
 

© 2022 IAU, Arak Branch. All rights reserved.                                                                                                    

Journal of Solid Mechanics Vol. 14, No. 1 (2022) pp. 17-36 

DOI: 10.22034/jsm.2021.1877579.1488 

An Approximate Thermo-Mechanical Solution of a 
Functionally Graded Cylinder Using Hybrid Integral 
Transform and Finite Element Method 

M. Dehghan, A. Moosaie 
*
, M. Zamani Nejad

  

Department of Mechanical Engineering, Yasouj University, Yasouj, Iran 

Received 2 September 2021; accepted 19 November 2021 

 ABSTRACT 

 This article introduces a novel mixed method that combines the 

Fast Fourier Transform technique and a conventional Finite 

Element Method for investigating thermo-mechanical behavior of a 

thick functionally graded cylinder under asymmetric loadings. 

Material properties are assumed to vary along the radial direction 

according to a power function. Thermo-elastic governing equations 

of the cylinder are derived using principle of virtual work in 

cylindrical coordinates. Plane strain assumption is considered for a 

long cylinder during the analysis. Fast Fourier Transform technique 

is utilized in circumferential direction to discretize equations and 

related boundary conditions. Finite element method is then applied 

to remaining equations. For convergence study, the results obtained 

from this method are compared with those extracted from exact and 

complete FE solutions. It is observed from the results that the 

method has a super algebraic convergence behavior in 

circumferential direction. Influence of the mesh refinement is also 

investigated in the radial direction. According to ability of the 

mixed FFT-FE method for asymmetric analyzing, two kinds of 

loadings are considered here and results are presented. In thermo-

elastic analyzing of the long cylinder, it’s obvious that the present 

method benefits from some features such as fast convergence and 

low computational cost in comparison with FE solution. 
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1    INTRODUCTION 

HIN and thick shells of revolution as structural elements cover many branches of technologies such as 

mechanical, aeronautical, and marine engineering. For example, it can be referred to large span roofs, cooling 

towers, liquid-retaining structures, water tanks and concrete arch domes in civil and architectural engineering. Shell 

structures in mechanical engineering are widely used in piping systems, turbines, aircrafts, missiles, rockets, ships 

and pressure hull of submarines. These structures can efficiently support applied external forces due to their 
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geometrical shape. In other words, shells are much stronger and stiffer than other structural shapes. Functionally 

Graded Materials (FGM) are inhomogeneous composite materials which are consisted of a blend of two (or more) 

materials. The composition of these materials is considered such that the physical (mechanical, thermal, etc.) 

properties vary smoothly and continuously in desired spatial direction(s). The thermal effects on these structures 

caused by different phenomena can have serious consequences for their strength and stability. There are many 

studies in the literature in which the functionally graded cylinders have been investigated with various solution 

methods. Obata and Noda [1] investigated the steady thermal stresses in a hollow circular cylinder and a hollow 

sphere made of a functionally gradient material. Jabbari et al. [2] analyzed steady-state thermal stresses in a hollow 

thick cylinder made of functionally graded material under axi-symmetric and asymmetric loading [3]. The analytical 

solution of transient thermo-elastic problem involving a functionally graded hollow cylinder due to uniform heat 

supply is obtained by Ootao and Tanigawa [4]. The transient thermo-elastic analysis of functionally graded 

cylindrical shells under moving boundary pressure and heat flux by using mixed FE-DQ method has been done by 

Malekzadeh and Heydarpour [5]. The perturbation technique was employed by Moosaie [6-8] to solve the nonlinear 

heat conduction and thermo-elastic problems of a thick-walled cylinder made of functionally graded material. 

Zamani Nejad and his co-workers [9, 10] could derive the governing equations of functionally graded shells of 

revolution in general curvilinear coordinate system. They also used the Higher-order Shear Deformation Theory 

