio becomes significant as the dimensionless amplitude increase.   
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Fig.21 

Effects of dimensionless nonlocal parameter on the frequency 

ratio for simply supported nanobeam. 
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Fig.22 

Effects of dimensionless nonlocal parameter on the frequency 

ratio for clamped-clamped nanobeam. 
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Fig.23 

Effects of dimensionless quadratic elastic medium stiffness 

on the frequency ratio for simply supported nanobeam. 
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Fig.24 

Effects of dimensionless quadratic elastic medium stiffness 

on the frequency ratio for clamped-clamped supported 

nanobeam. 
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Fig.25 

Effects of dimensionless cubic nonlinear elastic medium 

stiffness on the frequency ratio for simply supported 

nanobeam. 
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Fig.26 

Effects of dimensionless cubic elastic medium stiffness on 

the frequency ratio for clamped-clamped supported 

nanobeam. 
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Fig.27 

Effects of dimensionless Pasternak elastic medium stiffness 

on the frequency ratio for simply supported nanobeam 
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Fig.28 

Effects of dimensionless Pasternak elastic medium stiffness 

on the frequency ratio for clamped-clamped supported 

nanobeam. 
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Fig.29 

Effects of dimensionless Winkler elastic medium stiffness on 

the frequency ratio for simply supported nanobeam. 
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Fig.30 

Effects of dimensionless Winkler elastic medium stiffness on  

the frequency ratio for clamped-clamped supported 

nanobeam. 

 

It is clearly seen that increase in temperature change at high temperature reduces the frequency ratio as shown in 

Figs. 31 and 32. Such response is due to the fact that the Young modulus and the flexural rigidity of the nanobeam 

are functions of temperature. These parameters (Young modulus and the flexural rigidity) increase at high 

temperature and such causes the nanobeam to become increasingly rigid as the temperature change increases, which 

consequently decreases the frequency ratio of the vibration of the structure. However, at low or room temperature, 

increase in temperature change, increases the frequency ratio of the structure nanotube. 
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Fig.31 

Effects of temperature change on the frequency ratio for 

simply supported nanobeam. 
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Fig.32 

Effects of temperature change on the frequency ratio for 

clamped-clamped nanobeam. 
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Fig.33 

Effects of magnetic force parameter on the frequency ratio 

for simply supported nanobeam. 
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Fig.34 

Effects of magnetic force parameter on the frequency ratio 

for clamped-clamped nanobeam. 
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Fig.35 

Effects of one dimensional piezoelectric constant on the 

frequency ratio for clamped-clamped nanobeam.  
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6    CONCLUSIONS 

In this work, the impacts of thermo-magneto-mechanical coupled parameters on the nonlinear vibration of single-

walled carbon nanotube embedded in Winkler, Pasternak, and nonlinear elastic media have been analyzed the aids 

of Galerkin decomposition and iteration perturbation methods. Parametric studies were carried out and the following 

results were established: 

i. The frequency of the nanotube increases at low temperature but decreases at the high temperatures.  

ii. The nonlocal parameter and electric field decreases the frequencies of the nanobeam that is simply 

supported at any amount of the linear and nonlinear elastic medium coefficients.  

iii. The effect of the linear Winkler layer stiffness on the nanobeam that is simply supported is more than the 

nanobeam with clamped-clamped supports.  

iv. An increase in the quadratic nonlinear elastic medium stiffness causes a decrease in the first mode of the 

nanobeam with clamped-clamped supports and an increase in all modes of the simply supported nanobeam 

at both low and high temperature. 

v. When the magnetic force, cubic nonlinear elastic medium stiffness, and amplitude increase, there is an 

increase in all mode frequency of the nanobeam. 

vi. A decrease in Winkler and Pasternak elastic media constants and increase in the nonlinear parameters of 

elastic medium results in an increase in the frequency ratio.   

vii. The frequency ratio increases as the values of the dimensionless nonlocal, quadratic and cubic elastic 

medium stiffness parameters increase. The dimensionless amplitude increases the frequency ratio increases.  

viii. The frequency ratio decreases as the values of the temperature change, magnetic force, one dimensional 

piezoelectric constant Winkler and Pasternak layer stiffness parameters increase.  

ix. An increase in the temperature change at high temperature reduces the frequency ratio but at low or room 

temperature, increase in temperature change, increases the frequency ratio of the structure nanotube.  

x. The impact of the dimensionless nonlocal, quadratic, cubic elastic medium stiffness, temperature change, 

magnetic force, Winkler and Pasternak layer stiffness parameters on the nonlinear frequency ratio becomes 

significant as the dimensionless amplitude increase. 

