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 ABSTRACT 

 Dynamic vibration absorbers (DVAs) play an important role in the 

energy dissipation of a vibrating system. Undesirable vibrations of 

structures can be reduced by using the absorbers. This paper 

investigates the effect of an attached energy sink on the energy 

dissipation of a simply supported beam subjected to harmonic 

excitation. The aim is to design an optimal linear energy sink (LES) 

and a nonlinear energy sink (NES) and then compare them with each 

other. Each absorber includes a spring, a mass, and a damper. For each 

absorber, the optimum mass, stiffness, and damping coefficients are 

obtained in order to minimize the beam’s maximum amplitude at the 

resonant frequencies. The optimization problem is minimizing the 

maximum amplitude of the beam subjected to an arbitrary harmonic 

force excitation. For consideration of the effects of rotary inertia and 

shear deformation, the Timoshenko beam theory is used. The 

mathematical model of beam with DVA is verified by using the 

ANSYS WORKBENCH software. Finally, by considering the 

uncertainty on the DVA parameters it was observed that the LES is 

more robust than the NES. 

                                   © 2021 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 MONG the several techniques which are used for reducing the structural vibrations, DVAs are very useful 

and preferred. DVAs have received much attention for their good performance in suppressing of maximum 

deflections of continuous and discrete systems. They are widely used to reduce vibration especially when the system 

is under the harmonic excitations. A DVA includes a mass, a spring and a damper attached to the main structure. 

There are two types of DVAs; DVA with a linear spring and damper or LES and DVA with nonlinear spring and 

damper or NES. DVAs don’t need an active control system with huge electrical power consumption (Samani et al. 

[12]). A DVA locally dissipates the vibrating energy. DVAs need tuning to have a good performance. A lot of 

research has been done to dissipate the vibration energy which is incited into the system by external excitation. In 

recent studies, linear and nonlinear vibration absorbers have been introduced to reduce the resonance peaks. In 

______ 
*
Corresponding author. Tel.: +98 1333690274. 

E-mail address: hamed.koohi@guilan.ac.ir (H. Kouhi) 

A 



449                                H.Kouhi et.al. 
 

 

© 2021 IAU, Arak Branch 

(Vakakis et al., [14]) it is shown that the vibrating energy of a linear discrete structure can be absorbed by a 

nonlinear oscillator. For a discrete system the evaluation of a nonlinear energy sink absorber based on the 

transmissibility has been addressed in (Zang et al., [16]). In (Chen et al., [3])  the vibration of a linear beam 

equipped with a NES is investigated. In addition to the continuous system, DVAs can be used for the vibration 

control of discrete systems (Starosvetsky and Gendelman, [13]). A nonlinear absorber tuning procedure is given in 

(Starosvetsky and Gendelman, [13]) by which the total system energy suppression is provided. In (Samani et 

al.,[13]) performances of dynamic vibration absorbers for beams subjected to moving loads have been addressed. 

The mentioned beam is equipped with a DVA to reduce the vibration. The optimization problem is minimization of 

maximum vibration amplitude of the beam. The robustness of a NES attached to a clamped-clamped beam with 

harmonic excitation is investigated in (Parseh et al., [11]). In (Younesian et al., [15]) a railway bridge is considered 

as a beam that is subjected to a moving load. The performance of a NES attached to the beam is evaluated. It is 

shown that NES can remarkably suppress the beam deflection. The robustness of the optimal NES is investigated by 

the sensitivity analysis. In (Ahmadabadi and Khadem, [1]) vibration control of a linear cantilever beam by two 

different NESs (grounded and ungrounded) has been investigated. The dynamics of a simply supported beam with 

an attached local NES have been studied in (Georgiades and Vakakis, [6]). It is shown that NES dissipates the shock 

energy without spreading it back to the beam. In (Avramov and Gendelman, [2]) they have shown that the nonlinear 

absorber can be useful for vibration dissipation of continuous harmonically forced system. Vibration control of a 

Timoshenko beam with optimized tuned mass damper (TMD) subjected to a moving load is investigated in 

(Moghaddas et al., [10]). The system of combined bridge-vehicle is studied in which the bridge is modeled as a 

