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 ABSTRACT 

 In this paper, a numerical solution is presented for static and 

dynamic stability analysis of carbon nanotube (CNT) reinforced 

beams resting on Pasternak foundation. The beam is considered to 

be exposed to compressive axial and follower forces at its free end. 

The beam is modeled based on the Reddy’s third order shear 

deformation theory and governing equations and external boundary 

conditions are derived using Hamilton’s principle. The set of 

governing equations and boundary conditions are solved 

numerically using differential quadrature method. Convergence and 

accuracy of results are confirmed and effect of various parameters 

on the stability region of the beam is investigated including volume 

fraction and distribution of CNTs, width and thickness of the beam 

and elastic and shear coefficients of the foundation. 

                                  © 2022 IAU, Arak Branch. All rights reserved 
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1    INTRODUCTION 

XIAL compressive load leads to static instability of structures but dynamic instability in structures (beams, 

pipes, plates and shells) may be created due to internal [1-4] or external [5-8] fluid flows or follower force. 

Dynamic stability analysis of structures subjected to follower forces is of practical importance in such fields as 

aerospace, mechanical and civil engineering. Due to this importance, many researchers focused on the dynamic 

stability analysis of structures. Irie et al. [9] used Timoshenko beam theory and studied vibration and dynamic 

stability analysis of non-uniform beams subjected to follower force. They studied variation of cross section of the 

beam on the critical load. Using finite element method, Park [10] focused on the dynamic stability analysis of a free-

free Timoshenko beam under a controlled follower force. He studied effect of feedback gain on the stability region 
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of the beam. Using Timoshenko beam element, Lien and Jeng [11] investigated dynamic stability of a bimodulus 

beam subjected to a follower force. Dynamic stability analysis of a tapered cantilever beam resting on a foundation 

subjected to a follower force was studied by Lee [12]. He focused on the effect of internal damping of the beam and 

damping of the foundation on the critical load. Takahashi and Yoshioka [13] used transfer matrix method (TMM) 

and focused on vibration and stability analysis of a stepped beam with internal span subjected to follower force. 

Using transfer matrix method and Timoshenko beam theory, Takahashi [14] studied vibration and stability analysis 

of non-uniform cracked beams subjected to follower force. Young and Juan [15] used Ritz-Galerkin method and 

studied stability and response of fluttered beams subjected to random follower forces. Djondjorov and Vassilev [16] 

employed theory Timoshenko beam theory and focused on the dynamic stability analysis of cantilever beams resting 

on Winkler foundation subjected to tangential follower force. Goyal and Kapania [17] studied dynamic stability of 

laminated beams subjected to non-conservative loads. Li [18] presented an exact solution for stability analysis of 

non-uniform columns under the combined action of concentrated follower forces and variably distributed loads. He 

considered some especial cases of variation in cross section which can be solved analytically. Bending-torsional 

flutter analysis of wings with an attached mass subjected to a follower force was studied by Fazelzadeh et al. [19]. 

Wang [20] focused on the stability analysis of pipes conveying fluid subjected to distributed follower forces. He 

showed that depending on the properties and velocity of the fluid and value of the follower force, either dynamic or 

static instabilities can happen. Using adomian decomposition method (ADM), Mao and Wattanasakulpong [21] 

studied effect of conservative and non-conservative axial forces on the vibration and stability analysis of a double-

beam system interconnected by an elastic foundation. They studied effect of stiffness of internal springs on the 

stability regions of the system. Bahaadini et al. [22] studied nonlocal and surface effects on the dynamic stability 

analysis of cantilever nanotubes conveying fluid subjected to follower force. They confirmed that surface effect 

leads to increase in stability of the nanotubes. Using a modified nonlocal elasticity theory and employing Galerkin 

method, Bahaadini and Hosseini [23] studied flutter and divergence analysis of cantilever carbon nanotubes 

conveying fluid, embedded in viscoelastic foundation and subjected to an axial compressive load. They concluded 

that stability boundaries of the CNT are strongly dependent on the small-scale coefficient and surface effects. Due to 

