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 ABSTRACT 

 Design multiphase heterogeneous structures in order to provide 

multifunctional properties has many applications in the field of 

material design. In this research, a new method for construction 

multiscale heterogeneous microstructure is presented. Using 

statistical correlation function, specifically, two-point correlation 

functions, bicontinuous two-phase structure is constructed that has 

solid and void phases. In order to construction the heterogeneous 

media, an exponentially decreasing sine function is used as 

autocovariance function. Then based on Schwartz P minimal 

surface the porous media structure, is divided into two parts; 

porous solid phase and void phase. From the point of view of 

continuity, the phases are investigated and it is observed both 

phases of the constructed microstructure are connected throughout 

the media. Using this method it is possible to construct 

bicontinuous multiscale microstructures that are solid and void 

phase in coarse scale and the solid phase can be constructed as void 

and solid phase in fine scale.   
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1    INTRODUCTION 

ODAY, with the emergence of new needs, research on multifunctional structures that can perform multiple 

tasks simultaneously has received much attention [1]. Large groups of these materials, known as heterogeneous 

materials, have microstructures with two or more phases, in which each phase performs its own task. Heterogeneity 

occurs when there are at least two different states (called here phase) in a given volume such as void and solid 

phases in porous media or polycrystalline microstructures with grains with different orientations. These materials 

include, but not limited to, natural structures such as wood and body bones and synthetic items such as composites 

and honeycomb structures. It is possible to achieve excellent properties such as being ultralight and 

multifunctionality by engineering and optimization the phase distribution of heterogeneous microstructures [2]. 
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Solid oxide fuel cell cathode and bone implant microstructures are practical cases for engineered heterogeneous 

microstructure. Assuming multiscality, more capabilities are provided for optimizing and manipulating the 

microstructure. For example, by controlling the distribution of phases on the fine scale, the desired properties such 

as anisotropy can be controlled on the coarse scale [3].Determination of mechanical properties, thermal 

conductivity, diffusion coefficient and other properties of these materials has a long history and has been highly 

regarded by researchers [4]. Given that there is a close relationship between the geometry of the structure and its 

properties, the discovery of this relationship and in the next step, the optimization of microstructure in order to 

achieve optimal or predetermined properties, is an important goal in the field of materials engineering [5]. It should 

be noted that microstructure in the context of material design refers to a scale that is relatively finer than a coarse 

scale and it does not necessarily mean micrometers or very small dimensions. Therefore structures such as bone, 

concrete and sandstone are also called microstructure in this context [4]. In addition, mostly the classical continuum 

mechanics equations are used to evaluate intended properties for heterogeneous microstructures [1,6-10]. However, 

there are cases in which the classical continuum mechanics is incapable of explaining their behavior. For example, 

doublet mechanics that is a micromechanical theory has demonstrated better prediction of behavior of particulate 

materials [11,12]. In this theory, materials are assumed to be discrete and represented by an array of points with 

finite distances [13], therefore in some cases it is possible to predict mechanical behavior such as stress fields [12] or 

natural frequency [14] with more confidence. The geometry of heterogeneous structures can be randomly [15,16] or 

they can be repeated periodically [17,18]. In randomly modeled cases, no repetitive patterns in the structure can be 

detected, and mostly such structures are constructed using statistical functions [19]. The first step in construction a 

heterogeneous microstructure is to choose a suitable statistical method for expressing and describing it. Common 

methods of statistical description of microstructure are: N-point correlation function, cluster functions, lineal path 

method, etc., which have been studied in detail by Torquato [4]. The method used in this research is N-point 

correlation functions in general and two-point in particular. Due to the two-way relationship between geometry and 

properties in N-point correlation functions, these functions have also been used by researchers to investigate a 

variety of structural properties, such as the work of Beran [20], Kröner [21], Rémond et al. [22]  and Hasanabadi et 

al. [23]. In the periodic cases, the unit cell must first be optimized using functions that relate the required properties 

of the microstructure to its geometry, and then the structure can be easily replicated to the desired size by repeating 

this cell [17]. One of the unit cells that has recently received attention in the engineering and biological fields is the 

use of minimal surfaces [24]. These surfaces are two hundred years old and were first proposed in Lagrange 

research. He sought to answer the question of what a surface with the smallest area would look like for a closed 

border [25]. The answer to this question leads to the formation of some differential equations that should be solved. 

For the first time, Schwarz provided examples of these surfaces [26]. Schwarz introduced five examples of these 

surfaces, the most famous of which is the Schwarz P minimal surface. 

