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 ABSTRACT 

 In this study, the dynamic behavior of the propulsion system of a 

VLCC (Very Large Crude oil Carrier) ship is investigated using a 

multi-input multi-output model. In this system the engine ordered 

speed and the number of active cylinders are assumed as inputs and 

the dynamic parameters of the engine such as torque and speed are 

considered as outputs. In this research, the effects of sea wave and 

wind on the system dynamic behavior have been investigated. In 

addition, the ship powertrain system is investigated in which the 

intermediate shaft and propeller shaft are analyzed using lumped 

parameter method, finite element method, distributed-lumped 

method and the results of these modeling techniques are compared 

to the modeling results in which the connecting shafts were 

considered as rigid body. Comparison of the results shows that 

there are significant differences between the results of rigid body 

method and other three types of system modeling. On the other 

hand, the time required to run the distributed-lumped model is 

much shorter compared to other methods that are considered in the 

study for the dynamic behavior of the ship's powertrain systems. 

On the other hand, the fatigue analysis of the ship power 

transmission shafts shows that the fatigue life assessment of these 

shafts is of great importance and should be considered in the design 

phase.                       © 2022 IAU, Arak Branch. All rights reserved. 

 Keywords: Ship propulsion system modeling; Distributed-

Lumped; Fatigue analysis; MVEM (Mean Value Engine Model); 

Finite element. 

1    INTRODUCTION 

ACK of full knowledge to work in unpredicted weather conditions, especially against waves, has caused ships 

to be designed and optimized for calm water conditions. Despite doing our best to design ships to be safe, 

shipping operations face risks on rough waters. Today, apart from optimizing and managing the activity of vessels 
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when dealing with waves, also energy consumption and efficiency of ships are of great importance. Fuel price 

fluctuations, competing rental costs and strict environmental regulations have a major impact on the activities of 

shipping companies [1,2]. As mentioned, due to complexity of system, ship propulsion is currently designed for 

calm water condition, and for rough water conditions, usually excess15-25% of the energy required in calm water 

conditions is considered as a good sea margin to cover those conditions. Therefore, at the engine selection phase of 

the ship's propulsion system, the sea margin must be considered in such a way that even in worse weather 

conditions, the minimum possible engine power ensures the performance and safety of the ship. The wave effects on 

the ship's propulsion system are still unknown. However, the ship propulsion system reacts to the flow field 

variations in the waves, and therefore it is necessary to consider the effects of the waves on the ship powertrain 

system, especially at the design stage. When part or all of the ship's propeller comes out of the water, its resistance 

torque will be significantly reduced, and depending on the type of engine control system, there would be a tendency 

of sudden change in propeller speed. As a result, it is important to study the dynamics of the ship's powertrain 

system in the face of waves. Several researchers have studied and compared the propulsion parameters of a ship in 

waves and calm water. Nakamura and Naito [3] and Amini [4] studied the effects of ship motion and waves on wake 

fractions, thrust deduction, and finally changes in thrust and propeller torque. The movement of the ship increases 

the average wake and the resulting oscillations [5, 6]. Using the Reynolds Averaged Navier Stokes equations 

(RANS) simulation, Gao et al. [7] investigated the wake field in the presence of waves and the motion of the ship 

and modeled the nominal wake field in the waves. Taskar et al. [8] studied the changes in propeller emergence and 

submergence in the waves and its effects on engine load. These researches showed that the presence of an unsteady 

inflow to the ship propeller will increase engine fuel consumption. There is a fact that the presence of variable loads 

on the ship propeller in the waves can cause system failure, so it is necessary to predict these loads at the design 

stage [4]. Extensive research and full-scale experiments performed by Kayano et al. [9] show that the delivered 

power of the propulsion system, measured in the presence of wind and waves, is higher than estimated value. As a 

result, considering the effects of wind and waves in energy consumption calculations is very important. The study of 

engines as an important part of the ship propulsion system is of great importance. Engine models can be classified 

into transfer function models [10], cycle Mean Value Engine Models (MVEMs)[11,12] , zero or one-dimensional 

models [13], and multi-zone phenomenological models [14]. In a transfer function model, which usually represents 

the relationship of fuel consumption to engine speed, the essential characteristics of the system is not reflected. On 

the other hand, more accurate results can be achieved using multidimensional models, but achieving these results 

will be much more time consuming and computationally costly. The most commonly used models are zero-

dimensional models that require a large number of input data and takes longer time to run. However, these models 

can far more accurately predict the performance of the engine. On the other hand, the cycle mean value engine 

models are less complex and require a limited number of inputs and their execution time is much more reasonable 

with sufficient accuracy. The basic assumption in the cycle mean value engine modeling method is that the air and 

fuel flows to the cylinder are continuous, so the periodic trend of the engine cylinder processes is ignored and 

therefore this approach can factorize the engine cycle as the mean time change of factors, while the in-cycle 

variation (e.g. per degree of crank angle) is not determined [15]. 