their unique mechanical properties, many researchers focused on the effect of CNTs and graphene nanoplatelets on 

the mechanical behavior of structures. Mohammadimehr et al. [24] employed modified couple stress theory and 

presented an exact solution for free and forced vibration analysis of viscoelastic FG-CNT reinforced micro 

composite beams. Arefi et al. [25] employed a two-variable sinusoidal shear deformation theory within a nonlocal 

elasticity theory and studied free vibration analysis of functionally graded polymer composite nanoplates reinforced 

with graphene nanoplatelets resting on a Pasternak foundation. Using first-order shear deformation theory, Arefi et 

al. [26] focused on the two-dimensional thermo-elastic analysis of CNT reinforced cylindrical pressure vessels 

subjected to inner and outer pressure under a temperature rise. This work was repeated and improved using the third-

order shear deformation theory by Mohammadi et al. [27]. By employing the first-order shear deformation theory 

and the nonlocal elasticity theory, Arefi et al. [28] presented a parametric study on the bending analysis of 

functionally graded polymer composite curved beams reinforced by graphene nanoplatelets resting on a Pasternak 

foundation. Because of their high accuracy, higher order shear deformation theories have been used by many authors 

in the recent years to study mechanical analysis of various types of structures [29-33].  

In this paper, Reddy’s third order beam theory is employed and static and dynamic stability analysis of CNT-

reinforced cantilever beams resting on Pasternak foundation subjected to axial and follower forces are studied. 

Governing equations and boundary conditions are solved numerically using differential quadrature method. 

Convergence and accuracy of the presented solution are examined and effect of volume fraction and distribution of 

CNTs, geometrical parameters and elastic and shear coefficients of the foundation on the stability boundaries are 

investigated. There are many papers regarding stability analysis of beams subjected to axial or follower forces. But 

in this paper stability regions are derived in the presence of both axial and follower forces which can be considered 

as the novelty of the presented work. Also, Reddy’s third order shear deformation theory is employed in this paper 

which makes results more accurate in comparison with previous works which used Euler-Bernoulli or Timoshenko 

beam theories. 

2    GOVERNING EQUATIONS  

As depicted in Fig. 1, a cantilevered CNT-reinforced beam of length L, with b and thickness h is considered. The 

beam is exposed to an axial (Q) and a follower (P) force applied at the free end. According to the extended rule of 

mixture, elastic (E11) and shear (G12) moduli of the beam can be estimated as [34]: 
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In which E11
CNT

, G12
CNT

 and VCNT are elastic and shear moduli and volume fraction of the carbon nanotubes, 

respectively and E
m
, G

m
 and Vm=1-VCNT indicate corresponding ones of the isotropic matrix. It is extremely difficult 

to achieve perfect bond between the CNTs and isotropic polymer matrix. So, a certain part of interactive force 
between them is reduced. Therefore CNT efficiency parameters (η1 and η3) are introduced in Eq. (1) to consider the 

above incomplete interfacial interactions by matching the elastic modulus of CNTs from the molecular dynamics 

(MD) results with the numerical ones obtained from the rule of mixture [34]. 
Also, density (ρ) and Poisson’s ratio (ν) of the beam can be calculated as [34]: 

 

     

   12

CNT m

CNT m

CNT m

CNT m

z V z V z

V z V z

  

  

 

 
 (2) 

 
where ν12

CN
 and ρ

CNT
 are Poisson’s ratio and density of CNT, respectively and ν

m
 and ρ

m
 are corresponding ones of 

the isotropic matrix. 

The CNT distribution is functionally graded by linearly varying the volume fraction of the CNT in thickness 

direction. Various types of distribution of CNTs are considered including UD, FG-V, FG-O and FG-X. For these 

types of distribution which are depicted in Fig. 2, volume fractions of CNTs are given by 
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According to the Reddy’s third order shear deformation beam theory, the displacement field is considered as 

[35]: 
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where c1= 4/(3h
2
), u

z
 and w

z
 show the components of displacement along x and z directions, respectively. u and w 

indicate corresponding components of displacement at the middle axis (z= 0) and ϕ is rotation about y axis. Using 

strain-displacement relations, nonzero components of strain can be stated as: 
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Based on the Hooke’s law, components of stress can be written as [36]: 
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According to the Hamilton's principle, considering δ as variational operator and [t1,t2] as a desired time interval, 

the set of governing equations and boundary conditions can be derived using following relation: 
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In which T, U and Wnc are kinetic energy, potential energy and work done by external non-conservative forces. 