(HSDT) and Multi-Layer Method (MLM) for thermo-elastic analysis of Functionally Graded (FG) rotating thick 

cylindrical and conical shells with variable thickness [11]. In both plane stress and plane strain conditions, stress 

analysis of the functionally graded rotating thick cylindrical pressure vessels is performed based on the Frobenius 

series method by Gharibi et al. [12]. Due to the advantages of functionally graded piezoelectric materials (FGPM), 

some critical issues and problems in the development of thick shells made from these class of materials are 

discussed by Zamani Nejad et al. [13]. For the case of simplicity in shells of revolution, Fourier transform can be 

suitably used in circumferential direction. Fast Fourier Transform (FFT) gives numerous advantages such as 

computer implementation and fast convergence for solving this type of problems. Numerical methods may be 

inherently accompanied with some deficiencies in modeling of geometry; discretization and satisfaction of boundary 

conditions. Semi-analytical and mixed methods seem to be appropriate ways to overcome these shortcomings. In 

this article, FFT technique and FE method are combined to achieve more advantages in analysis of shells of 

revolution. Proposed mixed method reduces the two-dimensional equilibrium equations to 1-D and is an extreme 

time saver in thermo-elastic analysis of functionally graded cylindrical shell subjected to asymmetric loads. In this 

method Discrete Fourier Transform is used to project the equations in Fourier space. Inverse Discrete Fourier 

Transform is then used to project back to physical space. This computational strategy reduces the cost of thermo-

elastic analysis of shells of revolution. Formulation derivation in current work is based on two-dimensional theory of 

elasticity with plane strain assumptions. To date, some mixed methods are introduced by combination of 

mathematical techniques like conventional FEM and DQ for free vibration analyzing of thick plates resting on 

elastic foundation [14]. The time-dependency in a nonlinear thermal problem was removed [15] by effective 

combination of the Laplace transform and finite element method. A novel computational procedure based on finite 

differences method and league championship algorithm was provided to solve a one-dimensional inverse heat 

conduction problem by Ebrahimi et al. [16]. Ozkan and Mengi [17] proposed a new numerical method for the 

boundary element analysis of axisymmetric bodies. The method was based on complex Fourier series expansion of 

boundary quantities in circumferential direction, which reduces the boundary element equation to an integral 

equation. Recently, an efficient combination of Laplace transform and multi-scale finite-element method was 

presented for coupling partial differential equations of flow in a dual-permeability system by Liu et al [18]. The 

most commonly used approach for the analysis of shells of revolution is based on the representation of the shell 

variables and loads by a Fourier series in the circumferential coordinate, combined with the use of a numerical 

discretization technique (such as finite elements, finite differences or numerical integration) in the meridional 

direction. For example, this capability was performed for stress and free vibration analyses of laminated anisotropic 

shells of revolution by Noor and Peters [19]. At first, the coupling effect between symmetric and anti-symmetric 

modes for composite laminated shells of revolution was investigated by using the mentioned semi-analytical method 

[20]. Sivadas and Ganesan [21] studied effect of coupling due to the symmetric and antisymmetric modes on 

vibration characteristics on moderately thick composite laminated shells of revolution using double Fourier series 

approximation and Finite Element method. The latter semi-analytical method was then widely used by Santos and 

his coworkers [22-26] for 3-D analysis of axisymmetric shells of revolution with and without piezoelectric sensors 

and actuators. Special emphasis in these articles was given to the coupling between symmetric and anti-symmetric 

terms in truncated Fourier expansion of dependent variables and loading. Significant effect of material properties 

was also demonstrated by comparison of coupled and uncoupled results. Owing to the robustness of Fourier Finite 

Element method for axisymmetric problems with nonsymmetric loading and its capability to take low computation 
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costs, hereunto some authors used the method to solve Poisson’s equation in axisymmetric domain with singular 

edges [27, 28]. A novel mixed numerical method containing FE method and Fourier series proposed by Bakr et al 

[29] to simulate full 3D geophysical marine controlled source electromagnetic (CSEM) measurements. The main 

object of this paper was to overcome excessive time and memory requirements of direct matrix solver by reducing 

the dimensionality of the problem. Generally, in the discrete Fourier transform technique we deal with the list of 

coefficients of a finite combination of complex sinusoids. 3-D discretization of an axisymmetric body with 

application of discrete Fourier transform and finite element analyses was performed by Lai and Booker [30] to study 

of rigid caissons founded in both elastic and elasto-plastic soils. In contrast to the continues Fourier series approach, 

the discrete Fourier series representation overcome problems such as Gibbs phenomenon [30]. By doing a vast 

review on literature it is observed that the thermo-elastic analysis of functionally graded shells of revolution using 

hybrid FFT-FE method is scarce. Until now, Just the transient thermo-elastic analysis of disk brake has been studied 

using the fast Fourier transform and finite element method [31-33]. Currently, a modified Fourier series solution is 

developed for vibration analysis of shells of revolution by Jin et al [34, 35]. Mohazzab and Dozio [36, 37] used the 

spectral collocation method for prediction of natural frequencies of laminated curved panels and skew plates, 

respectively. The spectral collocation method based on integrated orthogonal polynomials was applied to the free 

vibration analysis of coupled axisymmetric laminated shell structures with arbitrary elastic-support boundary 

conditions (BCs) by Xie et al [38]. 