In mechanical systems modeling, using the lumped parameter method is the simplest approach in which the 

elements are making up the system have point-wise and concentrated effects, therefore using this technique reduces 

the accuracy of design and modeling processes [16]. In order to improve the accuracy, numerical methods such as 

finite element methods are employed. The basic assumption of FEM is that the dynamic system comprises a finite 

number of elements [17]. Increasing the number of elements may lead to higher computational costs and time. In 

distributed modeling as an analytical method, fundamental assumption is that the dynamic system comprises an 

infinite number of elements that are infinitesimal. Hybrid (Distributed-Lumped) model is a combination of lumped 

and distributed models of assemblies that exist in the dynamic systems. Implementing the D-L model in software 

environments such as Simulink is relatively easy with the benefit of lower computational costs. Ship powertrain 

system is not a concentrated unit so that the masses, stiffness, inertias and so on are distributed over wide distances 

of length with point-wise concentrated elements such as flywheel, gearbox, coupling and bearing installed in the 

system. Ships powertrain systems are usually modeled using purely lumped where, in reality, the propulsion systems 

are neither specifically lumped nor distributed. These systems are combination of lumped and distributed elements. 

Murawski and Charchalis [18] investigated the torsional vibrations of a ship power transmission system that is 

induced by the internal and external loads such as engine torque, propeller outputs, hull deformation and other kinds 

of excitations, using finite element method and showed that in overload operation will result fracture and failure of 

the marine propulsion shaft. Also other research approach such as transfer matrix method [19], finite element 

method [20], energy method [21], wave approach method [22] and lumped-mass method [23] were used to analyze 

the ship propulsion shaft behavior dynamically. It worth to emphasis that many of these models do not have the 
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flexibility to consider modeling parameters such as system geometry, stiffness and damping coefficients, therefore 

the modeling process using these methods could become complex at a time. Grzadziela analyzed vibration of the 

propeller shaft of a naval ship in the Ansys environment and modeled underwater detonation effects using Lagrange 

equation to achieve a diagnostic oriented model [24]. Kluczyk and Grzadziela [25] presented the vibration analysis 

of a warship powertrain system elements using methods of processing vibration signal such as FFT analysis to 

perform a proper diagnosis of vibration. 

In this study, the performance of the propulsion system of a Very Large Crude oil Carrier (VLCC) are 

investigated using the results determined by a modular model built in Matlab/Simulink. The modular model is 

block-oriented so that the model is made by special blocks for each component. The various parts of the propulsion 

system such as engine, ship hull, propeller and shafting system are represented by separate blocks, while suitable 

interfaces and connections are used to exchange the specified factors between the blocks. The engine is modeled 

using cycle mean value engine model (MVEM) in which the exhaust and scavenging receivers are 

thermodynamically modeled as open systems. Equations containing dimensionless coefficients of torque and thrust 

are used to model the ship’s propeller, while the ship dynamics equations are used to determine the ship’s speed and 

longitudinal movement. The effects of wave have been investigated in this study. In addition, the ship propulsion 

system behavior has been modeled using lumped parameter method, finite element method, Hybrid (Distributed-

Lumped) modeling technique. Finally, the results of these models are presented and compared with each other as 

well as in the case where the shaft is considered as a rigid body system. The results show that the use of distributed-

lumped technique increases the accuracy of ship powertrain system dynamic analysis and decreases computational 

time significantly compared to other methods and can be used as an effective tool in system design. 

2    SHIP MODEL DESCRIPTION 

2.1 Engine model 

The quasi-steady, cycle mean value method is used for engine thermodynamic modeling for ship simulation. The 

basic premise of quasi-steady model is that the equations used for steady-state analysis can be extended to transient 

conditions [26]. In this model, the cycle–averaged temporal mechanical and thermodynamic variables, from cycle to 

cycle of the engine, are estimated. Consequently, changes in the cycle and in-cylinder parameters (e.g. per degree of 

crank angle) is not determined. This model contains scavenging and exhaust receivers, cylinders, turbocharger, air 

cooler and exhaust pipe. As early mentioned, the basic assumption in this model is that the fuel and air flowing into 

the cylinders are continuous in addition to the scavenging and exhaust receivers are thermodynamically open 

systems. 

Engine performance is calculated using following equations [26,27]: 
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where Pb is the engine brake power (watts), pb is the engine brake mean effective pressure (BMEP), Ne is the engine 

crankshaft rotational speed (rpm), Qe is the engine torque, revcy is revolutions per cycle (2 for four-stroke engine) 

and VD is the engine displacement volume. The mass flow rate (kg/s) of fuel injected is calculated as follows: 
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where zcyl is the number of engine cylinders, mfcycle is the mass of the fuel injected per cylinder per cycle and 

considered to be a function of the fuel index (rack) position (FR): 
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fcycle fmax Rm m F  (5) 

 

where mfmax is the maximum amount of fuel that can be injected into a cylinder in one cycle. The fuel index position 

(FR) is represented in a non-dimensional shape and is within the interval [0,1] that value 1 corresponds to the engine 

maximum continuous rating (MCR). 

The engine crankshaft rotational speed variations per time (
eN ) is calculated using angular momentum 

conservation in the powertrain system: 
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where Ishaftline is the sum of mass moments of the inertia of the shafting system, engine and propeller(with entrained 

water), Qe is the output engine torque, and Qp is the propeller torque. 