The kinetic energy can be stated as follow: 
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In which V is volume of the beam. The potential energy of the beam and foundation can be calculated as [12, 36, 

37]: 
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where the first part is potential energy of the beam, the second part is additional potential energy of the beam created 

due to the compressive axial and follower forces and the third part is additional potential energy created by the 

Pasternak foundation. It is worth mentioning that reaction of an elastic foundation is a conservative force which can 

be considered in the potential energy or in the work done by external forces. 

The transverse component of the follower force is a non-conservative force and no potential energy can be 

defined for this force component.  The  virtual  work of  this  transverse  component  of  the  follower  force  can  be  

expressed  as [12]: 
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Substituting Eqs. (4)-(6) and (8)-(10) in Eq. (7), the set of governing equations can be written as: 

 
2 2 3

0 3 1 32 2 2
0xN u w

I J c I
x t t t x

   
   

    
 

2 2 3 2 4 3
2

1 1 1 3 0 1 6 52 2 2 2 2 2 2
3 0G wx x x

P Q k kP Q R w u w w
c c w c I I c I J

x x b bx x t x t t x t x

        
        
         

 

2 3 2

1 1 3 5 12 2 2
3 0x x

x x

P M u w
c c R Q J J J

x x t t x t

    
       

     
 

(11) 

 

In which 

 

 2 2 2
1 2 1 4 1 6 3 1 1 3 5 1 4 1 6

2

2 0,1,2,3,4,6
h

i

hiJ I c I c I J I c I J c I c I I z z dz i


          (12a) 

 



Static and Dynamic Stability Analysis of Thick CNT….                         5 
 

© 2022 IAU, Arak Branch 

3 22 2 2 2 2

2 2 2 2 2

h h h h h

h h h h hx x x x x x x xz x xzN dz M z dz P z dz Q dz R z dz    
    

          (12b) 

 

Also, boundary conditions can be written as: 
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Substituting Eq. (6) in Eq. (12b) leads to 
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Using Eq. (14), the set of governing Eqs. (11) can be written as: 
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and boundary conditions at x = L written in Eq. (13b) can be rewritten as follow: 
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where prime indicates spatial derivation with respect x. Also, external boundary conditions (13a) and (17) can be 

written as: 
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It should be noted that in Eqs. (19) and (20), ω is a complex eigen value. 

 

 

 

 

 

 

 

Fig.1 

CNT-reinforced beam on Pasternak foundation subjected to 

axial and follower forces. 
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     (a) UD                                        (b) FG-V 

           
      (c)  FG-O                                 (d) FG-X 

Fig.2 

Various linear distribution of CNTs. 
 

3    DIFFERNTIAL QUADRATURE METHOD(DQM) 

Differential quadrature method is based on the idea that all derivatives of a function can be easily approximated by 

means of weighted linear sum of the function values at N pre-selected grid of points as: 

 

   
1

1

r
r

r NN N
N

d f
A f

dx 


 
    

 
 (21) 

 

where  r
A  is the weighting coefficient associated with the r

th
 order derivative given by [38] 

 

 

 

 

     

1

1
,

1

1

1 1

, 1, 2,3, ,

1

2 1

N

i m

m
m i j

N

j m
ij m

m j

N

m i m
m i

r r

x x

i j

x xA i j N

i j
x x

A A A r N


















  


 
 


        
     







 (22) 

 

In this paper, for simplifying, following notations are considered: 

 

               1 2 3 4
A A B A C A A A          

       
 (23) 

 

Distribution of the grid points is an important aspect in convergence of the solution. A well-accepted set of the 

grid points is the Gauss–Lobatto–Chebyshev points given for interval [0,1] as [38]: 