In this paper, the thermo-mechanical analysis of the proposed problem is done in following steps. At first, the 

heat conduction equation of an FG hollow cylinder is discretized using FFT technique in the periodic 

circumferential direction. It reduces two-dimensional partial differential governing equations (PDGE) including 

boundary conditions for a long cylinder into 1-D PDGE. Reduced boundary value problem is then analyzed using 

finite element method. The obtained results are in Fourier space and are imported as inputs for thermo-elastic 

analysis. In the next step, the thermo-elastic PDGEs of an FG hollow cylinder are solved in Fourier space by using 

Finite Element method. Afterwards, the obtained results are inverted into the real space through inverse Fast Fourier 

Transform technique. Non-symmetric pressure distribution is considered and results are compared with complete FE 

solution. In the sequel, thermo-elastic analysis of a hollow FG cylinder is successfully carried out using FFT-FE 

method. 

2    FORMULATIONS 

2.1 Heat conduction problem 

At first, the steady state equation of heat conduction for an FG hollow cylinder in the absence of heat generation is 

considered. This equation is recognized as Laplace relationship and can be easily derived from Fourier law. Two-

dimensional equation of heat conduction is considered here. Hence, the spatial domain in axial direction of cylinder 

is neglected. The steady state form of Laplace equation  and related Dirichlet boundary conditions for an FG 

cylinder is written as follow [9] 
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In which T is the temperature related to the initial conditions and   r r r   is the thermal conductivity 

coefficient.  
iT  and  

oT  are the distributed temperature at inner and outer surfaces of the cylinder. a and b are the 

inner and outer radius of the cylinder respectively. Here, the thermal conduction coefficient,  r r  , is considered to 

be of the thickness of cylinder as: 
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where, 
0r  is material constant and 

1m  is the power law index of the material. As mentioned previously, the 

boundary conditions can be considered the periodic functions in terms of circumferential variable. Now, Fourier 

transform is used to solve this partial differential equation. For this purpose, the temperature field in Eq. (1) is 

replaced by the approximation function including finite Fourier coefficients. As shown in Fig. 1, the temperature 

field is defined at the discrete points 
k  which k =1, 2,…, N. Points k in the circumferential direction show the 

number of harmonics in Fourier space. The selected approximation function is 

 

1

ˆ( , ) ( )
N

ik

k

k

T r T r e 


  (4) 

 

By substituting this relation into Eq. (1), the heat equation and its related boundary conditions in the radial 

direction are; 
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where the (...)   denotes the first derivative of any arbitrary function with respect to r. Now, the weighted residuals 

method can appropriately provide a framework for solving this equation. A general form of the weighted residuals 

method is typically 

 
ˆ( ( )) f RkT r    (7) 

 

In general, approximate solution, ˆ
kT , does not exactly satisfy Eq. (5). Thus, the weighted residual method is 

utilized to find the solution, so that the residual R, is to be minimized in the weighted integral scheme 
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where .d rdr  Substituting Eq. (7) into Eq. (8) yields 
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Considering
 iw as the sufficiently differentiable weight functions, the original equation can be easily 

transformed into the weak form using integration by parts technique as follows: 
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. In the radial direction, Eq. (10) is discretized by using the finite elements where jth element 

is located at the region r j−1 ≤  r ≤  rj (Fig. 1). The field variable, ˆ ( )kT r , is then approximated by a combination of 

basic functions, 
e

j and nodal values as: 
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where ˆ( )e

k jT  are the nodal values of temperature field in the Fourier space. Based on the Babnov-Galerkin method, 

the weight functions, wi , are considered to be the same as basic functions. Hence, by substituting Eq. (11) into the 

