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 ABSTRACT 

 In this paper, free vibration analysis of damaged functionally 

graded beams based on the first-order shear deformation theory 

(FSDT) is carried out. In this regard, a new model of springs is 

introduced to model the damaged elements of the beam. The 

proposed model is achieved from stress resultants. The springs 

equations for homogeneous and functionally graded (FG) beams 

are presented; furthermore, equations for equivalent springs are 

also provided which can be used for both homogeneous and FG 

beams. The proposed method can be applied for the analysis of 

structures with fewer computation costs and high accuracy. To 

show the accuracy of the proposed model, the natural frequencies 

of the beams with real elements and the ones which are modeled by 

the proposed springs are compared considering various support 

conditions. Good agreement has been observed. Thereafter, the 

model is used to detect the damaged elements. The result shows 

that the model can properly detect the damage location.  

                                 © 2022 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

TRUCTURAL health monitoring is essential for the identification of damages and integrity of structures. 

Health monitoring can be categorized in four main steps: determination of damage existence, defining its 

location, identification of the damage severity, and finally, the prediction of the remaining lifetime of the damaged 

structure [1]. The beam is one of the basic members of a structure; therefore, identification of the damage in the 

beam, especially the functionally graded beam, which is a new type of composite beams, is of great importance. One 

of the most common methods in damage detection is the use of modal data and free vibration analysis, which have 

been widely studied in recent years [2,3,4]. In 1995, Wu and Huang studied free vibration and forced dynamic 

responses of a beam based on the analytical and numerical combined methods. The beam was a uniform cantilever 
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Timoshenko beam and subjected to several loads with various masses and translational and rotational springs [2]. In 

1998, based on continuous cracked beam vibration theory and fracture mechanics methods, Chondros et al. studied 

lateral vibration of Euler-Bernoulli beams with open cracks and also a steel beam with a double-edge crack [3]. Li 

investigated free vibration analysis of a beam by a simple and unified approach and showed the efficiency of the 

proposed technique by numerical examples [4]. In 2003, Patil and Maiti investigated the crack detection in Euler-

Bernoulli beams by modeling the crack with a rotational spring based on frequency measurements. The efficiency of 

their proposed method was shown through numerical studies and evaluation of the differences between the locations 

and sizes of the predicted crack and the actual one [5]. Lu and Chen investigated free vibration of functionally 

graded beams based on the two-dimensional theory of elasticity and a hybrid state-space/differential quadrature 

method. They verified their method by comparison with an exact solution of the FG beam [6]. In 2007, Aydogdu 

and Taskin surveyed the free vibration analysis of a FG beam with simply supported edges based on different 

higher-order shear deformation and classical beam theories [7]. Sina et al. studied free vibration analysis of 

functionally graded beams based on an analytical method. They investigated the effects of different conditions on 

natural frequencies and mode shapes of the FG beams [8]. In 2010, Simsek investigated vibration analysis of the FG 

beam based on Euler–Bernoulli, Timoshenko, and the third-order shear deformation beam theories. The beam was 

simply-supported and under a moving mass. He studied the effects of various conditions, such as various material 

distributions on the dynamic response of the beam [9]. Moradi et al. studied the crack identification in beams based 

on the bees algorithm. A rotational spring was used to model the crack. The size and location of the crack were well 

predicted by this method [10]. More recently, Manoach et al. presented a numerical and experimental study of the 

vibration-based damage detection in laminated beams under temperature variations and dynamic loads using 

Poincare maps. Experimental tests confirmed the efficiency of the proposed method [11]. In 2013, Pradhan and 

Chakraverty investigated free vibration of the functionally graded beams with different boundary conditions based 

on the classical and first-order shear deformation beam theories. They studied the effects of various boundary 

conditions and different beam theories on the natural frequencies of the beams [12]. Wattanasakulpong and 

Ungbhakorn studied linear and nonlinear vibration analysis of functionally graded porous beams with elastically 

restrained edge based on the differential transformation method (DTM). They presented linear and nonlinear 

frequencies of the beam based on different material property distributions, porosity, and spring constants [13]. By 

using DTM and based on the first order shear deformation theory, Shariyat and Alipour [14,15] and Alipour and 