In this paper, firstly a bicontinuous structure is constructed based on Schwarz P minimal surface. This structure 

is a two-phase media composed of void and solid phase. Secondly the solid phase of constructed microstructure in 

turn, is divided into void and solid phase in smaller scale. This is done using exponentially decreasing sinusoidal 

autocovariance function that is usually used for bicontinuous structure. The resulted porous structure is appropriate 

for designing heterogeneous media such as artificial bone implants [27,28] and solid oxide fuel cell cathode [29]. 

2    MINIMAL SURFACES 

The minimal surface, according to Fig. 1, is which at each point on it, the average of the two principal curvatures, 

which are also perpendicular to each other, is zero. Obviously, these surfaces must be saddled at any point so that 

sum of the two curvatures are equal to zero. The minimal surface used in this research is Schwartz P minimal 

surface (Fig. 2). If a unit cell is considered, this surface divides the cell into two parts, which can be solid and void 

space, or both solid space. Each of these two parts is called a phase. The Schwarz P surface has the property of 

phase symmetry, which means that if two phases have equal volume fraction, by changing the position of the two 

phases, there is no change in geometry and properties. Therefore, the proposed unit cell will create an optimal 

structure for the cases where each phase is nonconductive to what passes through the other phase, for example, one 

phase conducts heat and the other phase conducts electricity separately. In other words, in applications like this, the 

best structure that can be achieved, is the same structure that is periodically created by the Schwartz P unit cell [7]. 

This structure is bicontinuous, which means that each phase is connected to the whole structure from one side to the 

other side. 
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Fig.1 

An example of minimal surface. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Schwarz P minimal surface. 

 

There are various method proposed by researcher for construction minimal surfaces [30]. In this research, 

another method is used that is proposed by author [31]. For this purpose, the edges of the surface are first created by 

arcs with equal radius according to Fig. 3 and then using the method provided by Coons [32], these edges are turned 

into a surface using a suitable Matlab code according to Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Arcs are used as boundary of the surface patch. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Surface constructed using Coons blending method. 
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3    CONSTRUCTION OF HETREOGENEOUS STRUCTURE 

To create a microstructure, using statistical methods, a descriptor must first be introduced to describe the 

microstructure. This descriptor should have the ability to record its geometric properties to an acceptable extent. 

Among various microstructure descriptor, two-point correlation functions are used in this research to describe the 

microstructure due to their ease of calculation and compatibility with the phase recovery algorithm [33]. Correlation 

functions are expressed statistically, and in vector. One method of calculation is the use of Monte-Carlo-like 

methods [34] in which to calculate two-point functions, a large number of vectors are thrown on the space and then 

the value of the probability function is obtained by dividing the number of vectors whose beginning and end are in 

the desired phases by the total number of thrown vectors. For a two-phase structure such as Fig. 5, if the gray phase 

is considered as phase 1, four possible correlation functions are assumed to be expressed as, 11 22 12

2 2 2( ), ( ), ( )C r C r C r    

and  21

2 ( )C r  . Of the above four, only one is independent and the rest can be achieved according to it. 11

2 ( )C r  is the 

probability of placing the beginning and end of an arbitrary vector r  in the gray phase, which will be obtained by 

dividing the number of red vectors by the number of all green and red vectors, according to Fig. 5 and do the same 

for the rest of the 22 12

2 2( ), ( )C r C r  and  21

2 ( )C r   functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 

Calculation of correlation function for a two-phase microstructure. 

 

Based on the correlation function a scaled function is defined as autocovariance function [35] that is expressed 

for phases 1 as; 
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where  
1v , is the volume fraction of phase 1. It should be noted that for isotropic microstructure, the direction of 

vector r  is unimportant and it is sufficient to consider only the value of it as r in Eq. (1). The autocovariance 

function used in this research is an exponentially decreasing sinusoidal function, which is expressed as Eq. (2): 
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In Eq. (2), q and b are positive parameters that controls the amount of oscillations and decreasing respectively. 

This function was first used by Cule and Torquato to reconstruct porous structures [15]. This function can be used 

for a wide range of volume fractions and creates suitable bicontinuous microstructures. Bicontinuity means that 

similar to the gray phase of Fig. 5, which is interconnected throughout the structure both phases are interconnected 

in three-dimensional mode throughout the structure. To construct the microstructure, first the values of the 

autocovariance functions are calculated in terms of values q  and b , using Eq. (2), and then the two-point correlation 

function is determined using Eq. (1). The microstructure is then constructed using the phase recovery algorithm [33]. 

The details of microstructure construction based on the existing two-point correlation functions and the phase 

recovery method are explained in detail in [33]. 
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4    RESULTS AND DISCUSSION 

For 
1 0.5, 3v b   and 5q  , the porous microstructure (Fig. 6) is constructed using Eq. (1) and (2) and phase 

recovery algorithm [33]. The Schwarz P surface (Fig. 2) is then used to remove part of the previous porous media 

according to Fig. 7. According to Fig. 6, it can be seen that both of void and solid phase are a single connected 

cluster throughout the microstructure. For a cluster of a phase, it is possible to connect two arbitrary point on it 

through a path without crossing other phase. By developing algorithm proposed by Hoshen and Kopelman [36] the 

connectivity of each phases is checked using cluster multiple labeling technique [37]. 