A proportional-integral (PI) controller is used for the engine governor to adjust the fuel index as follows: 
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where ∆N=Nord – Ne , Nord is the engine ordered speed and Ne is the actual speed, ki and kp are the integral and 

proportional constant, and u0 is the initial rack position. 

2.2 Propeller modeling 

The ship propeller is fixed pitch and its thrust and torque are determined using the dimensionless coefficients (KT 
and KQ) of thrust and torque, respectively, the sea water density (ρw), the propeller rotational speed (Np(rev/s)) and 

the propeller diameter(Dp) [13,28]: 
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In calculating the amount of thrust and torque due to the emergence of propeller, the effect of free surface and 

the effect of Wagner should be considered. According to Faltinsen et al. [5] suggestion, the amount of thrust loss is 

proportional to the area of the propeller disc that is out of the water. When the propeller comes out of the water, after 

re-entering the water, it needs some time to be able to develop and recover its thrust, thus reducing the average 

amount of torque and thrust. According to Minsaas et al. [29] this parameter is also effective in the average amount 

of torque and thrust losses. When the ship's propeller is active near the surface of the water, it creates waves on the 

free surface, which also causes torque and thrust losses. The sum of these effects is formulated as follows by a thrust 
diminution factor (β) proposed by Minsaas et al. [29] and multiplied by the thrust and torque values. 
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where h is depth of the propeller shaft, R is propeller radius. 

The dimensionless torque and thrust coefficients are determined from interpolating the polynomial equations for 

the Wageningen B-type propellers: 
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where CQn and CTn are the polynomial coefficients, AE/AO is the blade area ratio, P/D is the pitch to diameter ratio 

at 70% of the propeller radius for the fixed pitch propeller type, J is the propeller advance ratio, and ZP is the 

number of propeller blades. 

The propeller advance coefficient (J) depends on the propeller inflow velocity (VTotal), the propeller rotational 

speed (Np (rps)) and the propeller diameter (Dp). 
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One of the influential factors in the dynamic analysis of the ship powertrain system is the information about 

wake in adverse weather conditions, which is very limited. Therefore, a correct estimate must be obtained from it. 

Research shows that the motion of a ship and the presence of waves will cause wake velocity fluctuations that have 

a mean value different from that of calm water [3]. The propeller average wake inflow velocity is affected by ship 

surge and pitch motions and the waves, which can be extracted according to the following equation [5,6]: 
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and wp is effective wake fraction, VS is ship speed, ωe is wave encounter circular frequency, ξa is surge amplitude, ζξ 

is phase delay, ω is wave circular frequency, ha is wave amplitude, k is wave number, zp is the immersion depth of 

the propeller shaft, x is the longitudinal distance of the propeller from the center of gravity of the ship, xp is the 

position of the propeller section with reference to the center of gravity of the vessel, p is pressure gradient below 

the bottom of the ship due to pitching motion, X is wave encounter angle (0 for following sea; 180 for head sea), ρ is 

density of seawater, t is time, η5 is pitch amplitude. 

2.3 Ship dynamics modeling 

In the process of ship modeling, only motion along its longitudinal axis is considered. Hence, the speed of the ship is 

determined by integrating the Eq. (16) which is expressed according to the dynamics of the ship: 
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where Vs is the ship's longitudinal velocity, Tp is the effective propeller thrust, RS is the ship's resistance which is 

calculated by the Holtrop [30] method in calm water conditions, t_d is the thrust deduction factor, mship is the ship’s 

mass, madd is the added virtual mass to consider the hydrodynamic force owing to the acceleration of a body in a 

fluid. RAW is added resistance in wave and was calculated according to the following formula proposed by Liu et al 

[31]: 
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The added resistance component (RAWR) due to reflection/diffraction effect can be derived as: 
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E(=arctan(B/(2LE)) as shown in Fig. 1 and RAWM are the angle of entrance of waterline and the component of the 

added resistance due to motion/radiation effect, respectively. B and LE are ship’sbeam and length of waterline 
entrance, respectively. LPP is length of ship between perpendiculars, ζa is incident wave amplitude, λ is wave length, 

ρ is seawater density, Fn is Froude number and g is gravitational acceleration. 
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and CB is ship’s block coefficient, kyy is non-dimensional longitudinal mass radius of gyration (pitch), as percentage 
of LPP, T is draft of the ship and δT is the draft difference between the fore perpendicular and aft perpendicular, and 

the unit of arctan (δT /LPP) is in degree. 
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The added resistance due to wind can be derived using [33]: 
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where ρA denotes air mass density, VWR is relative wind speed, CX(ψWR) is wind resistance coefficient, AXV is area of 

maximum transverse section exposed to the wind and ψWR denotes relative wind direction. Therefore, the total 

resistance due to the weather conditions can be estimated as follows: 
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Fig.1 

Definition of length LE and angle E of entrance of waterline 

[32]. 