Eq. (10), governing equations become 
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It should be noted that in this paper we deal with the essential thermal boundary conditions. In order to determine 

the above integrals, the entire terms should be mapped into the parametric space. So, the basis functions are 

considered in terms of the auxiliary coordinate   as followings: 
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Here, the iso-parametric approximation is used for describing the geometry of the spatial domain. In this scheme, 

the order of the solution and geometric approximations are the same, so it yields 
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Using geometric approximations of Eqs. (14) and (15), the governing equation for heat conduction in long 

cylinder can be solved numerically. The numerical integration needs to be performed for obtaining the stiffness 

matrix in parametric space. For this purpose, the Gauss-Legendre Quadrature method is used. Finally, the discretized 

heat equation in cylindrical coordinate is arranged in matrix form. By solving this set of equations, the nodal 

temperatures at each harmonic can be obtained, so we have 
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2.2 FFT-FE analysis of thermo-elastic problem 

In this section, the mixed FFT-FE method is implemented for the thermo-elastic analysis of an FG hollow cylinder. 

For this purpose, it is assumed that the cylindrical shell is stress free at reference temperature (T0) and then it 

operates in a thermal environment. Thermal loading rises together with mechanical constraints at the boundaries 

produce thermal stresses in the cylinder. In order to derive the PDGEs of the cylindrical shell with assumed 

boundary conditions, the principle of virtual work in conjunction with the plane strain theory of elasticity is 

considered. The principle of virtual work which has been widely used in the large body of literatures is applicable to 

any continuous body with arbitrary constitutive behavior (i.e., elastic or inelastic). A special case of the principle of 

virtual work that deals with elastic mediums is known as the principle of minimum total potential energy and takes 

the form 
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  0V U      (17) 

 

where   is the variation symbol and   is called the total potential energy of the elastic body. The strain energy (U) 

and energy of the applied loads (V) can be expressed as follows: 
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By substituting Eq. (18) into Eq. (17) the non-vanishing terms contain 
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The kinematic relationship between the strain components and displacement field are defined as: 
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where
ij ,  , , ,i j r z are the strain components in cylindrical coordinate. 

ru  and u
 are displacement 

components in radial and circumferential directions, respectively. The plane strain linear thermo-elastic constitutive 

relations for an isotropic cylindrical shell can be written as: 
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where 
ij ,  , , ,i j r z  are components of the cylindrical stress tensor.   is the coefficient of thermal 

expansion,  0 T T T    is the temperature rise, and  
0T  is the reference temperature at which the shell is stress 

free. The elastic constant coefficients
ijC ,  , 1,2,3i j   in terms of Young’s modulus and Poisson’s ratio are given 

as: 
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. In this work, we deal with FG cylinder in which the material properties are 

considered to be graded along the thickness (r-direction). So, the modulus of elasticity and coefficient of thermal 

expansion are assumed as following: 
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where, 
0E  and 

0  indicate the material constants and m2 and m3 are the power law indices of the material. 

Substituting Eqs. (20) – (22) into the Eq. (19) yields the following integral form 
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In general, two sets of partial differential governing equations can be extracted for thermo-elastic analysis of the 

FG cylinder. In continuum mechanics of a solid, the first variation of the energy functional yields a weak form of the 

governing equations as a bilinear form. w1, w2 in above equation, represent the variations of displacement 

components in the radial and circumferential directions, respectively. Using the integration by parts technique with 

respect to the radial and circumferential spatial variables ( ,r  ), the following sets of governing equations for a 

homogeneous isotropic elastic solid are obtained, 
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The corresponding boundary conditions are as follow: 
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Mutually, FFT-FE method can be used to discretize the thermo-elastic governing equations of the FG cylinder. 

At first, the Fourier transform is used to discretize the PDGEs into a set of harmonics. For this purpose two sets of 

approximation functions are considered for displacement components. Based on the FFT technique, these functions 

can be selected as: 
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where ˆk

ru  and ˆku
 are the displacement components in Fourier space. Substituting the approximation 

functions of Eq. (27) into Eq. (24), two sets of governing equations and their related boundary conditions 

in the weak form are obtained as follow: 
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Now, this set of equations can be solved for each harmonic in Fourier space. As shown in Fig. 1, two 

displacement components as the nodal degrees of freedom are considered at discrete points 
k , (k=1, 2, …, N). 

Furthermore, the governing equations at each harmonic are discretized by using FE approach. Hence, the following 

linear approximations are considered to estimate displacement components in the Fourier space. 
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where 
j  are linear basis functions presented in Eq. (13). Additionally,  ˆk

r
j

u  and  ˆk

j
u  are the radial and 

circumferential displacement nodal values in Fourier space, respectively. Consequently, substituting the FE 

approximations functions of Eq. (30) into Eqs. (28) and (29) and using the geometric approximations of Eq. (14) and 

(15) yield 
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The elements of  ˆ mn
K 
 

 ,  ˆ mm
G 
 

 and  ˆ mF  are given in Appendix. Foregoing matrix equation can 

successfully represent the equilibrium state of an element from local aspect and entire body from global aspect. 