Shariyat [16,17] analyzed undamaged non-homogeneous circular plates. In 2015, Yazdanpanah and and seyedpoor 

introduced a damage indicator for beams based on mode shape, mode shape slope, and mode shape curvature. The 

proposed indicator determined the location of damage, properly [18]. In another paper, Chen et al. investigated free 

and forced vibration analysis of the FG porous beams based on the Timoshenko beam theory. They obtained the 

natural frequencies of the beams subjected to different loading conditions and discussed different effects on the 

dynamic behavior of the FG porous beams [19]. In another attempt, Pagani and Carrera surveyed large 

displacements and post-buckling responses of composite beams based on the Carrera Unified Formulation. They 

used low to higher order beam theories to achieve the governing nonlinear equations of the beam [20]. In 2017, 

Wang and Zu investigated vibration behaviors of FG rectangular plates with even and uneven porosity distributions 

and moving in thermal condition. Vibration properties were presented, and the impact of some main parameters on 

the vibration behavior of the plates were analyzed [21]. Furthermore, in 2017, Wang and Zu studied the nonlinear 

steady-state response of FG plates. The plates were in contact with ideal liquid. The impact of some main 

parameters such as natural frequencies on the plates and different parameters on dynamic response of the plates were 

discussed [22]. In most recent attempt, in 2018, Nakhaei et al. presented a general formulation for the beam with 

crack by including crack parameters in the equation of motion. They determined the amplitude and frequency of the 

beam with circular and V-shapes cracks in their work [23]. Wang investigated electro-mechanical vibration analysis 

of FG plates with porosities in translation direction. The results have shown that the vibration properties of the plates 

relied on different physical parameters [24]. In another paper, Navabian et al. presented a novel damage index for 

the damage detection of plates based on mode shapes. The proposed damage index was capable of determining the 

location and severity of damage with high accuracy [25]. Furthermore, in 2018, Mottaghian et al. examined the 

vibration and statics response of cracked beams and bars based on the extended FE model. They determined the 

effects of different crack locations and boundary conditions on the stress counters and the displacement in their work 

[26]. In 2019, Soncco et al. studied the bending behavior of the FG beams based on the finite element method. The 

beams were under buckling loads and modeled based on an improved first-order shear deformation theory. They 

showed that the combination of ceramic and metal significantly affect the transverse deflections [27]. Mottaghian et 

al. investigated the large deformation response of cracked beams based on a new finite element model and 

continuum and classical-based methods [28].  In another work, Wang et al surveyed nonlinear vibration analysis of 

reinforced metal foam cylindrical shells based on Donnell nonlinear shell theory. Graphene platelets were utilized to 
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reinforce the shells. The impact of geometry properties of graphene platelets on vibration properties of the shells 

were investigated [29]. In 2020, Li et al investigated free vibration of FG beam immersed in fluid. Numerical results 

were performed to analyze the effect of different parameters such as fluid density on the vibration properties of the 

FG beam [30]. In another attempt, Wang et al studied free and forced vibration analysis of FG graphene oxide-

reinforced beam based on a new Ritz-solution shape function. The beam was polymer nanocomposite and subjected 

to a moving load. An analysis was performed to demonstrate the impact of different parameters such as graphene 

oxide distribution on the response of FG beam with different boundary conditions [31]. In 2021, Salmalian et al. 

utilized a Lagrange multiplier approach within the nonlinear FE model to examine the cracked columns. The post-

buckling responses of cracked FG columns subjected to thermal and mechanical loads were used to analyze the 

results. [32]. As can be seen, few works have been conducted on modeling of the damaged parts in functionally 

graded beams using springs; therefore, in this paper, an analytical method is provided for obtaining modal shapes 

and determining the location of damage for a functionally graded beam. The technique has a mathematical basis that 

is implemented on the Maple software. To show the accuracy and efficiency of the proposed method, the obtained 

frequencies are compared with the results presented in literature. The comparison indicates that the results are 

accurate, and the location of the damage was well illustrated in the diagram. 

The paper is organized as follows: In the next section, the governing equations of the beam are extracted based 

on the first-order shear deformation theory. After that, the equations of the springs are presented, which are used to 

model the damaged elements. Thereafter, the continuity conditions, boundary conditions, and the solution for the 

governing equations of the beam are presented, respectively. Validation of the proposed method is performed in 

section 6. In section 7, the results of the models are shown and discussed. At the end, some conclusions are 

presented that can be used for further researches. 