Timoshenko beam. The objective is to determine the optimum values of the TMD parameters in order to minimize 

the maximum amplitude of beam. In (Esmailzadeh and Jalili, [5]) the maximum amplitude of beam has been 

minimized over a wide range of exciting frequency. The effect of TMDs attached to a simply-supported ends 

Timoshenko beam subjected to an exciting force has been addressed in (Chen and Huang, [4]). The effect of TMD 

number on the beam maximum amplitude is analyzed. In (Samani et al., [13], Parseh et al., [11], Younesian et 

al.,[15], Ahmadabadi and Khadem, [1]) and many other works for the beam modeling the Euler-Bernoulli model is 

employed which is not accurate modeling. In this work such as (Moghaddas et al., [10], Esmailzadeh and Jalili,[5], 

Chen and Huang, [4]) for consideration of the effects of rotary inertia and shear deformation, the Timoshenko beam 

theory is used. In many works such as (Samani et al., [13], Younesian et al., [15], Kani et al., [8], Avramov and 

Gendelman, [2], Moghaddas et al., [10], Chen and Huang, [4]) simply support ends beam is studied. In this paper we 

also use the mentioned boundary condition. Multiple DVAs is more effective than a single DVA, although there are 

many works that studied the effect of a single DVA attached to a beam, there are a few works such as (Moghaddas 

et al., [10], Chen and Huang, [4]) that have studied the performance of multi DVAs. In this paper beam with multi 

DVAs will be studied. In order to obtain suitable parameters for a DVA, an optimization problem should be defined. 

Many researches such as (Kani et al., [8], Moghaddas et al., [10], Chen and Huang, [4]) have used optimization 

methods to design absorber mass, spring and damper. In this paper the parameters are obtained from a min-max 

optimization problem. Although a great attention has been paid to use a NES rather than a LES (Ahmadabadi and 

Khadem, [1], Kani et al., [9], Georgiades and Vakakis, [6], Avramov and Gendelman, [2]) in the present paper these 

two types absorbers are compared with each other. In practice, the ratio of the total mass of DVAs to the beam mass 

should not be greater than 10% moreover it is not economic to design a heavy DVA (Chen and Huang, [4]). In our 

work, total mass of DVAs is assumed to be a constant value of 15kg (smaller than 10% of beam mass). In the other 

words we want to use all 15kg for the multi DVAs. This constraint must be considered in the optimization 

procedure. We use the total mass of the DVA equal to 15 kg which is far less than the beam mass of 235 kg. 

In order to compare the robustness of LES and NES we use the uncertainty analysis (Parseh et al., [11], 

Younesian et al., [15]).  In this method an uncertainty on exciting force amplitude and location as well as 20% 

uncertainty on stiffness and damping of each absorber will be considered and then the beam maximum amplitude for 

a wide range of exciting force frequency is studied. In the previous works the LES and NES have not been compared 

with each other. 

2    BEAM TIME RESPONSE 

In Fig.1 the simply supported beam which is equipped with three DVAs is shown. The structure is symmetric, At the 

x=L/2 the DVA mass is 0m   and for x=L/4 and 3L/4 each DVA mass is 1m . 
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Fig.1 

Simply supported Timoshenko beam with three DVAs. 

 

 

In the following the governing equation of motion is derived. The Timoshenko beam theory is used to consider 

the effects of rotary inertia and shear deformation. To characterize the beam deformation, two quantities are used; 

( , )y x t  represent the transverse deflection and ( , )x t  is the rotation of the beam cross-section. 

In order to derive equations by Lagrangian method (Esmailzadeh and Jalili, [5]) the assumed mode expansion is 

used in which ( , )y x t   and ( , )x t  can be written as:  
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where, ( )biq t  is the time dependent generalized coordinate of the i-th mode of the beam, ( )i x  and ( )iY x  are the 

rotational and transverse mode shape for the i-th mode of free vibration, respectively. 