Therefore, the global stiffness and force matrices can be obtained using assembly technique. The output results from 

this equation are displacement nodal values in Fourier space. It is necessary to invert the obtaining results from 

complex (Fourier) space into the main real space. The Inverse Fast Fourier Transform (IFFT) technique can be 

effectively used for this end. 
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Fig.1 

Geometrical configuration of finite elements and discrete 

FFT grids on cylindrical domain. 

3    RESULTS AND DISCUSSION 

To illustrate the convergence, accuracy and effectiveness of the suggested method, some numerical examples related 

to thermo-elastic analysis of the cylindrical shell are presented in this section. Thus, a comparison is separately made 

between responses of the present method and those of exact and FE solution. In order to verify the solution 

procedure, two sets of materials including FG and homogeneous materials (HM) are considered as follows: 

 

m1=m2=m3=0, (HM), a=0.2 (m), b=0.5 (m), E0=210 (GPa), υ=0.3, α0=12×10
-6

 (1/
0
C)  

m1=m2=m3=m, (FGM), a=1 (m), b=1.2 (m), E0=200 (GPa), υ=0.3, α0=1.2×10
-6

 (1/
0
C) 

 

3.1 Convergence study (HM) 

The heat conduction equation is now considered for investigating the rate of convergence in the present mixed 

method. Since, the present method is constructed using combining two different numerical methods; the 

convergence study should be performed separately. The adaptability of the combined proposed method for analyzing 

the thermo-elastic problem is clarified using the flow chart presented in Fig. 2. In spite of the fact that Fourier 

transform is recognized as an analytical method for solving boundary value problems, the FFT technique acts as a 

numerical that which can transform the finite data from a real domain into the complex one. In this work, the 

blocked code in MATLAB software is used to Fourier transform and inverting vice versa [39]. For the convergence 

study, the following formula can be used to extract the relative error of the obtained results. 

 

Present solution-Exact solution
Error% 100

Exact solution
   (32) 

 

The heat conduction of a cylinder with uniform boundary temperature at the inner surface, Ti, and the outer 

surface, To, is selected as a case study. Thereafter, the fast Fourier transform and finite element discretization are 

accomplished on the heat equation. In order to extract the relative error, obtained results are compared with those of 

extracted from the exact solution [40]. In Fig. 3 the convergence of results with respect to element mesh sizes is 

shown. It is observed from the figure that by increasing the element numbers in the radial direction the results 

converge smoothly as a straight line. This kind of convergence study is known as h-version technique in which the 

density of linear elements is raised until the desired precision is achieved. In Fig. 4 the convergence behavior of the 

FFT method is shown for some periodic functions. These functions are assumed to be the boundary conditions of the 

inner surface of the cylinder. As shown, the rate of convergence regarding fast Fourier transform technique is 

affected by increasing the wave number in periodic functions. For    sinT   , the method can appropriately 

attain the machine precision in the finite harmonics as expected. In spite of the linear behavior observed from FE 

convergence study, Fig. 4 shows an exponentially varying behavior of relative error. This difference between two 
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logarithmic scaled graphs depicts that FFT is more vigorous and accurate than FEM for analyzing the problems with 

periodic domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Hybrid FFT-FE approach in thermo-mechanical analysis 

flow chart. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Logarithmic representation of relative error versus FEM 

mesh-size increasing. 

  

 

 

 

 

 

 

 

 

 

Fig.4 

Logarithmic representation of relative error versus FFT Grid-

size. 

3.2 Validation for HM and FGM 

3.2.1 Elasto-static analysis 

In the previous section, conformability and convergence of the two mentioned methods was investigated separately. 