Such an extensive analysis as carried in this study work will greatly benefit in the design and applications of 

nanotube in thermal and magnetic environments. 

APPENDIX 

Following the nonlocal theory presented by Erigen [42, 43, 44] and that of  Erigen and Edelen [45], the relationship 

between the nonlocal stress–tensor (
ij ) at point x of an isotropic and homogenous nanobeam and the local stress–

tensor (tij) is 
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01 1ij ij ije a l E x t            
   

 (A.1) 

 

Algebraically, Eq. (1) can be written as: 
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 (A.2) 

 

Neglecting the damping of the nanobeam and the damping induced by the surrounding medium. Also, assuming 

that vibration is independent of time axial forces. Based on Euler-Bernoulli theory, the displacements in the 

nanobeam are given as: 

 

   1 2 3, ; , ; 0.
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u u x t z u w x t u
x


   


 (A.3) 

 

3 0,u  since, there is not any motion along the third direction. Also, the strain in the longitudinal direction is 

given as:  



                                                                                                                                                  M.G. Sobamowo                         244 
 

© 2022 IAU, Arak Branch 

1

xx

u

x






 (A.4) 

 

The strain in the longitudinal direction is related to the extension and bending strains as: 

 
0 ;xx xx zk    (A.5) 

 

where extension and bending strains are respectively given as: 

 
2

0

2
; .xx

u w
k

x x


 
  
 

 (A.6) 

 

On substituting Eq. (A.6) into Eq. (A.5), we have  
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Considering the Von Karman geometric nonlinearity effect, the extension strain is given as: 
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Substitution of the nonlinear extension strain in Eq. (A.8) and the bending strain in Eq. (A.5), provides geometric 

nonlinearity in the longitudinal strain as: 
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Introducing the following stress resultants: 
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(A.10) 

 

The required equation of motion for the nanobeam can be derived after taking the variation of the relation  
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Applying Hamilton’s principle, the variation of Eq. (A.11) is obtained as: 
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Expansion of the RHS of Eq. (15), gives 
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i. Workdone by external forces 

For the first term at the RHS of Eq. (A.16), i.e. the variation of the work done by the external forces, substitution 

of Eq. (A.12) into the first term at the RHS of Eq. (A.16), provides 
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ii. Kinetic Energy 

Also, for the second term at the RHS of Eq. (16), i.e. the variation of the kinetic energy, substitution of Eq. (13) 

into the second term at the RHS of Eq. (16), gives 
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iii. Strain Energy 

Furthermore, for the third term at the RHS of Eq. (16), i.e. the variation of the strain energy, substitution of Eq. 

(A.14) into the third term at the RHS of Eq. (A.16), results in  
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which gives 
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On substituting Eq. (A.10), one can write Eq. (A.20) as: 
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On substituting Eqs. (A.17), (A.18), and (A.21) into Eq. (A.16), we have 
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 According to Euler–Lagrange, the following equations are obtained 
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The nonlocal axial force (nonlinear stretching force) and bending moment are given by 
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After differentiating Eq. (A.23) wrt x, on arrives at 
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Also, from Eq. (24), we have 
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Substitution of Eqs. (A.27) and (A.28) into Eqs. (A.25) and (A.26), gives the nonlocal axial force and bending 

moment as: 
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The first derivative of Eq. (A.29) is given as: 
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while the second derivative of Eq. (A.30) provides 
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Substituting Eq. (A.31) into Eq. (A.23), one arrives at the horizontal equation of motion as: 
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which can also be written as: 
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where 
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Then Eq. (A.29) becomes 
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Substitution of Eq. (A.35) into Eq. (A.34), gives the horizontal equation of motion of the nanobeam as: 
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Also, substitution of Eqs. (A.32) and (A.36) into Eq. (A.24), provides the vertical equation of motion as: 
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(A.38) 

 

which can be written as: 
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(A.39) 

where 
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Substitution of Eq. (36) into Eq. (35), gives 
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(A.42) 

 

Therefore, the vertical equation of motion of the nanobeam is 
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(A.43) 
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Taking 
0 cm A , neglecting the rotary inertial 

2(i.e. 0)m  with no axial distributed force (i.e. ( , ) 0)f x t   

and zero axial displacements (i.e. 0)u  . After some mathematical processes of Integrating the nonlinear 

stretching force, N between the limits 0 and L and applying the boundary conditions (0, )u t and ( , )u L t  makes the 

axial normal force in Eq. (A.36) to become 
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That is 
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Therefore, Eq. (A.37) and (A.43) reduce to 
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