By applying the Lagrange’s equation the equation of motion is obtained (Esmailzadeh and Jalili, [5]). For a beam 

with LES the spring is linear and we have 
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and for a beam with NES the stiffness of spring is nonlinear (spring force 3kx ) and we have 
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where, according to Fig.1, 1 23, 4, 2J a L a L   ,  3 3 4a L , 1 3 1 2 0,M M m M m   .  

and  
2
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L L

i i i i i i iN AY x I x dx S EI x AG x Y x dx                 Derivations dot “.” and 

prime “ ’ ” represents partial derivative with respect to the time t and position x, respectively.   represents mass per 

unit volume of the beam, A is cross-sectional area of the beam, I is beam cross-sectional moment of inertia, E is the 

beam’s Young’s modulus of elasticity,   is shear deformation coefficient in the Timoshenko beam theory, G is the 

beam’s shear modulus. 
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From (Esmailzadeh and Jalili, [5]) the natural frequencies i  are obtaind by  

 
2 .i i iS N   (4) 

 

The details of determining of the Timoshenko-beam mode shape for ( )i x   and ( )iY x  have been described in 

(Huang, [7]). In this paper, the type of beam is simply supported in which the boundary condition for each ends of 

the beam is 0    and 0Y  . 

In the simply support ends, transverse deflections and bending moments are equal to zero at both ends. For 

mentioned boundary conditions the mode shapes of Timoshenko beam is (Huang, [7])  

 

( ) cos( )i

i x
x

L


   

4( ) sin( )i

i x
Y x C

L


  

(5) 

 

where, 2 2 2 2

4 1 ( ) ,
L

C b s r
b



    

0.5 0.5

2 2
, ,

I EI
r s

AL AGL

   
    
   

0.5

4 21
,nb AL

EI
 

 
  
 

 

  
0.5

0.5
2 2 2 2 2 21

( ) 4 / .
2

r s r s b         

 

 

3    VERIFICATIONS OF EQUATIONS 

In this section the mathematical equations of the Timoshenko beam is verified with ANSYS WORKBENCH 

software. Some of the beam parameters are given in  

Table 1. The parameters A and I are calculated with A bh  and 
3 12I bh . 

 

Table 1  

beam parameters 

E (GPa) G (GPa) L (m) b(m)  h (m) 3( / )kg m    

200 80 6 0.1  0.05 7800 5/6 

 

The beam with three linear DVA is modeled in ANSYS WORKBENCH as shown in Fig.2. In this verification 

0 7m kg , 1 4m kg , 27.5C Ns m , 1750K N m , exciting force amplitude is 1000N, exciting force location is 

3fa L , exciting force frequency is 5rad s  , step time is dt=0.0001s and finally simulation time is 30s. For the 

numerical solution of a continuous beam a discretization method is needed then the Runge-Kutta method is used for 

doing this purpose. 

 

 

 

 

 

 

 

Fig.2 

Beam modeling in the ANSYS WORKBENCH. 
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In this verification the first six natural frequencies of beam are used as 

 20.03,80.11,180.15,320.01,499.51,718.41n rad s   which are calculated from Eq.(4)). In the ANSYS 

WORKBENCH the time step is chosen to be 0.001s and the beam consists of 64 elements. In Table 2  some tuning 

in the ANSYS WORKBENCH is shown. 

 
Table 2  

Some parameters in the ANSYS WORKBENCH. 

Number of Steps Current Step Number Step End Time Auto Time Stepping Define By Time Step Time Integration 

1. 1. 30. s Off Time 1.e-003 s On 

 

In Fig.3 the response of the beam center Ycm is shown, the small error between the ANSYS output and the 

mathematical model output shows the high accuracy of the mathematical modeling which is based on the 

Timoshenko beam theory. 
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Fig.3 

Deflection of beam center and the error between the ANSYS 

output and mathematical model output. 

 

In Fig.4 the deflection of three DVAs is shown and in Fig.5 the error between the ANSYS output and the 

mathematical model output of three DVAs is shown. The results show the high accuracy of the mathematical 

modeling of the system of beam equipped with the DVAs. 