2    GOVERNING EQUATIONS OF THE BEAM  

In this section, the governing equations of the beam are presented. The analyzed beam is divided to different parts 

(i.e., three parts) with different stiffness or different Young’s modulus. E1, E2 and E3 are the Young’s modulus of 

part 1, 2 and 3, respectively (Fig.1). If the three parts of the beam are the same, same properties are considered for 

the parts. 

 

 

 

 

Fig.1 

General model of the studied beam with three different parts. 

 

To extract the governing equations, the first-order shear deformation theory is used, which is based on the 

displacement functions [33]: 
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where u is the in-plane displacement, 0u  is the in-plane displacement of the middle layer,  x  is the rotation of the 

transverse surface, and h is the thickness of the beam. 

The governing equations of the beam can be extracted as follows: 
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where U is the internal energy, and K is the kinetic energy. The components of Eq. (2) are as follows: 
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where   is the strain component,    is mass density,    is shear strain,    is shear stress,  w  is the displacement 

of the beam, X   represents the second derivative of the function X  based on the time and 
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where 2k  is the transverse shear correction factor, which is used in first-order shear deformation theory. In this 

paper, 2k = 5/6. 

Substituting Eq. (1) and Eq. (4) into Eq. (3), gives Eq. (2) as follows: 
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Now the following equations can be defined for each part of the beam: 
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where, s is the number of the desired element of the beam, and v is Poisson’s ratio. Substituting Eq. (6) into Eq. (5), 

gives Eq. (2) and then integrating from that, the governing equations of the beam are extracted: 
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As one of the goals of this paper is the damage identification in the beam, in the next section, the damaged part is 

modeled with springs. 

3    THE PROPOSED MODELS FOR THE SPRINGS  

The damaged parts of the structure could be modeled by various methods: reducing the elasticity modulus, reducing 

the thickness of the damaged parts, using some springs, etc. To investigate the damage beams, two general 

techniques are considered in this study: 

1. Analysis of the damaged beam with real elements and different modulus of elasticity (as shown in Fig. 1) 

2. Analysis of the damaged beam with two new presented spring-based models: 

 Modeling the damaged element of the beam with longitudinal continuous springs with stiffnesses uk . (as 

shown in Fig. 2(a)). For the case of FG beams, uk  is changed along the thickness direction. 

 Modeling the damaged element of the beam with equivalent longitudinal and rotational springs with 

stiffnesses uk  and k  . (as shown in Fig. 2(b)).  

Fig.2 illustrates the overall process of damage identification based on the two presented springs models. 
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(a) 

 
(b) 

Fig.2 

Modeling the damaged element based on: a) longitudinal continuous springs and b) equivalent longitudinal and rotational 

springs.  

 

In this section, the equations of the springs for homogeneous, functionally graded materials (FGM), and 

equivalent conditions are discussed. Modeling the parts by springs results in lower time consuming of the 

calculation process. 

3.1 Proposed model of springs for homogeneous beam 

The stiffnesses of the springs when the modulus of elasticity is constant along the thickness of the beam are 

extracted as follows: 
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where the index d refers to the damaged element of the beam, which modeled by springs,  
x  is expressed in Eq. 

(4), and in this section, the strain component and u  which is the displacement of the longitudinal springs can be 

defined as follows: 
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where 
dx  is the length of the damaged element of the beam. By substituting 

x  and Eq. (10) into Eq. (8) and Eq. 

(9), gives the following equations: 
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uk  results from the above equations as follows: 
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In this section, for a homogeneous beam, the longitudinal springs can be equivalenced with a longitudinal and 

rotational springs (
uk  and k   in Fig.2, respectively). Therefore 
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By substituting 
x  and Eq. (10) into Eq. (14) and Eq. (15), gives the following equations: 
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Therefore, the stiffnesses of the longitudinal and rotational springs in this section will be: 
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3.2 Proposed model of springs for the FG beam 

If the modulus of elasticity is a function of z , Eq. (18) is not applicable. In this case, the calculations should be done 

in integral form for the boundary conditions, and 
uk  consists of two parameters as follows: 
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Therefore, the stiffnesses of the proposed springs for the FG beam are extracted as follows: 
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By substituting 
x  and strain component into Eq. (20) and Eq. (21), the following equations result: 
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Therefore, the stiffness of the springs will be: 
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3.3 Proposed equivalent springs for the FG and homogeneous beam 

We considered an equivalent condition for the stiffnesses of the springs that could be expressed for both 

homogeneous and FGM beams. The equivalent stiffnesses of the springs are as follows: 
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In fact, if the elasticity modulus is not a function of z, the above equation will be the same as Eq. (18). By 

modeling one part of the beam with springs as above, one element of the beam is eliminated, and the natural 

frequencies of the beam are calculated with high precision and fewer computation costs. 