 

 1
1 cos 1,2,3,...,

2 1
i

iL
x i N

N

   
    

   

 (24) 

4    DQ ANALOGUE  

Using DQ rules, the set of governing Eqs. (19) can be written as: 

 

     2K V M V  (25) 

 

In which 
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 

 

 

 

   
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

U k k k m m m

V W K k k k M m m m

k k k m m m

     
     

       
          

 

      11 11 12 1 11 13 11 1 11k A B k c D C k B c D B      

 11 0 12 1 3 13 3m I I m c I A m J I     

     

     

2 2

21 1 11 22 1 11 12 1 12 1 12

2

23 1 11 1 11 12 1 12 1 12

6 9

6 9

G wk P Q k
k c D C k c H D A c C c F B I

b b

k c F c H C A c C c F A

  
        

 

    

 

     2

21 1 3 22 0 1 6 23 5m c I A m I I c I B m J A     

        

    

2

31 11 1 11 32 1 11 1 11 12 1 12 1 12

2 2

33 11 1 11 1 11 12 1 12 1 12

6 9

2 6 9

k B c D B k c F c H C A c C c F A
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       

     

 

 31 3 32 5 33 1m J I m J A m J I     

(26) 

 

where I is identity matrix of order N. Also, external boundary conditions can be written as: 

 

     2T V R V  (27) 

 

In which 
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     

     

     
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(28) 

 

In order to calculate the eigen values, Eqs. (25) and (27) should be solved. This simultaneous solution leads to 

create some redundant equations. So, governing equations in boundary points should be neglected [39, 40]: 

 

   2K V M V        (29) 

 

In which bar sign implies non-square matrix and boundary points are considered as: 
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(30) 
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Using Eqs. (27) and (29) following eigen value equation is obtained 

 

     2

t tK V M V  (31) 

 

where 

 

   t t

K M
K M

T R

   
    
   

 (32) 

 
Using Eq. (31) complex eigen values can be found. Imaginary part of these eigen values (Ω = Im(ω)) indicates to 

natural frequencies and real part shows stability of instability of the beam. 

5    NUMERICAL RESULTS  

In this section numerical results are presented for various cases. Convergence and accuracy of the presented solution 

are confirmed and a parametric study is presented on the effect of volume fraction and distribution of CNTs, 

geometrical parameters and stiffness coefficients of the foundation on the stability region. 

 
 

Table 1 

Efficiency parameters [41, 42]. 

V*
CNT η1 η2 η3 

0.12 0.137 1.022 

0.7η2 0.17 0.142 1.626 

0.28 0.141 1.585 

 

 

Unless otherwise stated, numerical results are presented for a beam made of Poly (methyl methacrylate), referred 
to as PMMA, as the matrix with material properties E

m
 = 2.5 GPa, ν

m
 = 0.34 and ρ

m
 = 1150 kg/m

3
 and (10,10) 

armchair SWCNT (L = 9.26 nm, R = 0.68 nm, h = 0.067 nm) as the reinforcements. Elasticity moduli, shear 

modulus, Poisson’s ratio and mass density of SWCNT are evaluated at reference temperature by Shen and Xiang 
[43] and are E11

CNT
= 5.6466 TPa, G12

CNT
= 1.9445 TPa, ν12

CNT
= 0.175 and ρ

CNT
= 1400 kg/m

3
. Results are presented 

for three different volume fractions of CNTs and corresponding values of efficiency parameters are presented in 

Table 1.  

Unless otherwise stated, following values are considered: 

 

* 4 3

2
1 10 5 0.12 10 10CNT w G

N
L m b cm h cm V k k N

m
        

 

and following dimensionless parameters are defined: 

 

* * * *

2 2 2

w Gm

w G

m mm m m

k kP Q
L P Q k k

E EE L E L E L


       (33) 

 

At first, convergence of the presented solution should be examined. For this purpose, consider a FG-X CNT 

reinforced beam subjected to Q = 2 KN and P = 5 KN. Table 2 shows effect of number of grid points on the real and 

imaginary parts of the eigen values for the first three modes. This table reveals that presented solution converges 

rapidly and for frequency the first three modes N = 13 is enough. This value is considered in all of the following 

examples. 
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Table 2 

Convergence of the presented numerical solution (FG-X, Q = 2 KN, P = 5 KN). 