 

0 5 10 15 20 25 30
-0.01

0

0.01

z 1(m
)

0 5 10 15 20 25 30
-0.02

0

0.02

z 2(m
)

0 5 10 15 20 25 30
-0.01

0

0.01

z 3(m
)

time(s)  

 

 

 

 

Fig.4 

Deflection of the three DVAs. 
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Fig.5 
The error between the DVAs deflection from the ANSYS 

output and mathematical model output. 
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4    OPTIMIZATION 

From the beam parameters in  

Table 1, the beam mass is calculated as 234beamm kg . In this paper, the total mass of DVAs is considered 15kg 

which is far less than the beam mass (less than 10% of beam mass). For our problem, this relation is described as: 

 

0 12 15m m kg   (6) 

 

That can be seen in Fig.6. This relation is used in the optimization as a constraint. Note that if we want to use a 

single DVA in Fig.1, by selecting 0 15m kg  we have 1 0m  . Another reason for using the mentioned relation is 

that we want to use all 15kg for DVAs. This method has not been used in the previous works. In practice, in the 

optimization, the value of 0 15m kg  is not used because it results in 1 0m   that results in singularity in Eqs.(2) 

and (3). 
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Fig.6 
The relation between the mass of DVAs. 

 

4.1 Problem formulation 

In this paper, it is assumed that all absorbers have equal damping and stiffness or ,i ic C k K  . According to 

Eq.(6), only 0m   should be determined and 1m  is calculated as 
1 0(15 ) 2m m  . The point of acting of exciting 

harmonic force ( ) sin( )fF t A t  is considered 3fa L  in order to excite the beam’s mode shapes (like many 

previous works such as (Avramov and Gendelman, [2], Esmailzadeh and Jalili, [5]) the place of exciting force and 

DVAs are fixed). Therefore, the vector of the optimization variables is  0C K mX . The rest of variables are 

fixed in optimization. The optimization purpose is to minimize the maximum deflection of the beam over a wide 

frequency range by using the DVAs. The absorber parameters should be tuned to suppress the resonance in the 

beam. The steady state amplitude of the beam’s center deflection is ˆY . The optimization problem can be expressed 

in the following condensed form. 

 

 ˆ ˆmin max ( , )opY Y



X

X  (7) 

 

Thus, a min-max optimization problem should be solved. The traditional and simple optimization method has 

been the grid search method which is selected in this paper. In this method the whole domain of optimization 

variables is searched to find the optimal parameters. This method is a time consuming process but we are sure that 

the optimum parameters will be found. In the numerical optimization just three modes have been considered as 

enough. In this paper two types of DVAs is analyzed and compared with each other. First type is LES (by Eq.(2)) 

and second is NES ( by Eq.(3)). In order to clarify the difference between the linear DVA and nonlinear DVA, 

optimization of the parameters will be done for the two force level 500fA N  and  1000fA N . 

4.2 Optimization result for using linear DVA (LES) 

In this case, the beam is equipped with three LESs. At first, the optimization result is given for 500fA N  and then 

the results related to 1000fA N is given. 
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4.2.1 Optimization result for 500fA N  

For the case of 500fA N the optimal value for parameters of linear DVA is achieved as 

0 5.65 , 27.5m kg C Ns m   and 1750K N m  and 1m  is calculated as 1 4.425kgm  . For the optimal values 

of 27.5C Ns m  and 1750K N m  the 3D surface of amplitude- - 0m  is shown in Fig.7(a) where the optimal 

amplitude is achieved for 
0 5.65m kg . The amplitude-  curve for the optimal value of 

0 5.65m kg  is given in 

Fig.7 (b) where the maximum amplitude is 0.0462m  for the frequency of about 21rad/s. This result shows that if we 

want an optimal linear DVA, the 15kg mass must be distributed as 
0 5.65m kg  and 1 4.425kgm  . From the 3D 

surface, it can be seen that this design is very robust against the changes in 0m . 
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(b) 

Fig.7 

Optimization result of beam with linear DVA for the force amplitude of 500fA N : a) amplitude as a function of   and 0m  

b) amplitude-  curve for 
0 5.65m kg . 

4.2.2 Optimization result for 1000fA N  

For a set of linear DVA the results of optimization with 1000fA N  and 500fA N  is similar, in other words, 

their optimum parameters are similar. Because the amplitude of 1000fA N  is two times bigger than the previous 

optimization value, in Fig.8(b) the maximum amplitude is 0.0916m which is about two times bigger than the 

previous optimization result. The aforementioned result is clear because the system is linear. 
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(b) 

Fig.8 

Optimization result of beam with linear DVA for the force amplitude of 1000fA N : a) amplitude as a function of   and 0m  

b) amplitude-  curve for the 
0 5.65m kg . 