2.4 Validation 

The propulsion system of a VLCC is simulated in Simulink based on the principles, developed and verified 

formulations. The ship, engine, propeller and shafting system specifications are shown in Table 1. For simulation, 

various data including engine, ship, propeller and work space (air, exhaust gases, seawater, etc.) specifications were 

used. To simulate, the multi-input multi-output (MIMO) modeling system is used in which the required speed of the 

ship or the engine ordered speed (set-point speed) and the number of active cylinders are assumed as inputs and the 

performance parameters of the engine and ship such as engine torque, speed, fuel consumption, emissions, ship 

propeller thrust, ship speed and etc. are considered as model outputs as can be seen in the Fig. 2. To validate the 

developed model, fuel consumption measurement report [36] for a VLCC related to a 12-day voyage cycle in calm 

water as shown in Fig. 3 was used. In this report, the daily fuel consumption of this ship for a period of twelve days 

at sea is shown. The fuel consumption results predicted by developed model and similar respective values from the 

VLCC report are shown in Fig. 3, which highlights and validates the accuracy of the developed model. 

The difference between the predicted values, 49.91 Tons/day and 598.98 Tons for Average daily fuel 

consumption and total consumption, respectively, of the present model and VLCC fuel consumption measurement 

report, 51.65 Tons/day and 619.85 Tons for average daily fuel consumption and total consumption, respectively, is 

approximately 3.5% for the same voyage cycle of VLCC. 
 

 

 

 

 

 

 

 

 

Fig.2 

Schematic of the VLCC ship system as a multi-input multi-

output system. 
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(a) 

 
(b) 

Fig.3 

(a) VLCC ship voyage cycle; (b) fuel consumption.  

 

 

 

Table 1 

VLCC ship powertrain specifications [34,35]. 

Engine   Intermediate shaft   

Type 7RT-flex82T 2-stroke Diameter d1 0.7 [m] 

Cylinder no. 7 In-line Length l1 9.927 [m] 

Output (CMCR) 31640 [Kw]  Inertia  1376 [kgm2] 

Propeller   Ultimate-tensile 

strength 

UTS 590 [N/mm2] 

Blades no.  4 Yield stress  295[N/mm2] 

Diameter dp 9.86 [m] Shear modulus G1 81.4 [GPa] 

Damping 

(CMCR) 

Bp 467580 [Nms/rad] Density ρ1 7850 [kg/m3] 

Load inertia Jp 429250  [kgm2] Propeller shaft   

Flywheel   Diameter d2 0.85 [m] 

Inertia Jf 13600 [kgm2] Length l2 10.233 [m] 

Damping 

(CMCR) 

Bf 9115 [Nms/rad] Inertia  3454 [kgm2] 

Ship    Ultimate tensile 

strength 

UTS 590 [N/mm2] 

Length  L 320 [m] Yield stress  295[N/mm2] 

Breadth B 58 [m] Shear modulus G2 81.4 [GPa] 

Displacement 

volume 

V 312622 [m3] Density  ρ2 7850 [kg/m3] 

Area of 

maximum 

transverse section 

exposed to the 

wind 

AXV 1161[m2]    

3    POWERTRAIN SYSTEM MODEL 

The physical system modeling is modified to achieve a better prediction of its performance. The model should have 

adequate matching with the system so that reasonably well represents the characteristics of the real physical system. 

Fig. 4 shows a schematic layout of a VLCC ship powertrain system under consideration. The finite element and 

hybrid distributed-lumped modelling techniques are considered for dynamic analysis of the system.  
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Fig.4 

Schematic layout of VLCC ship powertrain system [34].  

3.1 Finite element model 

Finite element method is one of the most widely used methods for analyzing engineering problems. In fact, the finite 

element method is a numerical method for solving partial differential equations in which a system is subdivided into 

smaller and simpler parts called finite elements. In this section, the intermediate shaft and propeller shaft are divided 

into ten similar sections, where governing equations for each sections are presented by Eqs. (22). 
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where 10 0;J   ( ) ( ),1 19;j jD t t j     and ( ) ( ), 0, ;k kD t t k p   Eqs. (22) with zero initial conditions using 

Laplace transformation is: 
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Assuming that all intermediate shaft segments are parallel with same length and diameter, thus:
 1 92

ˆ... ;J J J J     

and 

 

1 2 10
ˆ;k k k k     (24) 

 

with similar logic for propeller shaft: 
11 12 19

... ;J J J J    and 

 

11 12 20
;k k k k     (25) 

 

Consequently, the angular speeds can be determined by: 
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 (26) 

 

Substituting s=iω in 
2det[ ]Js Cs K

s

 
and by equating the imaginary part of this expression to zero, the 

resonant frequencies of this finite element model can be determined. Calculations show that for this model, each of 

the shafts is divided into ten equal parts, the number of eigenvalues produced is thirty-nine while the lumped 

parameter model generates three eigenvalues. Increasing the number of shaft sections in the finite element model 

would increase computational cost, time and possibly errors. 