Half of the structure of Fig. 7 is depicted in Fig. 8 (a). By sectioning the resulted structure, demonstrated in Fig. 

8 (b), gradual changes in the geometric arrangement of the two phases can be clearly seen. Half of the structure 

volume of Fig. 6 is void phase therefore by removing half of it by Schwarz P surface, shown in Fig. 2, the 

constructed microstructure in Fig. 7 will eventually have approximately 75% void phase and 25% solid phase. 

 

  

 

 

 

 

 

Fig.6 

Construction the porous media for 
1 0.5, 3v b    and 5q  , 

void phase is the transparent one. 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Superimposing the Schwarz P surface for construction multi-

scale porous media. The transparent region is the void phase. 

  

          
 (a) (b) 

Fig.8 

(a)Half of structure of Fig. 7, (b) sectioning of the structure of Fig. 7 in pixel 1, 26, 51, 76 and 101 from left to right and from 

top to down respectively by equidistant planes. The black region is the void phase. 

 

Since the volume fraction of a phase and its geometric arrangement will simultaneously affect the resulting 

properties, to determine the appropriate values of the volume fractions in different stages, it is necessary to use the 

objective function in each case and then optimize it. For example for  1 0.4v   (volume fraction of solid phase),  
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and  10q   and using the Schwarz P with volume fraction of solid phase equal to 0.14, the resulted microstructure 

is demonstrated as Fig. 9. This microstructure has volume fraction equal to 0.05 for solid phase and at the same 

time, it is interconnected throughout its structure. It is possible to repeat the unit structure to construct a large 

structure of desired extent according to Fig. 10. Due to the rapid advances in 3D printing technologies, designed 

structures can be turned into reality and used in applications such as artificial bone design [27,38] or fuel cells [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 

A fine and interconnected microstructure with volume fraction 

of  0.05 for solid phase. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

By repeating the unit cell, the structure can be designed to any 

size desired. 

 

 

In order to evaluate the mechanical properties of the microstructure obtained in Fig. 7, the values of the effective 

thermal conductivity of each microstructure and phase are examined. Effective thermal conductivity is defined as 

the relative conductivity of a two-phase cube compared with a fully solid cube. Therefore if the conductivity of a 

fully solid cube is equal to 1, the effective conductivity of a porous cube must be between zero and 1.  One side of 

the cube is assigned a high temperature and the other side is assigned a low temperature (see Fig. 11). It is assumed 

that no heat passes through the other four faces of the cube and then the heat flux value is obtained using the finite 

volume method. By dividing the amount of flux by the temperature difference between the two sides, the value of 

the effective thermal conductivity is determined. 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 

Boundary conditions applied to calculate effective thermal 

conductivity. 
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The results of the effective thermal conductivity for various structures are summarized in Table 1. It is observed 

that the effective thermal conductivity of two-scale microstructure, presented in this research is slightly lower than 

Schwarz P minimal surface with volume fraction of solid phase equal to 0.25. However, it should be noted that the 

surface-to-volume ratio is much higher in two-scale microstructure, a feature that is very important in cases such as 

solid oxide fuel cell [40] where a chemical reaction or exchange of heat, ions and electrons takes place on the 

surface. 

 
Table 1 

Effective thermal conductivity for various structures. 

structure appearance 
Volume fraction 

of void phase 

Volume fraction 

of solid phase 

Effective thermal 

conductivity for 

void phase 

Effective thermal 

conductivity for 

solid phase 

Constructed using 

 Eq. (2)  
0.5 0.5 0.27 0.25 

Schwarz P 

(with equal phases)  
0.5 0.5 0.33 0.33 

Two-scale 

microstructure  
0.75 0.25 0.59 0.08 

Schwarz P 

(with unequal 

phases) 
 

0.75 0.25 0.65 0.10  

5    CONCLUSION 

In this research, a new method was presented for multi-scale modeling of porous structure based on random 

heterogeneous design and minimal surfaces. The porous microstructure was constructed using two-point correlation 

functions and phase recovery algorithm. In another stage, Schwarz P minimal surface was created based on 

boundary curve and Coon’s blending method. By superimposing Schwarz P minimal surface on random 

heterogeneous structure a completely bicontinuous porous structure was created in two scale. Such structures are 

suitable for designing items such as artificial bone and fuel cell cathodes that require low weight and high area-to-

volume ratio. 
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