4    CONTINUITY CONDITIONS OF THE BEAM  

In this section, the continuity conditions of displacements and different boundary conditions which are applied to 

model the beam are presented. 

4.1 Continuity conditions of the beam 

In this section, the continuity conditions of the beam for the two models, which are considered to investigate the 

damage in this study, are presented. The continuity conditions of displacements and stress resultants must be 

established between different elements of the beam. In this beam, the length of the first, second, and third elements 

are 
1x ,

2x , and 
3x , respectively. 

For the model of the beam with real elements and modulus of elasticity, the continuity conditions are expressed 

as follows: 
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where 
xN ,

xM , and 
xQ  are the in-plane force, the bending torque, and the transverse shear force per unit length, 

respectively and are defined through the first-order shear deformation theory: 
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For the elements of the beam connected with springs, the continuity conditions of displacements and stress 

resultants must be established between elements and springs, and these conditions are as follows:  

The continuity conditions for the FGM are: 
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and the continuity conditions for the homogeneous and equivalent condition are: 
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4.2 Boundary conditions 

The following boundary conditions are considered for various support conditions: 

Clamped edge: 

 

0 0

0

0

x

u

w







 

 (30) 

 

Simply-supported edge: 

 

0 0

0

0

x

u

M

w





 

 (31) 

 

Free edge: 

 

0

0

0

x

x

x

M

N

Q





 

 (32) 
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5    THE SOLUTION OF GOVERNING EQUATIONS OF THE BEAM WITH POWER SERIES   

To achieve the displacement components, the governing equations must be solved; therefore, by using power series 

method based on Taylor’s series expansion, the functions can be expressed by the following power series whose 

centers are located at x=m. N is the number of statements of the power series which is achieved through a sensitivity 

analysis for a convergent result. 
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0 1 2
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


       








 
(33) 

5.1 The Solution of governing beam equations  

For the first beam element, the power series expand around the m = 0, and for the other elements of the beam, the 

power series expands around the end length of the previous element. Substituting Eq. (33) into Eq. (7), the following 

three equations of the beam are obtained: 
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(34) 

5.2 Transformation of the beam boundary conditions 

In this section, we put the power series into the boundary conditions as follows: 

Clamped edge: 

 

0

0

0

0

0

0

U

W







 

 
(35) 

 

Simply-supported edge: 

 

0

1 1

0

0

0

0

U

BU D

W






 
 

 
(36) 

 

Free edge: 

 

1 1

1 1

0 1

0

0

( ) 0

BU D

AU B

A W







  


 


 

 
(37) 

 

By solving the governing equations of the beam, 
( )i

jU , 
( )i

j , 
( )i

jW  with j =2.3 ….n are achieved according to 

( )

0

iU , ( )

1

iU , ( )

0

i , ( )

1

i , ( )

0

iW , ( )

1

iW . Therefore, the equation of the beam based on continuity and boundary conditions 

can be shown as the following matrix equation: 
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(38) 

 

where ( )ijX   is the ith row and jth column of the matrix that is expressed based on the natural frequency of the 

beam. 

6    VALIDATION OF THE PROPOSED METHOD   

In this section, validation of the proposed method and results of natural frequencies are provided. To validate the 

accuracy of the proposed method, the results are compared with those of literature [12]. Table 1 shows the analytical 

results of the first three natural frequencies and compared with CBT and TBT methods for the functionally graded 

beam. In this table, C-C, S-S, and F-F are related to boundary conditions and denotes for clamped-clamped, simply 

supported-simply supported, and free-free conditions, respectively. The functionally graded materials are mixtures 

of Aluminium and Alumina (Al2O3), which their properties are as follows: 

 

Aluminium:
3

70 , 0.3, 2700
kg

E Gpa v
m

    

Alumina:
3

380 , 0.3, 3800
kg

E Gpa v
m

    

(39) 

 

The power-law variation, which is used in this section and Ref. [12] is considered as follows: 

 

1
( ) ( )( )

2

k

c m m

z
R z R R R

h
      (40) 

 

where 
cR  and 

mR  denote the values of the properties of the Alumina and Aluminum constituents of the FG beam, 

respectively, and k is the power-law indices. It is important to note that the non-dimensional frequency parameter, 

which is used in this paper, is expressed as follows: 

 
2

m

m

L

h E


   (41) 

 

where   is the achieved frequency, L is the length of the beam, h is the thickness of the beam, and m  and mE  are 

the mass density and Young’s modulus of the Aluminum, respectively. 
 