3.2 Distributed-Lumped model 

In distributed modeling as an analytical method, fundamental assumption is that the dynamic system comprises an 

infinite number of elements that are infinitesimal. Hybrid (Distributed-Lumped) model is a combination of lumped 

and distributed models of assemblies that exist in the dynamic systems. The modeling and simulation of hybrid 

systems such as long geared drive shafts and loads, the flow of air/gas through long tunnels or ducts and large 

structures have been studied by Whalley [37]. Hybrid systems can be structured as a series of distributed-lumped 

sections in the form of a system impedance matrix or a system admittance matrix, as presented by other researchers 

[38]. Gholami et al. [39] used the distributed-lumped modeling method to calculate dynamic shear stresses for 

different diameters of propeller shaft of a merchant ship over a range of operational speed. The results showed that 

improving propeller shaft design could reduce significantly the shaft mass and material saved specially at slow 

steaming is much greater than normal speeding case. 

3.2.1 Distributed shafts  

In this method, the lumped parts of the powertrain system are assumed to be flywheel and propeller. The 

intermediate shaft and propeller shaft are the distributed components of ship powertrain system. Using Newton’s 
second law, the governing equations for a distributed shaft of length Δx, as shown in Fig. 5 can be expressed as 

follows where, θ(x,t) and T(x,t) are angle of twist and twisting moment, respectively. 

 

( , )
,( )

x t
T x t GJ

x


 


 (27) 

 

and differentiating with respect to time (t); 
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 (32) 

 
where x is distance from end of the shaft and T and ω are torque and angular velocity, respectively. Jsj is polar 

moment of inertia of the shaft (m
4
), ρj is the shaft density (kg/m

3
). Gj and t are shear modulus of rigidity of the shaft 

and time, respectively. C and L are shaft’s compliance and inertia per unit length, respectively. Using Eqs. (31) and 

(32) in z domain for the two distributed shafts shown in Fig. 4, the relationship between the angular velocity and the 

applied torque in finite delay form can be expressed as: 
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For the intermediate shaft (admittance module), and 
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For the propeller shaft (impedance module), where 
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 2 2 221
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and 
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The finite time delays and characteristic impedances respectively, 
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The dynamic shear stress for the intermediate and propeller shafts can be calculated using the following formula: 
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In finite delay form, it can be expressed as: 
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ωi and ωi+1 are angular speeds of shafts. 

 

 

 

 

 

Fig.5 

A shaft in torsion. 

 

 

3.2.2 Lumped flywheel model 

 

The governing equation for the lumped flywheel using Laplace transformation with zero initial condition is, 

 

     f f f fT s J s B s                       (42) 

 

Transforming Eq. (42) to the z domain yields 

 

  1
1

1

f f

f f

z
z

T z

 





                     (43) 

 

where 

 

1 f
f

fB





                      (44) 



183                               Fatigue Life Analysis of the Propeller Shafting …. 
 
 

© 2022 IAU, Arak Branch 

1 1 1 1 1 1
exp 2 exp 2 /  f f

f

f f

B B
l L C l G

J J
 

   
      

   
                     (45) 

 

In finite delay form, Eq. (43) becomes 
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3.2.3 Lumped propeller model 

The governing equation for the lumped propeller using Laplace transformation with zero initial conditions is, 
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After transforming Eq. (47) to z domain, 
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In finite delay form, 
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In this stage, the distributed-lumped model used in the present study was validated with respect to a marine 

transmission system distributed model presented by Bartlett et al. [39]. As shown in Fig. 6, the results are in a good 

agreement with Bartlett et al. modeling results. In the second stage, the distributed-lumped model was used to 

simulate the dynamical behavior of the ship powertrain system. 

 

 
Fig.6 

Assessment of Bartlett et al. study and present study using Distributed-Lumped model for a ship powertrain system. 
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4   RESULTS AND DISCUSSION  

In this section, the effects of using different modeling methods mentioned in the previous sections in predicting the 

dynamic behavior of the system in the face of adverse weather conditions have been investigated. In all these 

models, the weather is assumed to be violent storm in head waves with a wave height of 11.5 m and wind speed of 

28.5 m/s in accordance with ITTC 2017 [40] guidelines for preparation, conduct and analysis of speed/power trials. 
The wavelength to the length of ship between perpendicular ratio (λ/LPP) for these scenarios will be 1. In this section 

the behavior of the ship system is investigated and it is assumed that the ship is in full load condition. In order to 

simulate the system, the engine speed change was considered as input to the system in the form of a step signal. It is 

assumed that the initial value is 45 rpm for different simulation modes and at time of 2 s, this value changes to 80 

rpm abruptly. It is also assumed that all engine cylinders (seven cylinders) are active. Then the amounts of the 

performance parameters such as speed and torsional shear stress for different modes are calculated and plotted. The 

results were extracted after simulation for a period of 1.0 seconds.  

4.1 Comparison of the methods 

In the first stage, it is assumed that the shafting system is a rigid body and since the mass moments of inertia of the 

intermediate shaft and propeller shaft are small compared to the mass moments of inertia of engine and propeller of 

the ship, therefore the mass moment of inertia values of these shafts are added to the mass moments of inertia of the 

engine and propeller. On the other hand, due to the high power generation of the propulsion system, the damping 

values and energy losses in the drive-train system are considered to be negligible.  