Here, the finite element commercial code in ABAQUS software is used to validate the obtained results. Initially, the 

entire hollow HM cylinder is modeled in part module and the corresponding material properties and boundary 

conditions were assigned respectively. Appropriate mesh with CPE4R label is defined for this analysis. The inner 

surface of hollow cylinder was fully clamped with respect to predefined degrees of freedom. Mutually, the periodic 

pressure,  65 10 sin 2 1P    , was considered to act on outer surface of the hollow cylinder. Nodal values of 

radial displacement component, 
ru , which are extracted for middle surface of the hollow cylinder, are presented in 
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Fig. 5 and Fig. 6. For better demonstration, both of the FFT-FE and complete FE results are presented in these 

figures. It can be observed that the present mixed method is in good agreement with the complete FE solution. In 

Fig. 6, the mesh refinement is considered for the ABAQUS model. In this case, the element density of the model is 

raised up to two times. It is obvious that the complete FE results are dramatically tracing the present FFT-FE 

solution. 

In Fig. 7 the results of circumferential displacement, u , for the interval [0,2π] are presented. In Fig. 8, mesh 

refinement is employed for analyzing the cylinder using commercial FE code. According to Fig. 2, the post 

processing is performed upon the system of governing equations and nodal values of displacements are specified. 

The strain components need to be obtained in such a procedure. For this purpose, in Fourier space, the IFFT 

technique is implemented on strain components. 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Radial displacement, Ur, in middle surface of cylinder 

considered at interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

 

Fig.6 

Radial displacement, Ur, in middle surface of cylinder 

considered at interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

 

Fig.7 

Circumferential displacement, Uθ, in the middle surface of 

the cylinder considered at interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

Fig.8 

Circumferential displacement, Uθ, in the middle surface of 

the cylinder at interval [0,2π], (Nel=500, N=200). 
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The influence of the mesh refinement is appropriately depicted in Fig. 9 and Fig. 10 for the radial strain 

component of the cylinder. Consequently, the results for circumferential and shear strain components are presented 

in Figs. 11-14. Hereunto, the validation of the hybrid FFT-FE method has been carried out for elasto-static analysis 

of hollow HM cylinder. Now, the results obtained from the thermo-elastic analysis are compared with those of 

extracted from exact solution [40] and are presented in Fig. 15. Degrees of freedom pertaining to the displacement 

field are fully clamped at inner and outer surfaces of the cylinder. A uniform distribution of temperature is 

considered at the inner, (Ti=100 
o
C) and outer (To=25 

o
C) surface of the hollow HM cylinder. Finally, the results of 

elasto-static analysis of a cylinder under harmonic pressure are presented as contour plots in Figs. 16-19. 

 

 

 

 

 

 

 

 

 

 

Fig.9 

Strain component of the middle surface of hollow cylinder in 

the radial direction for interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Strain component of the middle surface of hollow cylinder in 

the radial direction for interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

Fig.11 

Strain component of the middle surface of hollow cylinder in 

the circumferential direction for interval [0,2π], (Nel=500, 

N=200). 

  

 

 
 
 
 
 
 
 
Fig.12 

Strain component of the middle surface of hollow cylinder in 

the circumferential direction for interval [0,2π], (Nel=500, 

N=200). 
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Fig.13 

Shear strain of the middle surface of hollow cylinder for 

interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

Fig.14 

Shear strain of the middle surface of hollow cylinder for 

interval [0,2π], (Nel=500, N=200). 

  

 

 

 

 

 

 

 

 

Fig.15 

Axi-symmetric radial displacement, ur, duo to temperature 

variation. 

  

 

 

 

 

 

 

 

 

 

 

Fig.16 

Contour plot of displacement component in radial direction, 

ur, (m). 

  

 

 

 

 

 

 

 

 

 

Fig.17 

Contour plot of displacement component in circumferential 
direction, uθ, (m). 
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Fig.18 

Contour plot of normal stress in radial direction, σrr ,(Pa). 

  

 

 

 

 

 

 

 

 

 

Fig.19 

Contour plot of hoop stress component, σθθ, (Pa). 

3.2.2 Thermo-elastic demonstration 

In this paper, the governing equations are derived for thermo-elastic analysis of a hollow FG cylinder. By 

considering the material properties chosen at the beginning of this section for the FG material, we can obtain the 

thermo-elastic response of a cylinder under various thermal and mechanical loading. As the first example, boundary 

conditions for thermal analysis are taken as   10 T a C   and   0 T b C  . The uniform pressure is assumed to 

be applied at the inner surface of the cylinder. So, the boundary conditions for stresses can be represented as 

follows: 

 

   50 0rr rra  MPa,    b  MPa     (33) 

 