Table 1 

The first three natural frequencies of the beam with fixed L/h = 5 and different power-law indices (k). 
BC’s Natural 

frequency 
K=2 K=5 K=10 

 
 

C-C 

CBT [12]     TBT [12]    This Study CBT [12]    TBT [12]   This Study CBT [12]     TBT [12]   This Study 

1  9.6297        8.1436       7.6940 8.8444        7.2733      7.0954 8.4517        6.7977       6.7405 

2  24.4029     17.6106     17.8762 21.4108     15.4037    16.2161 19.5030     14.2226     15.2798 

3  26.6125     25.8414     24.2027 23.3156     21.6583    20.9120 22.1017     19.5473     19.1003 

 

S-S 
1  4.7519       4.5239        3.854 4.3132       4.0732      3.6266 3.9598       3.7305       3.4970 

2  15.2414     13.3481     13.5587 13.8836     11.9338    12.5735 13.5466     11.2966     12.025 

3  23.3528     23.3498     24.1871 22.4586     20.3628    20.8812 20.1299     18.7676     19.0744 
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F-F 
1  8.9226       8.4635        8.1467 8.1944        7.6957      7.6452 7.8836        7.3316       7.3992 

2  22.3792     18.4173     19.3040 20.5191     16.3610    17.8765 19.7413     15.3066     17.1655 

3  26.3180   25.2117     24.2709 22.1065     21.3348    21.0023 19.8473     19.3327     19.1586 

 

As can be seen, the results of the proposed method are closer to the TBT method, which indicates the high 

accuracy of the proposed method. Also, the good agreement between the results of this study and those of the 

literature, shows the convergence of the results for different conditions. Table 2 shows the achieved results for 

different statement numbers of the power series. The boundary condition and the power-law indices, k, are 

considered as C-C and 10, respectively. As can be seen the results converge to their final value, properly. 

 
Table 2 

The achieved results for different statement numbers of the power series (C-C boundary condition and k=10). 
Natural frequency N=20 N =25 N =30 N =35 N =40 

1  6.7405 6.7405 6.7405 6.7405 6.7405 

2  15.3377 15.2799 15.2798 15.2798 15.2798 

3  19.1002 19.1004 19.1003 19.1003 19.1003 

7    RESULTS AND DISCUSSION   

In this section, to show the accuracy of the proposed spring stiffness formulas, a comparison is made between the 

first three natural frequencies of the beams, which contain parts that are modeled by real elements and the ones 

which are modeled by the spring formulas extracted in section 3. These comparisons are made for undamaged and 

damaged beams and homogeneous and FGM conditions. For this purpose, a beam with three elements is considered, 

and the second element is modeled by the proposed springs; the results are compared with those of the real element 

modeling. The beam properties in this section are considered as follows: 

 

3 3

1 1
( )( ) , ( )( )

2 2

70 , 380 , 2700 , 3800

0.3 , 1 , 0.2

k k

c m m c m m

c m c m

z z
E E E E

h h

kg kg
E Gpa E Gpa

m m

L h

   

 



       

   

  

 (42) 

 

Table 3 shows the comparison for an undamaged clamped-clamped beam, which is modeled by real elements, 

spring (section 3.1 and 3.2), and equivalent spring (section3.3). Different spring lengths are considered, and the 

material is assumed homogeneous (k = 0) and FGM. The whole length of the beam is unit; the first element length is 

assumed as 0.5, and the spring length is defined in the table. 