In the second stage, unlike the first stage, the intermediate shaft and propeller shaft are dynamically modelled 

using finite element method and distributed-lumped method and the results of these methods are compared with the 

results of other techniques such as lumped parameter method. Predicted results from various modeling techniques to 

investigate the dynamic behavior of the ship powertrain system are shown in Figs. 7 to 12. 

The results presented in the Figs. 7 to 12 indicates that there are clear differences between the responses obtained 

from the rigid model and the responses of other models. In the rigid model, assuming that the mass moments of 

inertia of the entire powertrain system, including the transmission shafts, engine and propeller of the ship, are 

aggregated together and assumed as an independent body, therefore the oscillations observed in other models, not 

seen in the rigid model. 

As shown in Figs. 9 to 12, the predicted results of the system speed and torque as well as the calculated dynamic 

shear stress in the transmission shafts are similar to each other. The similarity of the obtained responses can be due 

to the high amount of inertia and damping, low stiffness, slenderness ratio and system dispersion. At first glance, it 

seems that using any of the proposed models for dynamic analysis of this system can be appropriate and accurate 

enough, but what is discussed here is whether all the models presented, in terms of calculations such as time which 

are needed to run the model, are suitable, or if used in redesigning the system, have sufficient accuracy. Although 

the lamped parameter technique is the simplest method of modeling, as the dispersion of the system expands, the 

accuracy of the responses resulting from the use of this method is greatly reduced. Therefore, the finite element 

method is used as a more accurate alternative to the lamped parameter method for the analysis of dynamic systems. 

Due to the fact that by increasing the number of elements assumed in the finite element method, the number of 

dynamic equations governing the system will also increase, hence the probability of computational error will 

increase. Due to the matrix operations and the processes of generating eigenvalues and eigenvectors in the finite 

element method, when the system has low inertia and damping or high stiffness, these can reduce the accuracy of 

calculations, increase the complexity of system analysis and create instability in the system response [41,42]. On the 

other hand, considering all the components of the system continuously will increase the complexity of the system 

and make it more difficult to analyze its dynamic behavior. In this paper, which uses different modeling methods to 

investigate the dynamic behavior of the VLCC powertrain system in the rough sea, the time consumed to run each of 

these models is presented in the Table 2. 
 

Table 2 

Run time for different methods. 

Method Rigid body 
Lumped 

parameter 
FE(5 sections) FE(10 sections) 

Hybrid(distributed-

lumped) 

Run time 

(seconds) 
101 421 21386 57751 419 
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Interestingly, the implementation of the hybrid (distributed-lumped) method, in which it is assumed that the 

existing continuous systems, the power transmission shafts from the engine to the ship propeller, are composed of an 

infinite number of infinitesimal elements have a very short computational time that is comparable with the lamped 

method, which is the simplest method of modeling in this research. However, as can be seen in the finite element 

method, the computation time is greatly increased and reaches several hours, but the results show that there is no 

significant difference between the finite element method and the hybrid technique in terms of computational 

accuracy. Therefore, it seems that using a combination of lamped parameter and distributed methods can be the most 

appropriate method to analyze the behavior of the dynamic system. 

 

 
Fig.7 

Engine speed and torque, assuming the shafting system as a rigid body. 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Engine torque vs. speed, assuming the shafting system as a 

rigid body. 

  

 
(a)  

(b) 

 
(c) 

Fig.9 

Engine speed and torque, each of intermediate & propeller shafts is divided into 10 similar sections according to the finite 

element method. 
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Fig.10 

Shear stress of intermediate & propeller shafts, each of them is 

divided into 10 similar sections according to the finite element 

method. 

  

 
(a) 

 
(b) 

 
(c) 

Fig.11 

Engine speed and torque for Hybrid (Distributed-Lumped) model. 

 

 

 

 

 

 

Fig.12 

Shear stress of intermediate & propeller shafts for Hybrid 

(Distributed-Lumped) model. 

4.2 Shafting system fatigue analysis 

Fatigue life assessment is very important in ship powertrain systems. Fatigue analysis of power transmission shafts 

as components of power transmission from the engine to the ship and on the other hand as a system of transmitting 

forces from the seawater on the propeller to the engine is of great importance. Different loads such as low cycle, 

high cycle and transient can be applied to these shafts and may cause system fatigue and even failure. In this 
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research, using the values of shear stresses estimated in the previous sections, the fatigue analysis of the 

transmission shafts has been done according to the DNVGL guideline [43]; 
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                     (51) 

 
where τvHC and τvLC are the permissible high and low cycle torsional vibration stress amplitudes, respectively, Nc is 

the accumulated number of load cycles and τvT  is Permissible torsional vibration stress amplitude for transient 

condition. The permissible torsional vibration stress amplitude for transient condition is assumed to be equal to the 

maximum shear stresses calculated in the previous section for the intermediate and propeller shafts. Using the Eq. 

(51), the number of load cycles for the intermediate and propeller shafts will be 376 and 7.8×10
8
 cycles, 

respectively. In addition, the permissible vibration stresses in high cycle, low cycle and transient conditions, if the 

number of load cycles is assumed to be equal to 10
5
 cycles, are calculated as functions of engine speed for 

transmission shafts and can be seen in Fig. 13. Calculations show that considering the fatigue life of power 

transmission shafts, especially the intermediate shaft in the design stage will be of great importance and can not be 

ignored. 