Fig. 20 shows the comparison between temperature distribution obtained from the present mixed-method and the 

exact solution of Ref [2]. As shown in Fig. 21, the analytical solution for the radial displacement of the hollow FG 

cylinder in absence of thermal effects (Ref [10]) is appropriately followed by the present hybrid method. For various 

power-law indices of the FG material (m), the distributions of thermal stresses in the radial and circumferential 

directions are presented in Fig. 22 and Fig. 23 respectively. In the sequel, the periodic thermal and mechanical 

boundary conditions at the inner surface of the hollow FG cylinder are considered 

 

   

   

   

, 60cos 2

, 0,     , 0

, 0,      u , 0.

o

rr r

r

T a C

a a

u b b





 

   

 



 

 

 (34) 

 

2D distribution of the temperature field and the displacement components are shown in Figs. 24-26. A simple 

comparison indicates that the obtained results are in good agreement with the exact solution of Ref [3]. 

Obtaining analytical solutions for the problems with complex geometry and boundary conditions often is time-

consuming and sometimes may be impossible. In such cases, the numerical techniques such as the FFT-FE method 

can be used to achieve an approximate solution of the problem. In this regards, thermo-mechanical responses of an 

FG cylinder whose half of the boundary is exposed to thermal loading are investigated here. The following boundary 

conditions are assumed for the hollow FG cylinder: 
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 (35) 

 

 

 

 

 

 

 

 

 

 

 

Fig.20 

Temperature distributions along the thickness of cylinder. 

  

 

 

 

 

 

 

 

 

 

 

Fig.21 

Distribution of radial displacement within the wall of the 

cylinder. 

  

 

 

 

 

 

 

 

 

 

 

Fig.22 

Variation of normal stress in the radial direction for inner 

pressurized cylinder. 

  

 

 
 
 
 
 
 
 
 
Fig.23 

Variation of normal stress in the circumferential direction for 

inner pressurized cylinder. 
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(a) 

 
(b) 

Fig.24 

2D nonsymmetric distribution of the temperature across the cylinder section. 

  

 
(a) 

 
(b) 

Fig.25 

2D nonsymmetric distribution of radial displacement across the cylinder section. 

  

 
(a) 

 
(b) 

Fig.26 

2D nonsymmetric distribution of circumferential displacement across the cylinder section. 

 

Responses of this temperature excitation across the FG cylinder section are presented in Figs. 27-31.  

  

 

 

 

 

 

 

 

 

 

 

Fig.27 

2D nonsymmetric distribution of the temperature in the 

cylinder section. 
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Fig.28 

2D nonsymmetric distribution of the radial displacement in 

the cylinder section. 

 

  

 

 

 

 

 

 

 

 

Fig.29 

2D nonsymmetric distribution of the circumferential 

displacement in the cylinder section. 

  

 

 

 

 

 

 

 

 

 

Fig.30 

2D nonsymmetric distribution of the radial stress in the 

cylinder section. 

  

 

 

 

 

 

 

 

 

 

Fig.31 

2D nonsymmetric distribution of the hoop stress in the 

cylinder section. 

 

4    CONCLUSION 

In this paper, a combination of fast Fourier transform technique and conventional finite element method was 

employed successfully for thermo-mechanical analysis of a hollow FG cylinder. In shells of revolution, we can 

suitably use Fourier transform in the circumferential direction. Hamilton’s principle was used for deriving thermo-

elastic governing equations of the FG cylinder. Discretization of equations and related boundary conditions was 

utilized using discrete Fourier transform in the circumferential direction. In the radial direction, the FE method was 
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used to solve PDGEs. The discrete transform can be computed with the 
22N  operations required by a matrix-vector 

multiplication. The fast Fourier transform technique which is successfully implemented in this paper has an 

operation count with leading term   25 2 logN N . In the numerical analyses, it is accompanied by a great time 

saving of computations. Asymmetric boundary conditions were considered and obtained results were validated using 

exact and complete FE solutions. The investigations showed that the present method is in good agreement with exact 

analytical solutions. In convergence study, the FFT technique showed much better behavior in comparison with the 

finite element method. It can be concluded that the FE mesh-sizes have more influence in convergence than FFT 

nodal density. The proposed method (FFT-FE) enjoys both the ability of FEM in modeling complicated geometry 

and the simplicity and accuracy of FFT. The present hybrid method can be extended to three-dimensional elasto-

static and elasto-dynamic analysis of homogeneous, composite, and functionally graded thick shells of revolution. 

APPENDIX A 
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