 
Table 3 

Comparison of the three first non-dimensional frequencies of the undamaged clamped-clamped beam with different modeling 

conditions. 
Spring 

length 

Natural 

frequency 

k = 0 K = 2 K = 5 

       E            Spring        Equivalent 

                                       spring 

       E          Spring        Equivalent 

                                    spring 

     E       Spring         Equivalent 

                                     spring 

 

0.001 
1  5.5230       5.5202       5.5202 9.0753      9.0564       9.0707 9.7598       9.7467        9.7547 

2  12.7348     12.7348     12.7348 21.2374    21.2377     21.2375 22.8051     22.8052      22.8051 

3  16.4664     16.4664     16.4664 28.9880    28.988       28.988 30.7988     30.7987      30.7987 

 

0.01 
1  5.5230       5.4956       5.4956 9.0753      8.8996       9.0288 9.7598       9.6348        9.7086 

2  12.7348     12.7347     12.7347 21.2374    21.2604     21.2405 22.8051     22.8190      22.8068 

3  16.4664     16.4664     16.4664 28.9880    28.9839     28.9834 30.7988     30.7962      30.7961 

 

0.05 
1  5.5230       5.3965       5.3965 9.0753      8.3994       8.8417 9.7598       9.2408        9.5109 

2  12.7348     12.7235     12.7235 21.2374    21.5260     21.2883 22.8051     22.9938      22.8257 

3  16.4664     16.4613     16.4613 28.9880    28.9001     28.883 30.7988     30.744        30.7376 
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0.1 
1  5.5230       5.2996       5.2996 9.0753      8.0344       8.6309 9.7598       8.9176        9.2993 

2  12.7348     12.6541     12.6541 21.2374    21.7219     21.2972 22.8051     23.1047      22.7712 

3  16.4664     16.4264     16.4264 28.9880    28.6922     28.6298 30.7988     30.6041      30.5784 

 

As can be seen, the results of the proposed spring formulations are in good agreement with the real one in the 

undamaged beam. In all the tables presented in this section, for k = 0, since the equation of equivalent spring is 

coincided with equation of spring in homogeneous condition, the natural frequencies presented for them are the 

same. 

To study the applicability of the proposed spring formulation in damaged beams, a 30 percent reduction in 

elasticity modulus is applied on the second element of the previous beam, and the comparisons are shown in Table 

4. The first element length is considered as 0.2. 

 
Table 4 

Comparison of the first three non-dimensional frequencies of the damaged clamped-clamped beam with different modeling 

conditions. 
Damaged 

length 

Natural 

frequency 

k = 0 K = 2 K = 5 

   E          Spring        Equivalent 

                                      spring 

   E              Spring      Equivalent 

                                        spring 

          E      Spring           Equivalent 

                                           spring 

 
0.001 

1  5.5224      5.5229          5.5229 9.0746      9.0776       9.0752 9.759         9.7611       9.7597 

2  12.7325    12.7306        12.7306 21.2337    21.2305     21.2313 22.8011     22.7981     22.7978 

3  16.4618    16.4510        16.4510 28.98        28.9612     28.9579 30.7902     30.7701     30.7687 

 
0.01 

1  5.5179      5.5216           5.5216 9.068        9.1011       9.0744 9.7517       9.7743       9.7581 

2  12.7123    12.6972        12.6972 21.1999    21.1696     21.1811 22.7649     22.7389     22.7390 

3  16.4216    16.3124        16.3124 28.9098    28.7232     28.6788 30.7152     30.5139     30.4925 

 
0.05 

1  5.5            5.5039           5.5039 9.0423      9.2463       9.0640 9.7234       9.8542       9.7376 

2  12.6177    12.6311        12.6311 21.0363    20.9364     21.0474 22.5910     22.5485     22.6038 

3  16.2689    15.7026        15.7026 28.6433    27.7422     27.3763 30.4304     29.4316     29.2122 

 

0.1 
1  5.4769      5.4452           5.4452 9.0074      9.4795       9.0269 9.6852       9.9617       9.6687 

2  12.4966    12.6715        12.6715 20.8190    21.6638     21.3896 22.3616     23.0322     22.8441 

3  16.1341    14.9747        14.9747 28.4073    26.1445     25.7868 30.1788     27.8619     27.6748 

 

The results of Table 4 demonstrate the applicability of the proposed spring formulation in the presence of the 

damage. Considering the accuracy of the proposed numerical method, which is shown previously, any reduction in 

the natural frequency indicates the presence of damage in the structure. To identify the damaged location through a 

nondestructive process, many approaches have been proposed. Using mode shape derivatives is one of the useful 

nondestructive techniques. Studies have shown that the mode shape derivatives, especially the second derivative of 

mode shapes, are sensitive parameters that show the location of damage in the structure ([34, 35]). To display the 

applicability of the proposed numerical method in locating the damaged parts of the beam, a clamped-clamped FG 

beam is considered. The whole length of the beam is unit, the first element length is 0.5, and the second element is 

considered as the damaged element. The damaged element length is assumed as 0.05, and a 30 percent reduction in 

its elasticity modulus is considered. 