N 
Ω = Im(λ) Re(λ) 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

5 0.509449 9.532003 17.69614 -0.00191 -0.67316 -2.35182 

7 0.369998 1.805542 3.658591 -0.00100 -0.02411 -0.09899 

9 0.349563 1.699981 3.488799 -0.00090 -0.02137 -0.09000 

11 0.342269 1.627437 3.385132 -0.00086 -0.01959 -0.08473 

13 0.339901 1.567246 3.313810 -0.00085 -0.01863 -0.08217 

15 0.340064 1.561887 3.310907 -0.00085 -0.01804 -0.08105 

 

In order to validate the presented solution consider a CNT reinforced cantilever beam with no axial and follower 

forces, no foundation and the following properties [44]: 

 

3

*

11 12 123

1 3

2.5 ,  0.3,  1190

5646.6 ,  1944.5 ,  2100 , 0.175,  0.17,  

0.142,  1.138,  10 ,  12

m m

m

CNT CNT CNT CNT

CNT

kg
E GPa

m

kg
E GPa G GPa V

m

b h cm L h

 

 

 

  

    

    

 
 

 

For various types of CNTs distribution and first five modes of vibration, dimensionless values of the frequency 

are presented and compared in Table 3 with those reported by Lin and Xiang [44]. Comparison of results confirms 

high accuracy of the presented solution. 

Consider a homogeneous beam of L = 10, b = 1 m, h/L = 0.01 with no axial force, no foundation and subjected to 
a follower force. In Fig. 3 effect of the dimensionless follower force (η = 10

4
P/EA, A=bh) on the real and imaginary 

parts of the first two dimensionless eigen values are depicted. As shown in this figure with increase in value of the 

follower force, first natural frequency increases and second one decreases. At a special value of the follower force 
(η= 1.645833) this two frequencies become equal to Ω = 0.031789 and corresponding value of the real part raise to 

positive values. In fact, at this point, oscillations of the beam become unstable which is known as flutter. Value of 

the follower force at this point is called critical follower force and the corresponding frequency is called the flutter 

frequency. 

 
Table 3 

First five dimensionless frequencies of a CNT-reinforced cantilever beam with no axial and follower forces and no foundation 
(Em = 2.5 GPa, νm = 0.3, ρm = 1190 kg/m3, E11

CNT = 5.6466 TPa, G12
CNT= 1.9445 TPa, ν12

CNT= 0.175, ρCNT= 2100 kg/m3, 

V*
CNT=0.17, η1= 0.142, η3= 1.138, b=h=10 cm, L = 12h). 

Ω*=(ΩL2/h)(ρm/Em)1/2 
UD FG-V FG-X 

Present Lin and Xiang [44] Present Lin and Xiang [44] Present Lin and Xiang [44] 

Mode 1 6.102602 6.16900 5.247523 5.30480 7.026457 7.10270 

Mode 2 26.07763 25.4398 24.14084 23.5585 27.84940 27.2740 

Mode 3 53.68519 53.3180 51.15805 50.8264 56.06942 55.7497 

Mode 4 82.34153 81.1924 79.98986 78.8812 84.94143 83.9485 

Mode 5 112.2116 110.8875 110.0281 108.6575 115.9162 114.5832 

 

  
Fig.3 

Effect of follower force on first two eigen values of beam. 
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Table 4 

Critical follower force and flutter frequency of a homogeneous cantilever beam with no axial force and no foundation for various 

values of thickness to length ratio (L =10, b =1 m). 