 

 
(a) 

 
(b) 

Fig.13 

Permissible torsional vibration stress for: (a) intermediate shaft (b) propeller shaft. 

5    CONCLUSION 

In this study, the powertrain system of a VLCC (Very Large Crude oil Carrier) was analyzed using different method 

such as lumped parameter method, finite element method and distributed-lumped method. The effects of sea wave 

and wind on the engine and power transmission shafts were investigated. To validate the model, a fuel consumption 

report related to a 12-day voyage was taken into consideration. Comparison of the results of the modeling and the 

report indicates good agreement. In the next step, the effect of using different modeling methods for analysis of the 

intermediate shaft and propeller shaft was investigated and the system responses to these models were illustrated. 

Given that in distributed modeling as an analytical method, the basic assumption is that the dynamic system contains 

an infinite number of infinitesimally small elements, so the results of this modeling method can be more reliable 

than other modeling methods. Therefore, Hybrid (distributed-lumped) modeling method as an accurate and efficient 

modeling technique that requires little time to run the model can be used in the fatigue analysis and design of 

dynamic systems such as powertrain systems as expressed in this research. 

REFERENCES 

[1] IMO., 2011, Air Pollution and Energy Efficiency-Estimated CO2 Emissions Reduction From Introduction of 

Mandatory  Technical and Operational Energy Efficiency Measures for Ships, International Maritime Organization, 

London. 

[2] IMO., 2018, Initial IMO GHG Strategy, International Maritime Organization, London. 



                                                                                                                                                      A. Gholami et.al.                      188 

 

© 2022 IAU, Arak Branch 

[3] Nakamura S., Naito S., 1975, Propulsive performance of a container ship in waves, Journal of the Society of Naval 

Architects of Japan 15: 24-48. 

[4] Amini H., 2011, Azimuth propulsors in off-design conditions, NTNU 186: 1503.  

[5] Faltinsen O.M., Minsaas K.J., Liapis N., Skjordal S.O., 1980, Prediction of resistance and propulsion of a ship in a 

seaway, Proceedings of the 13th Symposium on Naval Hydrodynamics. 

[6] Ueno M., Tsukada Y., Tanizawa K., 2013, Estimation and prediction of effective inflow velocity to propeller in waves, 

Journal of Marine Science and Technology 18(3): 339-348. 

[7] Guo B.J., Steen S., Deng G.B., 2012, Seakeeping prediction of KVLCC2 in head waves with RANS, Apple Ocean 

Research 35(0): 56-67. 

[8] Taskar B., Yum K.K., Steen S., Pedersen E., 2016, The effect of waves on engine-propeller dynamics and propulsion 

performance of ships, Ocean Engineering 122: 262-277. 

[9] Kayano J., Yabuki H., Sasaki N., Hiwatashi R., 2013, A study on the propulsion performance in the actual sea by 

means of full-scale experiments, TransNav, The International Journal on Marine Navigation and Safety of Sea 

Transportation 7(4): 521-526. 

[10] Larroude V., Chenouard R., Yvars  P.A., Millet D., 2013, Constraint based approach for the steady-state simulation of 

complex systems: Application to ship control, Engineering Applications of Artificial Intelligence 26: 499-514. 

[11] Kyrtatos N.P., Theodossopoulos P., Theotokatos G., Xiros N., 1999, Simulation of the overall ship propulsion plant for 

performance prediction and control, Proceedings of the Conference on Advanced Marine Machinery Systems with Low 

Pollution and High Efficiency.  

[12] Scappin F., Stefansson S.H., Haglind F., Andreasen A., Larsen U., 2012, Validation of a zero- dimensional model for 

prediction of NOx and engine performance for electronically controlled marine two stroke diesel engines, Applied 

Thermal Engineering 37: 344-352. 

[13] Yum K.K., Taskar B., Pedersen E., Steen S., 2017, Simulation of a two-stroke diesel engine for propulsion in waves, 

International Journal of Naval Architecture and Ocean Engineering 9(4): 351-372. 

[14] Bazari Z., 1994, Diesel Exhaust Emissions Prediction under Transient Operating Conditions, International Congress & 

Exposition 103: 940666. 

[15] Theotokatos G., Tzelepis V., 2015, A computational study on the performance and emission parameters mapping of a 

ship propulsion system, Proceedings of the Institution of Mechanical Engineers, Part M : Journal of Engineering for 

the Maritime Environment 229: 58-76. 

[16] Rao S.S., 2010, Mechanical Vibrations, Pearson Education, Inc., Publishing as Prentice Hall.  

[17] Nelson  H.D., McVaugh J.M., 1976, The dynamics of rotor-bearing systems using finite elements, Journal of 

Engineering for Industry 98: 593-600. 

[18] Murawski L., Charchalis A., 2014, Simplified method of torsional vibration calculation of marine power transmission 

system, Marine Structures 39: 335-349. 