4.3 Optimization result for using nonlinear DVA (NES) 

In this case, a system of nonlinear energy sink is used for dissipating of the beam oscillatory energy. The beam is 

equipped with three NESs. At first the optimization result is given for 500fA N  and then the results related 

to 1000fA N  is presented. 



455                                H.Kouhi et.al. 
 

 

© 2021 IAU, Arak Branch 

4.3.1 Optimization result for 500fA N  

For the case of 500fA N the optimal value for parameters of nonlinear DVA is achieved as  

0 14.25 , 125m kg C Ns m   and 
4 375 10K N m . For the optimal values of 125C Ns m  and 

4 375 10K N m  the 3D surface of amplitude- - 0m  is shown in Fig.9(a) where the optimal amplitude is 

achieved for 
0 14.25m kg . The amplitude-  curve for the optimal value of 

0 14.25m kg  is given in Fig.9(b) where 

the maximum amplitude is 0.063m that happens for the frequency of about 20 rad/s. Note that the linear DVA 

results in smaller amplitude of 0.0462m. This result shows that if we want an optimal nonlinear DVA, the 15kg mass 

must be approximately concentrated in the center of beam, in the other words, for a nonlinear stiffness, a single 

DVA should be used instead of three DVAs. From the 3D surface it can be seen that a little change in 0m  will result 

in a large amplitude for the beam, thus, this design is not robust against the changes in 0m . 
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(b) 

Fig.9 
Optimization result of beam with nonlinear DVA for the force amplitude of 500fA N : a) amplitude as a function of   and 

0m b) amplitude-  curve for the 
0 14.25m kg . 

4.3.2 Optimization result for 1000fA N  

Against the sysytem of beam with linear DVA, when the exciting force amplitude increase from 500fA N  to 

1000fA N  the optimum parameters changes to 80C Ns m  and 4 315 10K N m . This result show that when 

we use a system of nonlinear DVA, the optimum parameters depend on the amplitude of exciting force amplitude 

that is not suitable for a system of beam equipt with DVA. In this point of view, the linear DVA is better than the 

nonlinear one. 
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(b) 

Fig.10 
Optimization result of beam with nonlinear DVA for the force amplitude of 1000fA N : a) amplitude as afunction of   and 

0m  b) amplitude-  curve for the 
0 14.25m kg . 
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4.4 Robustness analysis 

In this section four robustness analysis will be executed which are: robustness against force amplitude, exciting 

force location, damper and spring coefficient. The robustness of the optimal LES and NES will be investigated by 

putting the uncertainty on the four mentioned parameters. 

4.4.1 Robustness analysis against the exciting force amplitude 

In this section, the robustness of the optimal LES and NES will be investigated by putting the uncertainty on the 

exciting force amplitude. For this purpose, at first the optimal parameters of system for the force amplitude of 

500fA N  are considered as the basic design. Then the force amplitude of 800fA N is applied to the beam while 

the other parameters are fixed. In Fig.11(a) the amplitude-  curve  of  beam with linear DVA is shown (with 

maximum amplitude 0.072 m) that is 1.56 times of the amplitude in Fig.7(b) (with the maximum amplitude 0.0462m 

) but when a nonlinear DVA is used in Fig.11(b) the amplitude will be 0.6m which is about 10 times of the 

amplitude in Fig.9(b) (with the maximum amplitude 0.063m). According to this analysis, the LES is very robust 

against the change in the exciting force amplitude. 
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Fig.11 
The amplitude of the beam with uncertainty on the amplitude of exciting force with 800fA N  a) linear DVA b) nonlinear 

DVA.  

4.4.2 Robustness analysis against the exciting force location: 

In this section, the robustness of the optimal LES and NES will be investigated by putting the uncertainty on the 

exciting force location. The previous design for the linear DVA was done for 3fa L  and 1000fA N  which is 

shown in Fig.8. In Fig.12 in order to investigate the robustness of linear DVA two values of 2fa L  and 

4fa L  are considered for the location of exciting force. The amplitude of force is 1000fA N . Comparison of 

the result of Fig.12 and Fig.8 shows small changes in the beam amplitude. 
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Fig.12 
The amplitude of beam with linear DVA and with uncertainty on 

fa  a)
 

2fa L   b)
 

4fa L . 
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The maximum amplitude of the beam with nonlinear DVA and with 500fA N   and 3fa L  is 0.063m which 

is shown in Fig.9. In Fig.13 2fa L
 
is considered as the new force location. Comparison of Fig.9 and Fig.13 

shows that the beam with nonlinear DVA is not robust against the change in the exciting force location. In other 

words, when we use the nonlinear DVA, for each force location a special set of parameters should be employed. 