Table 5 compares the first three non-dimensional frequencies of the above-mentioned beam with those of 

undamaged one. In Fig.3, the second derivative of the mode shape of the above-mentioned damaged beam is shown. 

As can be seen, the graph shows a discontinuity in the location of the second element. No discontinuity is seen in 

other parts of the beam that is adopted to the primary assumption. 
 

Table 5 

Comparison of the first three non-dimensional frequencies of the undamaged and damaged FGM C-C beam. 
Natural frequency K=2   Undamaged beam K=2   Damaged beam 

        E                            Spring           Equivalent spring          E                  Spring             Equivalent spring 

1          9.0753                      8.3994                8.8417         8.9765           8.2074                    8.7405 

2        21.2374                    21.5260               21.2883        21.1417         21.5078                  21.2778 

3        28.9880                    28.9001               28.883        28.9769         28.8612                  28.8253 
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Fig.3 

Damage localization result for C-C Beam. 

 

In the following, instead of applying the damage in elasticity modulus, the thickness of the beam in the second 

element is reduced to 50 percent of its primary value. Table 6. shows the frequency results for different modeling 

methods. As can be seen, there is a good agreement between the natural frequencies results for the case of element 

thickness reduction. As could be seen, the proposed springs can properly model the thickness reduction in the 

damaged elements with different lengths. 

 
Table 6 

Comparison of the first three non-dimensional frequencies of the C-C beam with 50 percent thickness reduction in the second 

element. 
Damaged 

length 

Natural 

frequency 

k=0 k=2 k=5 

 E               Spring       Equivalent 

                                     spring 

 E               Spring         Equivalent 

                                     spring 

 E               Spring          Equivalent 

                                       spring 

 
0.001 

1  5.507           5.5010         5.5010 9.0471         9.0617           9.0144 9.7298          9.7496           9.6951 

2  12.7329      12.7348       12.7348 21.2351      21.2376         21.2375 22.8023       22.8051         22.8051 

3  16.4746      16.4664       16.4664 29.0020      28.9879         28.9878 30.8140       30.7987         30.7987 

 

0.01 
1  5.3816         5.3261         5.3261 8.8273         8.9431           8.7854 9.4955          9.6592           9.4555 

2  12.7154      12.7341       12.7341 21.2131      21.2515         21.2442 22.7760       22.8113         22.8085 

3  16.5491      16.4663       16.4663 29.1287      28.9797         28.9792 30.9517       30.7939         30.7938 

 

0.05 
1  5.0922         4.8607         4.8607 8.3273         8.5001           7.9715 8.9581          9.2982           8.6264 

2  12.5851      12.6728       12.6728 21.0180      21.4502         21.3682 22.5566       22.8964         22.8403 

3  16.8796      16.4563       16.4563 29.6871      29.7797         28.7463 31.5615       30.6820         30.6664 

 

0.1 
1  5.0335         4.7111         4.7111 8.2265         7.8026           7.6049 8.8463          8.5000           8.2342 

2  12.2883      12.0453       12.0453 20.5153      20.8693         20.5037 22.0111       22.2068         21.8595 

3  17.2551      17.3017       17.3017 30.3126      29.6265         29.5948 32.2513       32.0432         32.0290 

 

To show the efficiency of the proposed numerical method for the other boundary conditions, two new boundary 

conditions (simply supported-simply supported and free-free conditions) are applied on the beam. In Table 7, the 

damage is considered on the second element, with a 30 percent reduction in the elasticity modulus. The whole length 

of the beam is unit, the first element length is 0.5, and the second element length is 0.001.  

 
Table 7 

Comparison of the first three natural frequencies with various modeling method and different boundary conditions. 
 