h/L 
ηcr = 104 Pcr/EA Ωcr 

Presented Djondjorov and Vassilev [16] Difference (%) Presented 

0.01 1.645833 1.67 1.447126 0.031789 

0.02 6.583333 6.66 1.151156 0.063433 

0.03 14.81250 14.9 0.587248 0.094787 

0.04 26.33333 26.4 0.252538 0.125711 

0.05 40.49479 40.9 0.990733 0.156458 

0.10 151.5625 154 1.582792 0.299502 

0.15 311.7188 314 0.726497 0.419722 

0.20 496.8750 497 0.025151 0.515590 

0.25 678.7109 681 0.336138 0.589027 

0.30 848.4375 855 0.767544 0.643789 

 

For various values of thickness to length ratio, dimensionless values of the critical follower force and flutter 

frequency are presented in Table 4. Corresponding values of the critical follower force reported by Djondjorov and 

Vassilev [16] are presented at this table. Comparison of the results confirms high accuracy of the presented solution. 

In order to comparison of effect of the follower and axial forces a FG-X reinforced beam is considered. Effect of the 

axial or follower force on the first two dimensionless frequencies are shown in Fig. 4. According to this figure, 

critical value of the dimensionless follower force is about P
*
cr = 5.385×10

-4
. Fig. 4 reveals that with increase in 

value of the axial force, all frequencies decrease and in a special value of the axial force which is known as critical 

axial force (Q
*

cr = 1.385×10
-4

), frequency of the first mode drops to zero and beam become statically unstable. 

Comparison of critical values for follower and axial forces shows that the beam subjected to axial load (static 

instability) is closer to instability rather than the beam subjected to follower force (dynamic instability). 

In what follows, a parametric study is presented to study effect of various parameters on the stability of the CNT-

reinforced beam. In each figure, three diagrams are depicted: 

 Value of the fundamental frequency versus value of the axial load (no follower force is applied). 

 Values of the natural frequencies and corresponding real parts of the eigen values of the first two modes 

versus value of the follower force (no axial load is applied). 

 Stability region for a beam subjected to both axial and follower forces. 

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effect of follower force on first two eigen values of beam. 

 

In order to study effect of volume fraction of CNTs on the stability, a FG-X reinforced beam is considered. In 

Figs. 5(a)-5(c) effect of volume fraction of CNTs on the stability of the beam are shown. These figures shows that 

increase in volume fraction of CNTs leads to increase in both static and dynamic stability of the beam. In can be 

explained by high value of the elastic modulus of CNTs in comparison with elastic modulus of matrix. Fig. 5(b) 

shows that increase in volume fraction of CNTs increases flutter frequency  

In order to study influence of distribution of CNTs on the stability, consider a FG-X reinforced beam. Effect of 

distribution of CNTs on the stability of the beam are depicted in Figs. 6(a)-6(c). These figures reveals that 

distribution of CNTs can be sorted in order to increase in stability of the beam as FG-X, UD, FG-V, FG-O. In other 

word, in order to get more stability, it is better to put CNTs far away from neural axis of the beam. Fig. 6(b) shows 

that distribution of CNTs can be sorted in order to increase in flutter frequency again as FG-X, UD, FG-V, FG-O. 

In order to study effect of thickness of the beam on the stability, an FG-X reinforced beam is considered. For 

various values of thickness to length ratio, stability regions are depicted in Figs.7(a)-7(b). These figures show that 

thickness has a significant effect on the stability of the beam. It is shown that increase in thickness of the beam 
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expand stability regions and makes beam more stable. It should be noted that increase in thickness of the beam 

increases mass of the beam which should be considered as a disadvantage. Fig. 7(b) shows that increase in thickness 

of the beam increases flutter frequency. 

 

 
(a)Beam subjected to axial load 

 

 
(b)Beam subjected to follower force 

 
(b)Beam subjected to follower force  

 
(c)Beam subjected to axial and follower forces 

Fig.5 

Effect of volume fraction of CNTs on the stability of the beam. 

  

 
(a)Beam subjected to axial load 

 
(b)Beam subjected to follower force 

 
(b)Beam subjected to follower force 

 
(c)Beam subjected to axial and follower forces 

Fig.6 

Effect of distribution of CNTs on the stability of the beam. 
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(a) Beam subjected to axial load 

 
(b) Beam subjected to follower force 

 
(b) Beam subjected to follower force 

 
(c) Beam subjected to axial and follower forces 

Fig.7 

Effect of thickness to length ratio on the stability of the beam. 