[19] Chahr-Eddine K., Yassine A., 2014, Forced axial and torsional vibrations of a shaft line using the transfer matrix 

method related to solution coefficients, Journal of Marine Science and Application 13: 200-205. 

[20] Huang Q., Zhang C., Jin Y., Yuan C., Yan X., 2015, Vibration analysis of marine propulsion shafting by the 

coupled finite element method, Journal of Vibroengineering 17: 3392-3403. 

[21] Jang M.O., Kim U.K., Park Y.N., Lee Y.J., 2004, A study on the coupled torsional-axial vibration of marine 

propulsion shafting system using the energy method, Journal of the Korean Society for Marine Environment & Energy 

28: 482-492. 

[22] Yang Y., Che C., Tang W., 2014, Shafting coupled vibration research based on wave approach, Journal of Shanghai 

Jiaotong University (Science) 19: 325-336. 

[23] Huang Q., Liu H., Cao J., 2019, Investigation of lumped-mass method on coupled torsional-longitudinal vibrations for 

a marine propulsion shaft with impact factors, Journal of Marine Science and Engineering 7: 95. 

[24] Grzadziela A., 2008, Modelling of propeller shaft dynamics at pulse load, Polish Maritime Research 15(4): 52-58. 

[25] Kluczyk M., Grzadziela A., 2017,Vibration diagnostics of the naval propulsion systems, Scientific Journal of Polish 

Naval Academy 1(208): 15-29. 

[26] Xiros N., 2002, Robust Control of Diesel Ship Propulsion, Springer. 

[27] Heywood J.B., 1988, Internal Combustion Engines Fundamentals, McGraw-Hill, New York. 

[28] Carlton J.S., 2007,  Marine Propellers and Propulsion, Butterworth-Heinemann, Oxford, UK. 

[29] Minsaas K., Faltinsen O.M., Persson B., 1983, On the importance of added resistance, propeller immersion and 

propeller ventilation for large ships in a seaway, Proceedings of the 2nd International Symposium on Practical Design 

in Shipbuilding, Tokyo & Seoul. 

[30] Holtrop J., Mennen G., 1982, An approximate power prediction method, International Shipbuilding Progress 329: 166-

170. 

[31] Liu S., Shang B., Papanikolaou A., 2019, On the resistance and speed loss of full type ships in a seaway, Ship 

Technology research (Schiffstechnik) 66(3): 163-181. 

[32] Liu S., Papanikolaou A., 2017, Approximation of the added resistance of ships with small draft or in Ballast condition 

by empirical formula, Proceedings of the Institution of Mechanical Engineers - Part M, Journal of Engineering for the 

Maritime Environment 231: 1-14. 

https://trid.trb.org/Results?q=&serial=%22Journal%20of%20the%20Society%20of%20Naval%20Architects%20of%20Japan%22
https://trid.trb.org/Results?q=&serial=%22Journal%20of%20the%20Society%20of%20Naval%20Architects%20of%20Japan%22


189                               Fatigue Life Analysis of the Propeller Shafting …. 
 
 

© 2022 IAU, Arak Branch 

[33] International Towing Tank Conference-Recommended Procedures and Guidelines, Analysis of Speed/Power Trial 

Data, 7.5-04-01-01.2, Effective Date 2014, Revision 01. 

[34] Dalian Shipbuilding Industry Co.,Ltd (DSIC), QMD Technical Analysis & Support, Torsional Vibration Calculation, 

Calculation No. : DTA-TV-C-R-0014b.  

[35] Yasukawa H., Zaky M., Yonemasu I.,  Miyake R., 2017, Effect of engine output on maneuverability of a VLCC in still 

water and adverse weather conditions, Journal of Marine Science and Technology 22: 574-586. 

[36] Safaei A.A., Ghassemi H., Ghiasi M., 2018, Correcting and enriching vessel’s noon report data using statistical and 

data mining methods, European Transport \ TrasportiEuropei 67: 1-13.  

[37] Whalley R., 1990, Interconnected spatially distributed systems, Transactions of the Institute of Measurement and 

Control 12(5): 262-270. 

[38] Whalley R., Bartlett H., Ebrahimi M., 1997, Analytical solution of distributed–lumped parameter network models. 

Proceedings of the Institution of Mechanical Engineers - Part I, Journal of Systems and Control Engineering 211(I3): 

203-218. 

[39] Gholami A., Jazayeri S.A., Esmaili Q., 2020, Marine powertrain simulation for design and operational performance 

evaluation, International Journal of Powertrains 9(4): 289-314. 

[40] International Towing Tank Conference-Recommended Procedures and Guidelines, Preparation Conduct and Analysis 

of Speed/Power Trials, 7.5-04-01-01.1, Effective Date, Revision 05. 

[41] Kim Y.D., Lee C.W., 1986, Finite element analysis of rotor bearing systems using a modal transformation matrix, 

Journal of Sound and Vibration 111(3): 441-456. 

[42] Ganta G., 2005, Dynamics of Rotating Systems, Springer, NY. 

[43] DNVGL-CG-0038-Class Guideline - Calculation of Shafts in Marine Applications, Høvik, Norway. 

 

 

 

 

 