B. C’s 

Natural 

frequency 

k=0 k=2 k=5 

 E               Spring       Equivalent 

                                        spring 

 E               Spring       Equivalent 

                                        spring 

 E               Spring       Equivalent 

                                        spring 

 
S-S 

1  2.8158        2.8132         2.8132 4.5288         4.509           4.5250 4.8885         4.8750         4.8841 

2  9.8390        9.8401         9.8401 16.0427      16.0442       16.0441 17.2959      17.2975       17.2975 

3  16.4594     16.4429       16.4429 28.9705      28.9587       28.9559 30.7834      30.7624       30.7618 

 
F-F 

1  6.0109        6.0041         6.0041 9.6531        9.7011         9.6486 10.4455      10.4715       10.4373 

2  14.1473     14.1495       14.1495 23.0221      23.0226       23.0248 24.8847      24.8866       24.8879 

3  16.4594     16.4429       16.4429 29.0003      28.7411       28.7628 30.7951      30.6388       30.6474 

 

As seen in all the above tables, the frequencies are in very good agreement, which shows the applicability of the 

proposed numerical approaches in different boundary conditions. The above examples have been conducted for a 
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three-element beam that one of its elements has been damaged. To find a more exact location of the damaged zone, 

the element number could be increased. Also, for the case of multiple damaged elements, the number of springs can 

be increased. In the following, to show the applicability of the proposed method in locating the damaged parts of the 

beam, a clamped-clamped FG beam is considered. The beam is modeled by four parts, at which it’s two middle parts 

are damaged which are modeled by two springs. The whole length of the beam is unit, the first element length is 0.5, 

and the whole length of the two springs is defined in Table 8, 20 percent reduction in elasticity modulus is 

considered in the damaged elements.  

 
Table 8 

Comparison of the first three non-dimensional frequencies of the damaged clamped-clamped beam with different damaged 

lengths.  

 

As can be seen, the results of the proposed springs and equivalent springs are in good agreement with each other 

when there are several damaged parts in the beam. In the following, for the abovementioned beam, instead of 

applying the damage in elasticity modulus, the thicknesses of the beam in the damaged elements are reduced to 50 

percent of their primary values. Table 9 shows the frequency results for the case of element thickness reduction. As 

before, there is a good agreement between the natural frequencies results for the case of elements thickness 

reduction.  
 

Table 9 

Comparison of the first three non-dimensional frequencies of the damaged clamped-clamped beam with thickness reduction in 

the damaged elements. 
Damaged length Natural frequency k=2 k=5 

             Spring        Equivalent spring           Spring        Equivalent spring 

 

0.001 
1  9.0562                9.0229 9.7437                9.7039 

2  21.229               21.2029 22.7959              22.7677 

3  28.9823             28.9795 30.7932               30.7922 

 

0.01 
1  8.8888                8.6080 9.6008                 9.2657 

2  21.1766             20.9452 22.7311               22.4971 

3  28.9336             28.9133 30.7488               30.7421 

 

0.05 
1  8.2665                7.5516 9.0339                 8.1636 

2  21.0176             20.5910 22.695                 22.1075 

3  28.7526             28.7134 30.6444               30.6336 

 

0.1 
1  7.778                  7.0428 8.5471                  7.6264 

2  21.0830             20.6179 22.6073               22.0963 

3  28.5235              28.9463 30.5677                30.3843 

Damaged length Natural frequency k=2 k=5 

          Spring              Equivalent spring           Spring             Equivalent spring 

 

0.001 
1  9.0477                    9.0656 9.7393                    9.7488 

2  21.5313                  21.2313 22.7987                  22.798 

3  28.9846                  28.984 30.7951                  30.7949 

 
0.01 

1  8.8217                    8.9761 9.5650                    9.6494 

2  21.4161                  21.1857 22.7696                  22.7447 

3  28.9548                  28.9496 30.7657                  30.7638 

 
0.05 

1  8.1385                    8.5714 8.9722                    9.2204 

2  21.3884                  21.1552 22.6667                  22.6908 

3  28.8443                  28.8365 30.6971                  30.6928 

 
0.1 

1  7.6974                    8.1610 8.5333                    8.8008 

2  21.1343                  21.0968 22.5773                  22.6337 

3  28.7905                  28.8036 30.6732                  30.6636 
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8    CONCLUSION 

In this paper, for the first time, an analytical method based on a new model of springs has been introduced, and is 

used to model the damaged elements of the beam. The proposed method can be applied for the analysis of structures 

with fewer computation costs and high accuracy. To show the accuracy of the proposed method, the natural 

frequencies of the beams with real elements and the ones which have been modeled by the proposed springs have 

been compared. The comparisons have been made for various support conditions, and good agreement between the 

results has been observed. In another attempt, to find the damaged part of the beam, the second derivative of the 

mode shapes has been surveyed. The location of discontinuity on the graph is a representation of the damaged part. 

The proposed method could be expanded to apply in real structures. 
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