 

 

In order to study effect of width of the beam on the stability, consider a FG-X reinforced beam is considered. 

Figs.8(a)-8(b) stability regions are depicted for various values of width to length ratio. This figures show that like 

thickness, increase in width of the beam expand stability regions and makes beam more stable. A comparison 

between Figs. 7 and 8 reveals that thickness of the beam has more influence rather than width of the beam which is 

in agreement with I = bh
3
/12. It can be stated that like thickness, increase in width of the beam makes beam heavier. 

Figs. 8(a) and 8(b) show that width of the beam has no significant effect on flutter frequency and when the beam is 

not subjected to axial or follower force, width of the beam has no effect on the natural frequencies.  

 

 
(a) Beam subjected to axial load 

 
(b) Beam subjected to follower force 

 
(b) Beam subjected to follower force 

 
(c) Beam subjected to axial and follower forces 

Fig.8 

Effect of width to length ratio on the stability of the beam. 
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In order to study effect of elastic coefficient of the foundation on the stability of the beam, consider a FG-X 

reinforced beam. In Figs. 9(a)-9(c) effect of elastic coefficient of the foundation on the stability of the beam are 

depicted. These figures show that for a beam subjected to axial load, increase in elastic coefficient of the foundation 

increases critical load but for a beam subjected to follower force, this coefficient has no considerable effect on the 

critical follower force. Fig. 9(a) shows that increase in elastic coefficient of the foundation increases flutter 

frequency and decreases real parts of the eigen values in unstable regions which leads to decrease in amplitude of 

unstable oscillation of a fluttered beam.  

In order to study effect of shear coefficient of the foundation on the stability of the beam, a FG-X reinforced 

beam is considered. Effect of shear coefficient of the foundation on the stability of the beam are depicted in Figs. 

10(a)-10(c). These figures show that increase in elastic coefficient of the foundation expands stability regions and 

increase critical values of the axial or follower forces. Fig. 10(b) shows that a small increase in flutter frequency can 

be seen as shear coefficient of the foundation increases. 

 

 
(a) Beam subjected to axial load 

 
(b) Beam subjected to follower force 

 
(b) Beam subjected to follower force 

 
(c) Beam subjected to axial and follower forces 

Fig.9 

Effect of width to length ratio on the stability of the beam.  

 

  

 
(a) Beam subjected to axial load 

 
(b) Beam subjected to follower force  

 
(b) Beam subjected to follower force 

 
(c) Beam subjected to axial and follower forces  

Fig.10 

Effect of width to length ratio on the stability of the beam. 
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6    CONCLUSION 

In this paper, differential quadrature method was employed and a numerical solution was presented for static and 

dynamic stability analysis of carbon nanotube (CNT) reinforced beams modeled based on the Reddy’s third order 

shear deformation theory. The beam was subjected to compressive axial and follower and was resting on Pasternak 

foundation. Convergence and accuracy of the presented solution were confirmed and effect of various parameters on 

the stability region of the beam were investigated. Numerical results showed that increase in volume fraction of 

CNTs leads to a considerable enhancement in stability region. It was confirmed by numerical examples that among 

all pattern of distribution of CNTs, FG-X leads to the maximum expansion in stability regions. As was expected, it 

was shown by numerical results that increase in thickness and width of the beam and also shear coefficient of the 

foundation improve stability behavior of the beam subjected to both axial and follower forces. It was shown by 

numerical examples that increase in elastic coefficient of the foundation increases value of the critical axial load but 

it has no significant effect on the value of the critical follower force. Numerical examples revealed that increase in 

volume fraction of CNTs, thickness of the beam and elastic coefficient of the foundation and also using FG-X 

pattern for distribution of CNTs increase flutter frequency but width of the beam and shear coefficient of the 

foundation has no considerable effect on the flutter frequency. 
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