This conclusion shows that the linear DVA is more preferred than the nonlinear one. 
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Fig.13 
The amplitude of beam with nonlinear DVA and with 

500fA N  and 2fa L . 

4.4.3 Robustness analysis against the damper coefficient: 

In this section, we consider 20% uncertainty on C for the both linear and nonlinear DVAs. The optimal parameters 

of linear and nonlinear DVAs with 500fA N  (Fig.7 and Fig.9) are considered as the basic design. In Fig.14(a) and 

Fig.14(b) the effect of +20% and -20% uncertainty on C is shown, respectively. In comparison with the result of 

Fig.7 for the linear DVA the amplitude changes is small. Thus the LES is very robust against the uncertainty on the 

damping coefficient. 
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Fig.14 
The amplitude of beam with linear DVA and with uncertainty on C a)+20% uncertainty b)-20% uncertainty. 

 

The effect of 20% uncertainty on C for the nonlinear DVA is shown in Fig.15(a) and (b). In comparision with 

Fig.9, it can be seen that the nonlinear DVA is not robust against the -20% uncertainty on C. Therefore, from this 

point of view the LES is more robust than the NES. 
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Fig.15 
The amplitude of beam with nonlinear DVA and with uncertainty on C a)+20% uncertainty b)-20% uncertainty. 
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4.4.4 Robustness analysis against the spring coefficient 

In this section we consider 20% uncertainty on K for the both linear and nonlinear DVAs. The optimal parameters of 

linear and nonlinear DVAs with 500fA N  (Fig.7 and Fig.9) are considered as the basic design. In Fig.16(a) and 

(b) the effect of +20% and -20% uncertainty of K is shown, respectively. In comparison with the result of Fig.7 for 

the linear DVA the amplitude changes is small. Thus the LES is very robust against the uncertainty on the spring 

coefficient. 

 

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

(rad/s)

A
m

p
lit

u
d

e 
(m

)

 
(a) 

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(rad/s)

A
m

p
lit

u
d

e 
(m

)

 
(b) 

Fig.16 
The amplitude of beam with linear DVA and with uncertainty on K a)+20% uncertainty b)-20% uncertainty. 

 

The effect of 20% uncertainty of K for the nonlinear DVA is shown in Fig.17(a) and (b). In comparision with 

Fig.9 it can be seen that the nonlinear DVA is not robust against the +20% uncertainty on K. therefore, from this 

point of view the LES is more robust than the NES. 
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Fig.17 
The amplitude of beam with nonlinear DVA and with uncertainty on K a)+20% uncertainty b)-20% uncertainty. 

5    CONCLUSION 

In this paper, the effect of two types of DVAs (LES and NES) on the vibration dissipation is investigated. The 

Timoshenko beam theory is used to achieve accurate results. The mathematical model of beam with three DVAs is 

verified using the ANSYS WORKBENCH software. In order to design the LES and NES, a min-max optimization 

problem is formulated and the optimum mass, stiffness, and damping coefficients are obtained. For the first time the 

total mass constraint has been considered for the DVAs in the optimization procedure. In order to investigate the 

robustness of the DVA, the sensitivity analysis is done by applying the uncertainty on the exciting force amplitude, 

exciting force location, the damper coefficient and spring coefficient. The results show the linear DVA is more 

robust than the nonlinear DVA against the mentioned uncertainties. Moreover, the results show that LES is more 

robust than the NES against the absorber mass uncertainty. In the other hand, optimal parameters of the nonlinear 

DVA depend strongly on the external force amplitude and location and the damper and spring coefficient. The 

optimization results show that for the LES case, a special mass distribution must be used for the three DVAs but for 
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the NES case, only single DVA (the whole of DVAs mass must be approximately concentrated in the middle of 

beam) is the optimal design. 
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